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Abstract. In previous work, the authors provided a foundation for the theory of variable metric proximal
point algorithms in Hilbert space. In that work conditions are developed for global, linear, and super–linear
convergence. This paper focuses attention on two matrix secant updating strategies for the finite dimensional
case. These are the Broyden and BFGS updates. The BFGS update is considered for application in the
symmetric case, e.g., convex programming applications, while the Broyden update can be applied to general
monotone operators. Subject to the linear convergence of the iterates and a quadratic growth condition on
the inverse of the operator at the solution, super–linear convergence of the iterates is established for both
updates. These results are applied to show that the Chen–Fukushima variable metric proximal point algorithm
is super–linearly convergent when implemented with the BFGS update.

Key words. maximal monotone operator – proximal point methods – variable metric – global convergence –
super-linear convergence

1. Introduction

In [2], we introduced the variable metric proximal point algorithm (VMPPA) for general
monotone operators and established a basic convergence theory. The algorithm builds
on the classical proximal point algorithm and can be viewed as a Newton–like method
for solving inclusions of the form

0 ∈ T(z)

where T is a maximal monotone operator on a Hilbert space. In this paper, we focus
on the finite dimensional case and consider two quasi–Newton updating strategies
for generating the Newton–like iterates: the BFGS and Broyden updates. The BFGS
update is appropriate for application to convex programming and the Broyden update
is suitable for other applications such as mini–max problems. We develop a local
convergence theory for these updates. In particular, we establish conditions for the
super–linear convergence of the iterates. These results are then used to establish the
super–linear convergence of the Chen–Fukushima VMPPA for convex programming
when implemented with the BFGS update.
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Recently, the drive to develop a VMPPA in the context of finite–valued, finite
dimensional convex programming has been joined by several authors [1,2,5,7,11–
14,17,18]. In convex programming, the goal is to derive a variable metric method
for minimizing the Moreau–Yosida regularization of a convex function f : IRn →
IR ∪ {+∞}:

fλ(z) := min
y∈IRn

{
λ f(y) + 1

2
∥y − z∥2

}
(1)

(in the finite–valued case, f cannot take the value+∞). Here the operator T is the convex
subdifferential of the function f , denoted ∂ f . The inclusion 0 ∈ ∂ f(z) corresponds to
the first–order optimality conditions for the convex programming problem

P : min
x∈IRn

f(x) .

It is well known that the convex program P has the same solution set as the convex
program

Pλ : min
x∈IRn

fλ(x) ,

for everyλ > 0. In addition, the function fλ is continuously differentiablewith Lipschitz
continuous derivative even if the function f is neither differentiable or finite–valued.
The goal of all research into VMPPAs is to develop a super–linearly convergentmethod
for solving Pλ for a fixed value of the proximation parameter λ. The method should not
require precise values for either fλ or its derivative, and should not require excessively
strong smoothness hypotheses on the function f .

We study matrix secant updating strategies for the VMPPA in the operator setting.
Other than [2], all previous work on the VMPPA is focused on the convex programming
case where the objective function is assumed to be finite valued. In the convex program-
ming case, matrix secant updating strategies are studied in [1], [5], [11], [12], and [14].
In [1], Bonnans, Gilbert, Lemaréchal, and Sagastizábal consider an algorithmic pattern
modeled on the approach suggested by Qian in [18]. In this regard, the quasi–Newton
updates are applied to the function f instead of fλ. This approach allows one to circum-
vent the technical difficulties associated with varying the value of λ in fλ. The authors
provide an adaptation of the Dennis–Moré characterization theorem for the super–linear
convergence of Newton–like methods in nonlinear programming [8]. The authors also
establish the super–linear convergence of the PSB, DFP, and BFGS updates. The results
in [1] require that the function f is continuously differentiable at a unique solution
with Lipschitz continuous derivative, the derivative is strongly directionally differen-
tiable, and the directional derivative operator is positive definite. In addition, the results
for the BFGS update require that the directional derivative satisfy a radially–Lipschitz
condition [1, Inequality 3.11].

In [5], Chen and Fukushima use a bundle strategy for approximating fλ and its
gradient. They use a line search based on the function f instead of fλ. This is an
important practical innovation since the evaluation of approximations to fλ can be
costly. They establish an analog of Dennis and Moré’s characterization theorem for
super–linear convergence under the assumption that f is strongly convex, fλ is strongly
twice differentiable at a unique solution, the derivative approximations and their inverses
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are bounded, and the error in the approximation to fλ converges to zero much faster
than sum of the squares of the errors in the approximation to ∇ fλ. None of the results
in [5] depend on quasi-Newton updating. However, the authors encourage the use of the
BFGS update.

In [11], Lemaréchal and Sagastizábal consider a scalar quasi–Newton update. Fol-
lowing the classical result of Rockafellar [20], the authors establish super–linear con-
vergence by showing that the proximation parameter λ diverges to +∞. The analysis
requires that f is locally continuously differentiablewithLipschitz continuous derivative
and that f satisfies a quadratic growth condition near the solution set. In [12], Lemaréchal
and Sagastizábal establish another analog of the Dennis–Moré characterization theorem
under a technical assumption on the structure of the derivative approximation for ∂ f .
The authors then study the SR1 update and a scalar quasi–Newton update which they
label a poor man’s update. A convergence rate is not established for the SR1 update.
Super–linear convergence is established for the poor man’s update along the lines of
[11] by showing that the inverse of the proximation parameter converges to zero. The
super–linear convergence results we obtain in Sect. 3 do not require that the proximation
parameter λ diverges to +∞. However, we do require that this parameter is sufficiently
large (see hypothesis (H4) in Sect. 3.1).

In [14], Mifflin, Sun, and Qi obtain the first super–linear convergence result for
a variable metric proximal point algorithm using the BFGS matrix secant update in the
setting of finite dimensional finite–valued convex programming. Their algorithm uses
a line search based on approximations to the function fλ and requires that fλ is strongly
convex with ∇ fλ Fréchet differentiable at the unique global solution to the convex
program. In addition, the main super–linear convergence result for the Mifflin–Sun–Qi
algorithm [14, Theorem 5.3] assumes that the iterates satisfy an approximation property
involving the Hessian ∇2 fλ [14, Theorem 5.3]. Using very different techniques and
hypotheses no stronger than those used in [14], we are able to avoid such a hypothesis.
Indeed, we are able to show that the iterates in our algorithm automatically satisfy an
even stronger approximation property (Lemma 3).

Our goal is to establish the super–linear convergence of the VMPPA as presented in
[2] using the Broyden and BFGS updates. This algorithm applies to general monotone
operators on IRn and is not confined to applications in convex programming. In the
context of convex programming, our convergence hypotheses differ from those used
in [1,5,11,12] since they are imposed on the operator (∂ f )−1 rather than ∂ f . This
difference is significant since it allows us to handle the non–finite valued case, i.e.,
constrained convex programs. We apply these general results to the Chen–Fukushima
VMPPA in the final section. Further details concerning the application of the VMPPA
in the context of convex programming can be found in [3] along with some preliminary
numerical results.

The paper is organized as follows. In Sect. 2, we recall the basic features of the
VMPPA. In Sect. 3, we study the Broyden andBFGS updating strategies for theVMPPA
and provide conditions under which super–linear convergence is achieved. In Sect. 4,
we consider the Chen–Fukushima VMPPA for finite–valued convex programming. We
begin by establishing the linear convergence of the algorithmusing hypotheses consistent
with the analysis provided in Sect. 3. We then apply the results of Sect. 3 to the Chen–
Fukushima algorithm.
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A word about our notation is in order. Let IRn denote real n–dimensional Euclidean
space and let IRn×n denote the set of all real n × n matrices. We use the standard
Euclidean inner product and norm on IRn , i.e., for x, y ∈ IRn , ⟨x, y⟩ = xT y and
∥x∥ =

√
xT x. For a matrix H ∈ IRn×n , the norm is ∥H∥ = sup∥x∥=1 ∥Hx∥. We denote

the closed unit ball in IRn by IB. Then the ball with center a and radius r is denoted
by a + r IB. Given a set Z ⊂ IRn and an element z ∈ IRn , the distance of z to Z is
dist (z, Z) = inf{∥z − z′∥ : z′ ∈ Z}.

Given a multi-function (also referred to as a mapping or an operator depending on
the context) T : IRn −→−→ IRn (here the double arrows −→−→ are used to signify the fact that
T is a multi–function), the graph of T , graph (T ), is the subset of the product space
IRn × IRn defined by graph T = {(z, w) ∈ IRn × IRn|w ∈ T(z)}. The domain of T is
the set dom T := {z ∈ IRn|T(z) ̸= ∅}. The identity mapping will be denoted by I . The
inverse of an operator T is defined by T−1(w) := {z ∈ IRn|(z, w) ∈ graph T }.

Given a lower semi-continuous convex function f : IRn → IR
⋃{+∞}, the conju-

gate of f is defined by f ∗(z∗) = supz∈IRn {⟨z∗, z⟩ − f(z)}, and the subdifferential of f
is the multi-function defined by ∂ f(z) = {y ∈ IRn : f(z′) ≥ f(z) + ⟨y, z′ − z⟩ for all
z′ ∈ IRn}.

2. The variable metric proximal point algorithm

The multi-function T : IRn −→−→ IRn is said to bemonotone if for every (z, w) and (z′, w′)
in graph (T ) we have ⟨z − z′, w − w′⟩ ≥ 0. The monotone operator T is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator. The proximal point algorithm for solving the inclusion 0 ∈ T(z) generates
a sequence {zk} satisfying the approximation rule

zk+1 ≈ (I + λkT )−1(zk)

for a given sequence of positive scalars {λk}.
In the case of convex programming, the function fλ defined in (1) is continuously

differentiable [15] with ∇ fλ(z) = −w(λ, z) where w(λ, z) = P(λ, z) − z and P(λ, z)
is the unique solution to the minimization problem in (1). The proximal point iteration
has the form

zk+1 = zk + wk , where wk ≈ −∇ fλk (zk).

That is, it is a method of steepest descent with unit step size applied to the function
fλk with λk varying between iterations. The algorithm for a general maximal monotone
operator T can be formally derived from this iteration by replacing ∂ f by T and−∇ fλk
by the operator

Dk =
[
(I + λkT )−1 − I

]
. (2)

The operator Dk corresponds to the negative of the gradient operator and yields a direc-
tion analogous to the direction of steepest descent. The proximal point algorithm takes
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the form zk+1 = zk + wk , with wk ≈ Dk(zk) . A Newton–like variation on this iteration
yields the VMPPA.

The Variable Metric Proximal Point Algorithm:

Let z0 ∈ IRn , H0 ∈ IRn×n , and λ0 ≥ 1 be given. Having zk ∈ IRn , Hk ∈ IRn×n ,
and λk ≥ 1, set

zk+1 := zk + Hkwk where wk ≈ Dk(zk)

and choose Hk+1 ∈ IRn×n and λk+1 ≥ 1.

Remark. The condition λk ≥ 1 is used in [2] to establish global convergence. A more
stringent condition on the magnitude of the λk’s is required for the local analysis in
Sect. 3 (e.g. see Theorems 1 and 2).

Our local analysis uses the following approximation criterion for the wk’s:

(L)
∥∥wk − Dk(zk)

∥∥ ≤ δk
∥∥wk∥∥ with

∞∑

k=0
δk < +∞ .

This criterion is stronger than a similar condition used in [2]. The stronger condition is
required to establish super–linear convergence.

In general, criterion (L) is not implementable. However, it is shown in [2, Proposi-
tion 3.1] that the condition (L) is implied by the approximation criterion

(L′) dist (0, Sk(wk)) ≤ δk

λk

∥∥wk∥∥ with
∞∑

k=0
δk < +∞ ,

where Sk(w) = T(zk + w) + 1
λk

w. This condition is implementable. In particular, one
need not obtain an element in Sk(wk) of least norm in order to guarantee that (L′) is
satisfied.

Before leaving this section we recall from [20] a few properties of the operators Dk
and Pk := Dk + I that are essential in the analysis to follow.

Proposition 1 [20, Proposition 1].

a) The operator Dk can be expressed as Dk = −(I + T−1 1
λk

)−1 and for any z ∈ IRn ,
− 1

λk
Dk(z) ∈ T(Pk(z)).

b) For any z, z′ ∈ IRn , ⟨Pk(z) − Pk(z′), Dk(z) − Dk(z′)⟩ ≤ 0 .

c) For any z, z′ ∈ IRn , ∥Pk(z) − Pk(z′)∥2 + ∥Dk(z) − Dk(z′)∥2 ≤ ∥z − z′∥2 .

Remark. An important consequence of Part c) above is that the operators Pk and Dk
are non–expansive. We make free use of this fact in subsequent sections.
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3. Matrix secant updating

We now consider the local behavior of the VMPPA when the matrices Hk are updated
using the Broyden and BFGS formula. Our goal is to establish the super–linear con-
vergence of the iterates beginning with the assumption that the iterates converge at
a global linear rate. Conditions that guarantee global linear convergence can be found
in [2, Theorem 7.1]. To establish super–linear convergence, we need to assume that the
operator T−1 satisfies the quadratic growth condition.

Definition 1. We say that an operator! : IRn −→−→ IRn is Lipschitz continuous at a point
w̄ (with modulus α ≥ 0 ) if the set !(w̄) is nonempty and there is a τ > 0 such that

!(w) ⊂ !(w̄) + α ∥w − w̄∥ IB whenever ∥w − w̄∥ ≤ τ .

We say that ! is differentiable at a point w̄ if !(w̄) consists of a single element z̄ and
there is a continuous linear transformation J : IRn → IRn such that

∅ ̸= !(w) − z̄ − J(w − w̄) ⊂ o(∥w − w̄∥)IB ,

and write J = ∇!(w̄), where the function o : IR *→ IR+ depends on the point w̄ and
satisfies lim

t↘0
t−1o(t) = 0. Finally, we say that the operator ! satisfies the quadratic

growth condition at w̄ if ! is differentiable at w̄ and

!(w) − !(w̄) − ∇!(w̄)(w − w̄) ⊂ O(∥w − w̄∥2)IB ,

where O : IR *→ IR+ depends on the point w̄ and satisfies lim sup
t↘0

t−1|O(t)| < +∞.

Remarks. 1) Rockafellar [20, Theorem 2] was the first to use Lipschitz continuity to
establish rates of convergence for the proximal point algorithm.

2) When the set !(w̄) is restricted to be a singleton {z̄}, the differentiability of ! at w̄
implies the Lipschitz continuity of ! at w̄. Moreover, one can take α(τ) → ∥J∥ as
τ → 0. This observation is verified in [20, Proposition 4].

3) This notion of differentiability corresponds to the usual notion of differentiability
in the case when ! is single–valued.

4) It follows from the definition of monotonicity that if T is a maximal monotone
operator, then the operator ∇T(x) is positive semi–definite, if it exists.

5) In [2, Sect. 4], we give an example of a convex function f forwhich ∂ f −1 is Lipschitz
continuous but not differentiable. In [2, Sect. 4], we show that it is possible to choose
f so that ∂ f −1 is differentiable at the origin, but does not satisfy the quadratic growth
condition there.

The quadratic growth condition is a strong smoothness property.However, in the case
of convex programming, this condition is weaker than the standard hypothesis used for
establishing the rapid local convergence of optimization algorithms.More pointedly, the
quadratic growth condition isweaker than the conditions typically employed for the local
analysis of variablemetric proximal point algorithms [1,5,11,12]. For convex programs,
the operator T is the subdifferential of the essential objective function f̄ . In this case,
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the assumption that the standard second–order sufficiency condition is satisfied at the
solution to the convex program implies that the operator ∂ f̄−1 satisfies the quadratic
growth condition at the origin (see [20, Proposition 2] and [2, Theorem 4.3]). Thus, it is
not surprising that we require a condition of this type in our local convergence analysis.

3.1. Statement of updates and convergence results

We now recall the BFGS and Broyden update formulas. The BFGS update is suitable
for convex programming applications since it preserves both symmetry and positive
definiteness. Broyden’s update is suitable for mini-max problems since in many of these
applications the Jacobian ∇(T−1) is non–symmetric when it exists.

Symmetric updating with BFGS:

Let H0 ∈ IRn×n be any positive definite symmetric matrix and for k ≥ 0, set
yk = wk − wk+1 and sk = zk+1 − zk. If ykT sk ≤ 0, set Hk+1 = Hk; otherwise,
set

Hk+1 = Hk +
(
sk − Hkyk

)
skT + sk

(
sk − Hkyk

)T

ykT sk
−

(
sk − Hkyk

)T ykskskT
(
ykT sk

)2 .

(3)

Non-symmetric updating with Broyden’s formula:

Let H0 = I and for k ≥ 0, set yk = wk − wk+1 and sk = zk+1 − zk. If
skT Hkyk = 0, set Hk+1 = Hk; otherwise, set

Hk+1 = Hk +
(
sk − Hkyk

)
skT Hk

skT Hkyk
. (4)

Remarks. 1. The updating formula in (3) is the formula for updating the inverse in
BFGS updating. The condition ykT sk > 0 in the BFGS update not only insures the
existence of the inverse, but also insures that the updates are positive definite. The
corresponding formula for direct approximation of∇Dk(zk) (when it exists) is given
by

Bk+1 = Bk − Bksksk
T Bk

skT Bksk
+ yk ykT

ykT sk
, (5)

where Bk = H−1
k for all k ≥ 0.

2. The updating formula in (4) is the formula for updating the inverse of Broyden’s
update. The condition skT Hkyk ̸= 0 is satisfied if and only if the inverse Broyden
updates are well–defined and nonsingular, in which case

Ak+1 = Ak +
(
yk − Aksk

)
skT

skT sk
, (6)

where Ak = H−1
k for all k ≥ 0.
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We require that the following hypotheses hold in our convergence analysis:

(H1) The operator T−1 satisfies the quadratic growth condition at the origin with
J := ∇(T−1)(0) and T−1(0) = {z̄}.

(H2) The approximation criteria (L) is satisfied at every iteration.

(H3) The sequence {zk} converges linearly to z̄.
(H4) There is an iteration index k̄ such that λk ≡ λ > 2 ∥J∥ for all k ≥ k̄.

Theorem 1 (Symmetric updating).
Let {zk} be any sequence generated by the variable metric proximal point algorithm
using the symmetric updating strategy and suppose that the hypotheses (H1)–(H4) are
all satisfied. If J is symmetric, then

(i) for all k sufficiently large ykT sk > 0,
(ii) the sequences {∥Hk∥}and {∥H−1

k ∥} are bounded,
(iii) Hk = B−1

k for all k sufficiently large, and
(iv) the sequence converges to z̄ at a super–linear rate.

Theorem 2 (Non–symmetric updating).
Let {zk} be any sequence generated by the variable metric proximal point algorithm
using the non–symmetric updating strategy and suppose that the hypotheses (H1)–(H4)
are all satisfied. If it is further assumed that there exists k̄ > 0 such that λk = λ > 3 ∥J∥
for all k ≥ k̄, then

(i) there is a k̂ ≥ k̄ such that for all k ≥ k̂ we have skT Hkyk ̸= 0 and Hk is updated
using Broyden’s formula,

(ii) the sequences {∥Hk∥} and {∥H−1
k ∥} are bounded, and

(iii) the sequence converges to z̄ at a super–linear rate.

Our proofs of these results are based on an extension of the Dennis–Moré charac-
terization theorem for superlinear convergence [8]. This result is stated below for the
readers convenience.

Theorem 3 [2, Theorem 7.2, Super–Linear Convergence]. Let {zk} be any sequence
generated by the variable metric proximal point algorithm satisfying criterion (L) for
all k. Suppose that the operator T−1 is differentiable at the origin with T−1(0) = {z̄}
and ∇T−1(0) = J . If limk

∥∥Dk(zk)
∥∥ = 0, then {zk} converges to the solution z̄ super–

linearly if and only if

[
I − (

I + 1
λk
J
)
H−1
k

]
(zk+1 − zk)

∥∥zk+1 − zk
∥∥ → 0 as k → ∞ .
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3.2. Convergence proofs

Several technical lemmas are required to prepare the way for the proofs of Theorems 1
and 2. We begin with three lemmas that depend only on structure of the algorithm and
not on the specific choice of the updates {Hk}. The fact that these lemmas do not depend
on the choice of the updates {Hk} also plays an important role in the proof of Theorem 7
in Sect. 4.

Lemma 1. Underhypotheses (H2) and (H3), there are positive numbers L0, L1, L2, L3
and L4 such that for all k sufficiently large

(a)
∥∥wk∥∥ ≤ L0

∥∥sk
∥∥ and

∥∥wk∥∥ ≤ L0
∥∥Dk(zk)

∥∥,
(b) L1

∥∥zk − z̄
∥∥ ≤

∥∥sk
∥∥ ≤ L2

∥∥zk − z̄
∥∥,

(c)
∥∥Dk(zk)

∥∥ ≤ L3
∥∥sk

∥∥,
(d)

∥∥sk+1
∥∥ ≤ L4

∥∥sk
∥∥, and

(e)
∥∥wk − Dk(zk)

∥∥ ≤ δk
∥∥wk∥∥ ≤ δkL0

∥∥sk
∥∥.

If it is further assumed that hypotheses (H1) and (H4) hold, then for all k sufficiently
large

(f)
∥∥Dk(zk) − Dk+1(zk+1)

∥∥ ≥ 1
2
∥∥sk

∥∥.

Remark. The constants L0, L1, L2, L3 and L4 in the above lemma are closely related
to each other. Due to the assumption of linear convergence, there exists θ ∈ (0, 1) such
that

∥∥zk+1 − z̄
∥∥ ≤ θ

∥∥zk − z̄
∥∥ for all k sufficiently large. We show that one can take

L0 = (1− θ)−2, L1 = 1− θ, L2 = 1+ θ, L3 = (1− θ)−1, and L4 = θ
1+ θ

1− θ
.

Proof. Both inequalities of (b) follow from the linear convergence of zk to z̄. Since
there exists 0 < θ < 1 such that

∥∥zk+1 − z̄
∥∥ ≤ θ

∥∥zk − z̄
∥∥, we have

∥∥sk
∥∥ ≤ (1+ θ)

∥∥zk − z̄
∥∥ and

∥∥zk − z̄
∥∥ ≤ 1

1− θ

∥∥sk
∥∥ (7)

for all k sufficiently large. Hence L1 = 1− θ and L2 = 1+ θ .
By (H2) and Proposition 1 (c) (applied with z = zk and z′ = z̄ so that Dk(z̄) = 0

for all k), we have

∥∥wk∥∥ ≤ 1
1− δk

∥∥Dk(zk)
∥∥ ≤ 1

1− δk

∥∥zk − z̄
∥∥. (8)

Since δk → 0 as k → ∞, we can assume that δk < θ for all k sufficiently large.
To see (a), just combine (7) and (8) to obtain L0 = (1− θ)−2.

The relation (c) follows from Proposition 1 (c) and the first inequality in (b) with
L3 = 1/L1 = (1− θ)−1, while (d) follows from the linear convergence of {zk} and both
inequalities in (b) with L4 = θL2/L1 = θ(1 + θ)(1 − θ)−1. Thus, (a)–(d) have been
established.
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Part (e) follows immediately from (H2) and Part (a).
We now show Part (f). For this, we only need to consider k ≥ k̄, where k̄ is defined

by (H4). Then Dk ≡ Dλ for all such k. Clearly,
∥∥Dλ(zk)

∥∥ → 0 by (H3) and (c). Hence
the differentiability of T−1 at the origin (which is implied by (H1)) implies that for all
k sufficiently large

T−1
(

− 1
λ
Dλ(zk)

)
− z̄ − J

(
− 1

λ
Dλ(zk)

)
⊂ o

(
∥Dλ(zk)∥

)
IB , or

(
I + T−1 1

λ

)(
− Dλ(zk)

)
− z̄ +

(
I + 1

λ
J
)
Dλ(zk) ⊂ o

(
∥Dλ(zk)∥

)
IB .

But Dλ(zk) = −(I + T−1 1
λ )−1(zk), hence zk ∈ (I + T−1 1

λ )(−Dλ(zk)). This yields

zk − z̄ +
(
I + 1

λ
J
)
Dλ(zk) ∈ o

(
∥Dλ(zk)∥

)
IB . (9)

From (9) and (c), we conclude that

zk − z̄ +
(
I + 1

λ
J
)
Dλ(zk) ∈ o(∥sk∥)IB .

Hence, for all k large,

sk ∈ −
(
I + 1

λ
J
)(
Dλ(zk+1) − Dλ(zk)

)
+

[
o(∥sk∥) + o(∥sk+1∥)

]
IB .

Therefore, by (d) and (H4), we have
∥∥sk

∥∥ <
3
2
∥∥Dk+1(zk+1) − Dk(zk)

∥∥ + o
(∥∥sk

∥∥)
,

for all k large. This establishes (f).
⊓)

Lemma 2. If hypotheses (H1)–(H4) hold, then ykT sk > 0 for all k sufficiently large.

Proof. By (H4), λk ≡ λ and Dk ≡ Dλ for all k large. Letting z = zk+1 and z′ = zk in
Proposition 1 (b) and recalling that Pλ = I + Dλ yields

[
(I + Dλ)(zk+1) − (I + Dλ)(zk)

]T [
Dλ(zk) − Dλ(zk+1)

] ≥ 0 , or
[
zk+1 − zk + Dλ(zk+1) − Dλ(zk)

]T [
Dλ(zk) − Dλ(zk+1)

]
≥ 0 .

Hence, by (f) of Lemma 1,

skT
[
Dλ(zk) − Dλ(zk+1)

]
≥

∥∥Dλ(zk) − Dλ(zk+1)
∥∥2 ≥ 1

4
∥∥sk

∥∥2

for all k sufficiently large. Therefore

skT yk ≥ 1
4
∥∥sk

∥∥2 + skT
(
wk − Dλ(zk)

)
− skT

(
wk+1 − Dλ(zk+1)

)

≥ 1
4
∥∥sk

∥∥2 −
∥∥sk

∥∥[∥∥wk − Dλ(zk)
∥∥ +

∥∥wk+1 − Dλ(zk+1)
∥∥]

. (10)
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Hence, by (10) and Lemma 1 (d) and (e),

skT yk ≥ 1
4
∥∥sk

∥∥2−
∥∥sk

∥∥[
δkL0

∥∥sk
∥∥+δk+1L0

∥∥sk+1
∥∥]

≥
(1
4

−δkL0−δk+1L0L4
)∥∥sk

∥∥2 .

Now, for all k sufficiently large, L0(δk+δk+1L4) < 1/4, hence, for such k, ykT sk > 0.
⊓$

Lemma 3. If (H1)–(H4) hold, then there exist positive numbers L5, L6, and L7 such
that

∥∥∥yk −
(
I + 1

λ J
)−1sk

∥∥∥
∥∥sk

∥∥ ≤ L5
∥∥sk

∥∥ + L6δk + L7δk+1 (11)

for all k sufficiently large. In particular,

∞∑

k=0

∥∥yk −
(
I + 1

λ J
)−1sk

∥∥
∥∥sk

∥∥ < ∞ . (12)

Proof. By (H4), λk ≡ λ and Dk ≡ Dλ for all k large. By (H1) and (H3),

T−1
(

− 1
λ
Dλ(zk)

)
− z̄ − J

(
− 1

λ
Dλ(zk)

)
∈ O

(∥∥Dλ(zk)
∥∥2)IB

for all k sufficiently large. Thus, as in (9), we have

zk − z̄ +
(
I + 1

λ
J
)
Dλ(zk) ∈ O

(∥∥Dλ(zk)
∥∥2)IB ⊂ O

(∥∥sk
∥∥2)IB

where the second inclusion follows from Lemma 1 (c). Therefore, by Lemma 1 (d),

sk +
(
I + 1

λ
J
)(
Dλ(zk+1) − Dλ(zk)

)
∈ O

(∥∥sk
∥∥2)IB , or

(
I + 1

λ
J
)−1

sk − Dλ(zk) + Dλ(zk+1) ∈ O
(∥∥sk

∥∥2)IB .

Hence, for some L5 > 0,
(
I + 1

λ
J
)−1

sk − yk ∈
(
Dλ(zk) − wk) −

(
Dλ(zk+1) − wk+1) + L5

∥∥sk
∥∥2 IB .

By Lemma 1 (d) and (e),
∥∥∥∥y

k −
(
I + 1

λ
J
)−1

sk
∥∥∥∥ ≤

(
L0δk + L0L4δk+1 + L5

∥∥sk
∥∥)∥∥sk

∥∥ .

Therefore (11) holds for all k large.
Since zk → z̄ linearly, Lemma 1 (b) implies that

∑∞
k=0

∥∥sk
∥∥ < ∞. Thus, (11) and

the hypothesis that
∑∞

k=1 δk < ∞ imply (12).
⊓$
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The proof of Theorem 1 now follows from a result due to Byrd and Nocedal [4].

Theorem 4 (Byrd and Nocedal, 1989). Let {Bk} be generated by the BFGS formula

Bk+1 = Bk − Bksksk
T Bk

skT Bksk
+ ykT yk

ykT sk
,

where B1 is symmetric and positive definite, and where yk
T sk > 0 for all k. Furthermore

assume that {sk} and {yk} are such that
∥∥yk − Gsk

∥∥
∥∥sk

∥∥ ≤ ϵk , (13)

for some symmetric and positive definite matrix G, and for some sequence {ϵk} with
the property

∑∞
k=1 ϵk < ∞. Then limk→∞

∥∥(Bk−G)sk
∥∥

∥sk∥ = 0 , and the sequences {∥Bk∥},
{∥∥B−1

k
∥∥}

are bounded.

Remark. It is important to note that the sequences {sk} and {yk} do not necessarily
depend on the matrices Bk. This fact is used in the proof of our super–linear convergence
result Theorem 7.

Proof of Theorem 1. By Lemma 2 and (H4), there is a k0 > 0 such that λk = λ > 2 ∥J∥,
ykT sk > 0, and Hk = B−1

k for all k ≥ k0. Consider the sequences {z̃k}, {ỹk}, {s̃k}, and
{B̃k} given by

z̃k = zk0+k, ỹk = yk0+k, s̃k = sk0+k, and B̃k = Bk0+k,

for k = 0, 1, 2, . . . . Since λ > ∥J∥ and J is symmetric, (I + 1
λ J)

−1 is symmetric
and positive definite. Lemma 3 implies that (13), with ỹk and s̃k replacing yk and sk ,
respectively, is satisfied withG = (I+ 1

λ J)
−1. Consequently, by Theorem4 both {∥B̃k∥}

and {∥B̃−1
k ∥} are bounded and

∥∥∥(B̃k−(I+ 1
λ J)

−1)s̃k
∥∥∥

∥s̃k∥ → 0 , or equivalently, both {∥Bk∥}
and {∥B−1

k ∥} are bounded and
∥∥(
I −

(
I + 1

λ J
)
Bk

)
sk

∥∥
∥∥sk

∥∥ → 0 . (14)

Hypothesis (H3) implies that zk → z̄ at a linear rate. Therefore, by Lemma 1 Parts
(b) and (c), we have that Dk(zk) → 0 at a linear rate as well. By combining this fact
with (14), Theorem 3 can be applied to find that zk → z̄ at a super–linear rate.

⊓(
The proof of Theorem 2 uses two more technical lemmas.

Lemma 4 [9, Lemma 8.2.5]. Let s ∈ IRn be nonzero, E ∈ IRn×n , and let ∥·∥F denote
the Frobenious norm, then

∥∥∥∥E
(
I − ssT

sT s

)∥∥∥∥
F

=
(

∥E∥2F −
(∥Es∥

∥s∥
)2)1/2

≤ ∥E∥F − 1
2 ∥E∥F

(∥Es∥
∥s∥

)2
.
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The proof of the next lemma follows the line of proof given in [9, Lemma 8.2.1] and
so is omitted.

Lemma 5. Let A0, A1, . . . , Ak be generated by the Broyden update formula (6). Then
for any matrix G we have

Ak+1 − G = (Ak − G)

(
I − skskT

skT sk

)
+ (yk − Gsk)skT

skT sk
and (15)

∥Ak+1 − G∥ ≤ ∥A0 − G∥ +
k∑

j=0

∥∥y j − Gs j
∥∥

∥∥s j
∥∥ . (16)

Proof of Theorem 2. Set G = (I + 1
λ J)

−1. Then, by the Banach Lemma,

∥I − G∥ ≤
∞∑

i=1

(1
λ

∥J∥
)i

<
1
2

, (17)

hence 1/2− ∥I − G∥ > 0. By (12), there is a k0 ≥ k̄ such that
∞∑

j=k0

∥∥y j − Gs j
∥∥

∥∥s j
∥∥ ≤

(1
2

− ∥I − G∥
)

. (18)

To show (i), we need only show that there exists a k̂ ≥ k0 such that the matrices Ak
defined in (6) are nonsingular for all k ≥ k̂. If we cannot take k̂ = k0, then there is a
k̂ > k0 such that Hk̂ = I (i.e. sk̂−1

T
Hk̂−1y

k̂−1 = 0). We claim that for this choice of k̂
the matrices Ak are non-singular for all k ≥ k̂. To see this, note that for all k ≥ k̂

∥Ak − I∥ ≤ ∥I − G∥ + ∥Ak − G∥

≤ 2 ∥I − G∥ +
k−1∑

j=k̂

∥∥y j − Gs j
∥∥

∥∥s j
∥∥

<
1
2

+ ∥I − G∥ < 1

by Lemma 5 (replacing A0, A1, . . . , Ak by Ak̂, Ak̂+1, . . . , Ak−1 and recalling that
Ak̂ = I), (18), and (17). Therefore, Ak is non–singular for all k ≥ k̂ with

∥Ak∥ ≤ 2 and
∥∥A−1

k
∥∥ ≤ 1

1
2 − ∥I − G∥

,

which also verifies (ii).
We now show (iii). Set Ek := Ak − G and σk :=

∥∥yk−Gsk
∥∥∥∥sk

∥∥

∥sk∥2 , and recall that for

any vectors u, v ∈ IRn ,
∥∥uvT

∥∥
F = ∥u∥ ∥v∥. Let k ≥ k̂. From (15), we have

∥Ek+1∥F ≤
∥∥∥∥∥Ek

(
I − skskT

skT sk

)∥∥∥∥∥
F

+
∥∥yk − Gsk

∥∥ ∥∥sk
∥∥

∥∥sk
∥∥2

=
∥∥∥∥∥Ek

(
I − skskT

skT sk

)∥∥∥∥∥
F

+ σk .
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By Lemma 4,

∥Ek+1∥F ≤ ∥Ek∥F − 1
2 ∥Ek∥F

(∥∥Eksk
∥∥

∥∥sk
∥∥

)2
+ σk , or

∥∥Eksk
∥∥2

∥∥sk
∥∥2

≤ 2 ∥Ek∥F (∥Ek∥F − ∥Ek+1∥F + σk) ≤ L̄(∥Ek∥F − ∥Ek+1∥F + σk) .

Note that L̄ does not depend on k due to (16) and (12). Hence

N∑

k=k̂

∥∥Eksk
∥∥2

∥∥sk
∥∥2

≤ L̄
(

∥E0∥F − ∥EN+1∥F +
N∑

k=k̂
σk

)
.

From (12), this means
∞∑

k=0

∥∥Eksk
∥∥2

∥∥sk
∥∥2

< ∞ ,

and so
∥∥∥
(
Ak −

(
I + 1

λ J
)−1)sk

∥∥∥
∥∥sk

∥∥ → 0 . (19)

Since Hk = A−1
k for k ≥ k̂, the result follows from Theorem 3.

⊓(

4. Application to the Chen–Fukushima algorithm

We now give an example of how the results of the previous section can be applied to
obtain a local super–linear convergence result for a VMPPA that uses matrix secant
updating. The example is based on the Chen–Fukushima VMPPA [5]. There are three
basic steps in the application process: first, one must verify that the local approximation
criteria (L) is satisfied (Proposition 2); second, one must establish the global linear
convergence of the iterates (Theorem 6); and third, the updating strategy must be
designed so that eventually the algorithm generates the same iterates as the algorithm
described in Sect. 3.

The Chen–Fukushima [5] VMPPA is designed to solve the convex programming
problem P , where f : IRn )→ IR is a lower semi–continuous convex function. In this
context, the VMPPA can be viewed as a variable metric algorithm applied to fλ, the
Moreau–Yosida regularization of f . For this reason, the BFGS updating strategy is used
to approximate the second–order behavior of fλ.

The Chen–Fukushima algorithm uses bundle techniques [6,10] to approximate both
fλ and its gradient. Global convergence is obtained with the aid of a line–search pro-
cedure based on the function f rather than fλ. This is an exceptional feature of the
method since approximating fλ can be costly. Chen and Fukushima characterize the
super–linear convergence of their VMPPA in a result that parallels the landmark result
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of Dennis and Moré [8]. In addition, they state that the BFGS updating strategy can
be used to approximate the second–order behavior of fλ. However, the convergence
theory in [5] applies to general variable metric updating with no explicit dependence on
quasi-Newton techniques. In particular, Chen and Fukushima do not show that BFGS
updating yields super–linear convergence.We now fill this gap.

As in Sect. 3, we assume that the proximation parameter λk remains fixed from some
point on. For simplicity, we assume λk ≡ λ throughout the iteration process.

4.1. Statement of the algorithm

The algorithm in [5] is doubly iterative in the sense that each major iteration k consists
of a finite sequence of inner iterations to approximate fλ(zk) and D(zk) = −∇ fλ(zk).
Denoting zk as the current iterate of themajor iteration, the inner iterations approximately
solve the problems

min
u∈IRn

λ f(u) + 1
2
∥∥u − zk

∥∥2 (20)

by generating a sequence {u j} as follows: set u0 = zk and choose g0 ∈ ∂ f(zk); for
j = 1, 2, . . . , let u j be the (unique) solution of the problem

min
u∈IRn

λ fk, j (u) + 1
2
∥∥u − zk

∥∥2 , (21)

where fk, j is the polyhedral convex function defined by

fk, j (u) := max
i=0,1,... , j−1

[ f(ui) + ⟨gi, u − ui⟩] (22)

with gi ∈ ∂ f(ui) for i = 0, 1, . . . , j − 1. The pairs (ui , gi), i = 0, 1, . . . , j − 1,
constitute a bundle generated sequentially starting from u0 = zk and g0 ∈ ∂ f(zk). Note
that (21) is equivalent to the quadratic programming problem

min(u,ν)∈Rn+1 λν + 1
2

∥∥u − zk
∥∥2

subject to f(ui) + ⟨gi, y − yi⟩ ≤ ν, i = 0, 1, . . . , j − 1.
(23)

The inner iteration is terminated if

f(u j) ≤ f(zk) − σk
(
f(zk) − fk, j (u j )

)
, (24)

where σk ∈ (0, 1) is pre–specified.
We now state the Chen–Fukushima algorithm.

Algorithm [5, Algorithm 2.1]. Choose an initial point z0 ∈ IRn , parameters σ,ρ, γ ∈
(0, 1), a sufficiently large constant M ≥ f(z0), and a sequence {σk} such that
σ < σk < 1. Let k := 0.

1. Approximate the solution to subproblem (20) by the procedure (22)–(23) to obtain
a point u j(k) satisfying (24). Let pa(zk) := u j(k).

2. Let wk := pa(zk) − zk.
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3. Choose a symmetric positive definite matrix Hk ∈ IRn×n .
4. Let dk := (Hk − I )wk . If k = 0, let η1 := ∥w0∥ and go to Step 5. For k ≥ 1, if

∥wk∥ ≤ ρηk and f(pa(zk) + dk) ≤ M, let τk := 1 and ηk+1 := ∥wk∥ and go to
Step 6; otherwise, let ηk+1 := ηk and go to Step 5.

5. Set τk := γmk , where mk is the smallest nonnegative integer m such that

f(pa(zk) + γmdk) ≤ f(zk) − γmσ

λ

∥∥wk∥∥2 .

6. Set zk+1 := pa(zk) + τkdk, k := k + 1 and return to Step 1.

Remarks. (1) In Step 3 of their algorithm,Chen and Fukushima specify that thematrix
Hk should be constructed using the quasi–Newton formula Hkyk−1 = sk−1 with
yk−1 := wk−1 − wk and sk−1 := zk − zk−1. However, they go on to explain in
the second paragraph following the statement of the algorithm that quasi–Newton
updating is not required for any of their convergence analysis. All that is required
in Step 3 is that the matrices Hk are symmetric and positive definite. The only
connection between the Chen-Fukushima algorithm and quasi-Newton methods is
that the BFGS update can be implemented in a way that preserves the symmetry
and positive definiteness of the updates.

(2) We have zk+1 = zk+ H̃kwk where H̃k = (τkHk+(1−τk)I ). If we regardwk as
an approximation to Dk(zk), then this algorithm is an instance of the VMPPA given
in Sect. 2, and, when τk = 1, this update is identical to an update generated by the
variable metric proximal point method proposed in Sect. 3. One of our objectives
is to show that eventually the step length τk always takes the value 1 since then the
local analysis developed in Sect. 3 applies.

(3) For the reader’s convenience, we relate our notation to that used in [5]: the objects
λHk, λ, wk, and pa given above correspond to the objects B−1

k , 1/µ, −vk/µ, and
pa as defined in [5], respectively.

It is shown in [5] that the algorithm is well–defined and that the procedures in Steps 1
and 5 of the algorithm are finitely terminating as long as zk is not a solution to P . Chen
and Fukushima give the following global convergence result.

Theorem 5 [5, Theorem 2.1]. Assume that the convex function f has a nonempty
bounded set of minima and that the sequence {∥Hkwk∥/∥wk∥} is bounded. Let the
sequence {zk} be generated by the algorithm. Then all accumulation points of the
sequences {zk} and {pa(zk)} minimize f .

Remarks. (1) The exact statement of Theorem 2.1 in [5] is that the algorithm termi-
nates finitely. Finite termination occurs since the iteration process is stopped if it
is ever the case that f(zk) − fk, j (pa(zk)) ≤ κ for a given value of κ > 0. It is
explained in the first paragraph of [5, Sect. 3] that one may set κ = 0 in which case
all accumulation points of the sequences {zk} and {pa(zk)} minimize f .

(2) In Theorem5, we have replaced the hypothesis that the sequence {∥Hk∥} is bounded
with theweaker condition that the sequence {∥Hkwk∥/∥wk∥} is bounded.The proof
given in [5] remains valid with this replacement.
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Our local analysis assumes that the operator (∂ f )−1 is differentiable at the origin.
Since (∂ f )−1 = ∂ f ∗, where f ∗ is the convex conjugate of f , this implies that the origin
is in the interior of the domain of f ∗. This in turn implies that f is inf–compact [19,
Theorem 27.1], that is, the sets {z ∈ IRn : f(z) ≤ α} are bounded for all α ∈ IR. In this
case, the iterates remain bounded, and so there is at least one accumulation point. Since
this accumulation point must be the unique global minimizer, it follows that the entire
sequence converges to the unique minimizer of f .

Corollary 1. If, in addition to the hypotheses of Theorem 5, it is assumed that (∂ f )−1
is differentiable at the origin, then the sequence generated by the Chen–Fukushima
algorithm converges to the unique global minimizer of f with both {D(zk)} and {wk}
converging to zero.

Remark. The statement concerning the sequences {D(zk)} and {wk} is inserted to
facilitate the discussion to follow. The convergence of D(zk) to the origin follows from
the continuousdifferentiability of fλ, while the convergenceof {wk} to the origin follows
from [6, Proposition 3].

4.2. Linear convergence

In [5], linear convergence is established using techniques from the theory of non–smooth
equations [16]. Chen and Fukushima assume that the function f is strongly convex, the
operator D is semi–smooth [16], and thematrices Hk satisfy a refined approximation cri-
teria. However, they note that the strong convexity hypothesis is stronger than required.
All that is needed is the Lipschitz continuity of the derivative of f ∗ near the origin,
whereas the strong convexity of f implies that the conjugate f ∗ is differentiable with
globally Lipschitz continuous derivative (with Lipschitz constant equal to the modulus
of strong convexity).

We present a different approach to linear convergence based on the techniques
developed in [2, Theorem 7.1]. This gives us ready access to the results of Sect. 3. The
first step in our analysis is to refine the termination criteria used in the inner iteration
of Step 1. In addition to the termination criteria (24), we require that the inner iteration
terminate only if the condition

f(u j) ≤ fk, j (u j) + δ2k
2λ

∥∥u j − zk
∥∥2, (25)

is also satisfied. We now show that this additional requirement on termination in the
inner iteration guarantees that the local convergence criteria (L) is satisfied at each
iteration.

Proposition 2. (i) If zk does not solve P , then the procedure (22)–(23) produces u j
satisfying both (24) and (25) in a finite number of steps.

(ii) If the termination criterion (25) is satisfied, then we have
∥∥wk − D(zk)

∥∥ ≤ δk
∥∥wk∥∥ , (26)
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which implies that

(1− δk)
∥∥wk∥∥ ≤

∥∥D(zk)
∥∥ ≤ (1+ δk)

∥∥wk∥∥ . (27)

Proof. (i) The fact that condition (24) can be satisfied finitely is established in [5,
Proposition 2.1]. That condition (25) can also be satisfied finitely follows immediately
from [6, Proposition 3].
(ii) First note that by (25) and [6, Proposition 3], we have

λ f(pa(zk)) + 1
2
∥∥wk∥∥2 ≤ λ fk, j(k)(pa(zk)) + 1+ δ2k

2
∥∥wk∥∥2

≤ fλ(zk) + δ2k
2

∥∥wk∥∥2 . (28)

Next, let
θ(v) := λ f(v) + 1

2
∥∥v − zk

∥∥2 .

Then θ is strongly convex with modulus 1. The subdifferential inequality yields the
inequality

θ(u) ≥ θ(v) + ⟨g, u − v⟩ + 1
2

∥u − v∥2 ∀u, v ∈ IRn

whenever g ∈ ∂θ(v). Let u = pa(zk) and v = p(zk) := D(zk) + zk, we have θ(u) =
λ f(pa(zk)) + 1

2
∥∥wk∥∥2 and θ(v) = fλ(zk). Also notice that 0 ∈ ∂θ(p(zk)). Hence we

have

λ f(pa(zk)) + 1
2
∥∥wk∥∥2 ≥ fλ(zk) + 1

2
∥∥pa(zk) − p(zk)

∥∥2

= fλ(zk) + 1
2
∥∥wk − D(zk)

∥∥2 . (29)

By combining (28) and (29) we obtain (26) which easily yields (27).
⊓*

We now establish conditions for the linear convergence of the Chen–Fukushima
algorithm.

Theorem 6. Suppose that (∂ f )−1 is differentiable at the origin with (∂ f )−1(0) = {z̄}
and∇(∂ f )−1(0) = J . Let {zk} be any sequence generated by the algorithm such that in
Step 1, in addition to (24), the termination criterion (25) must also be satisfied on each
outer iteration. In addition, assume that zk ̸= z̄ for all k = 0, 1, 2, . . . . Define

βk :=
∥∥(
Hk −

(
I + 1

λ J
))

wk∥∥
∥∥wk

∥∥ . (30)

Assume that there is a k̄ > 0 such that for all k ≥ k̄

δk ≤ δ <
1
2

, (31)
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and there is an ϵ̄ > 0 such that

ϵ̄ + βk +
(
1+ ∥J∥

λ

)
δ ≤ ρ(1− δ) , (32)

where δ = δk̄ and ρ is the parameter used in Step 4 of the algorithm. Then there exists
an index k̂ such that for all k ≥ k̂, we have τk ≡ 1 and

∥∥zk+1 − z̄
∥∥ ≤ ρ

∥∥zk − z̄
∥∥ ,

that is, the convergence rate is linear.

The proof of Theorem 6 requires the following technical lemma.

Lemma 6. Under the hypotheses of Theorem 6 we have

(a) (∂ f )−1(−1
λ D(zk)) − z̄ − J(−1

λ D(zk)) ⊂ o(∥D(zk)∥)IB for all k sufficiently large,
and

(b) if τk = 1, then
∥∥(I + 1

λ J)H
−1
k (zk+1 − (I + HkD)(zk))

∥∥ ≤ δk(1+ ∥J∥
λ )∥wk∥ and

(I + 1
λ J)H

−1
k (zk+1 − (I + HkD)(zk)) ∈ O(δk∥D(zk)∥)IB.

Proof. First note that conditions (30) and (32) imply that {∥Hkwk∥/∥wk∥} is bounded.
Hence the conditions in Theorem5 andCorollary 1 are all satisfied. In particular, zk → z̄
with D(zk) → 0 and wk → 0. Let δ̄ > 0 be such that

(∂ f )−1(v) − z̄ − Jv ⊂ o(∥v∥)IB (33)

whenever ∥v∥ < δ̄. Let k̄1 be such that whenever k > k̄1, ∥D(zk)∥ ≤ δ̄. When k > k̄1,
the inclusion (33) implies that

(∂ f )−1
(−1

λ
D(zk)

)
− z̄ + J

( 1
λ
D(zk)

)
⊂ o(∥D(zk)∥)IB ,

which proves (a).
We now show (b). If τk = 1, then zk+1 = zk + Hkwk. Hence

H−1
k

(
zk+1 − (I + HkD)(zk)

)
= H−1

k
(
Hkwk − HkD(zk)

)
= wk − D(zk) .

By Proposition 2, ∥∥wk − D(zk)
∥∥ ≤ δk

∥∥wk∥∥ .

Therefore,
∥∥∥∥
(
I + 1

λ
J
)
H−1
k

(
zk+1 − (I + HkD)(zk)

)∥∥∥∥ ≤
(
1+ ∥J∥

λ

)∥∥wk − D(zk)
∥∥

≤ δk
(
1+ ∥J∥

λ

)∥∥wk∥∥ ≤ δk
1− δk

(
1+ ∥J∥

λ

)∥∥D(zk)
∥∥ ,

or equivalently,
(
I + 1

λ
J
)
H−1
k

(
zk+1 − (I + HkD)(zk)

)
∈ O

(
δk

∥∥D(zk)
∥∥)
IB .

⊓*
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Proof of Theorem 6. Conditions (30) and (32) imply that {∥Hkwk∥/∥wk∥} is bounded.
Hence the conditions in Theorem5 andCorollary 1 are all satisfied. In particular, zk → z̄
with D(zk) → 0 and wk → 0.

Let k̄1 ≥ k̄ be such that Part (a) of Lemma 6 holds for all k ≥ k̄1. Then, by
Lemma 6(a), (27), and (31), there must exist a k̃ > k̄1 such that for k > k̃,

∥∥∥∥(∂ f )−1
(−1

λ
D(zk)

)
− z̄ + J

(1
λ
D(zk)

)∥∥∥∥ ≤ δϵ̄
∥∥D(zk)

∥∥ ≤ δ(1+ δ)ϵ̄
∥∥wk∥∥ ≤ ϵ̄

∥∥wk∥∥ .

(34)

Since zk → z̄ and
∥∥wk∥∥ → 0, Step 4 of the algorithm implies that there must be a k̂ > k̃

such that
∥∥wk̂∥∥ ≤ ρηk̂, i.e., τk̂ = 1 and zk̂+1 = zk̂ + Hk̂w

k̂. Let z̃k̂+1 := (I + Hk̂D)(zk̂),
or equivalently, z̃k̂+1 = zk̂ − Hk̂(I + (∂ f )−1 1λ )−1(zk̂) (by Proposition 1 (a)). Therefore,

zk̂ ∈
(
I + (∂ f )−1

1
λ

)[
H−1
k̂

(zk̂ − z̃k̂+1)
]

= H−1
k̂

(zk̂ − z̃k̂+1) + (∂ f )−1
[1
λ
H−1
k̂

(zk̂ − z̃k̂+1)
]

.

By re–arranging this inclusion, we obtain the inclusion

zk̂+1 − z̄ = zk̂ − z̄ + (zk̂+1 − zk̂)

∈ (∂ f )−1
(1
λ
H−1
k̂

(zk̂ − z̃k̂+1)
)

− z̄ + (zk̂+1 − zk̂) + H−1
k̂

(zk̂ − z̃k̂+1)

=
[
(∂ f )−1

(1
λ
H−1
k̂

(zk̂ − z̃k̂+1)
)

− z̄ − J
(1
λ
H−1
k̂

(zk̂ − z̃k̂+1)
)]

+
[
I −

(
I + 1

λ
J
)
H−1
k̂

]
(zk̂+1 − zk̂)

+
(
I + 1

λ
J
)
H−1
k̂

(zk̂+1 − z̃k̂+1)

=
[(

∂ f )−1
(−1

λ
Dk̂(z

k̂)
)

− z̄ − J
(−1

λ
Dk̂(z

k̂)
)]

+
[
I −

(
I + 1

λ
J
)
H−1
k̂

]
(zk̂+1 − zk̂)

+
(
I + 1

λ
J
)
H−1
k̂

(zk̂+1 − z̃k̂+1) .

Now consider the final three terms in the sum on the right hand side of this inclusion.
By (34), the first of these terms is bounded by ϵ̄∥wk̂∥. The definition of βk bounds the
second by βk̂∥wk̂∥ and Lemma 6(b) bounds the third by (1+ ∥J∥

λ )δ∥wk̂∥. Therefore,

∥∥zk̂+1 − z̄
∥∥ ≤

(
ϵ̄ + βk̂ +

(
1+ ∥J∥

λ

)
δ
)∥∥wk̂∥∥ . (35)
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But then ∥∥wk̂+1∥∥ ≤ 1
1−δ

∥∥D(zk̂+1)
∥∥ (by (27))

≤ 1
1−δ

∥∥zk̂+1 − z̄
∥∥ (Proposition 1 (c))

≤ ϵ̄+βk̂+(1+ ∥J∥
λ )δ

1−δ

∥∥wk̂∥∥ (by (35))

≤ ρ
∥∥wk̂∥∥ (by (32)) .

Hence τk̂+1 = 1. Proceeding as above, we find that this implies that τk = 1 for all k ≥ k̂.
Therefore, ∥∥zk+1 − z̄

∥∥ ≤ ρ(1− δ)
∥∥wk∥∥ (by (32) and (35))

≤ ρ
∥∥D(zk)

∥∥ (by (27))

≤ ρ
∥∥zk − z̄

∥∥ , (Proposition 1 (c))

for all k ≥ k̂.
⊓&

4.3. Super–linear convergence with BFGS updating

So far, our discussion of the Chen–Fukushima algorithm has been independent of quasi–
Newton updating and the BFGS update. Other than the hypothesis on the boundedness
of the sequence {∥Hkwk∥/∥wk∥} in Theorem 5 and the hypothesis on the parameters βk
in Theorem 6, our discussion thus far only assumes that the matrices Hk are symmetric
and positive definite. We now bring the BFGS update into the discussion by specifying
precisely how it is to be used in the selection of the matrices Hk in Step 3 of the
Chen–Fukushima algorithm.

BFGS updating in Step 3 of the Chen–Fukushima algorithm:

Choose 0 < ϵ̂ < 0.1ρwhereρ is defined in the algorithm.Choose H0 = Ĥ0 = I .
For k ≥ 0, set yk = wk − wk+1, sk = zk+1 − zk, and

Ĥk+1 =
{
Ĥk + (sk−Ĥk yk)sk

T+sk(sk−Ĥk yk)T
⟨yk,sk⟩ − ⟨sk−Ĥk yk,yk⟩skskT

⟨yk,sk⟩2 , if ykT sk > 0,
Ĥk , otherwise.

Then set

Hk+1 =
{
Ĥk+1 , if

∥∥(I − Ĥk+1)wk+1∥∥ ≤ ρ−ϵ̂
2

∥∥wk+1∥∥,
I , otherwise.

In our final result, we use the results of Sect. 3 to show that this updating scheme
produces iterates that converge super–linearly to a solution of the inclusion 0 ∈ ∂ f(z)
under suitable local hypotheses. The proof has two stages. The first stage establishes that
hypotheses (H1)–(H4) are satisfied with the majority of the effort devoted to showing
(H3), i.e., the iterates converge linearly. For this we apply Theorem 6. The first stage



178 J.V. Burke, Maijian Qian

of the proof does not make use of the fact that the Ĥk’s are being updated using the
BFGS formula. This stage is a global convergence result that only requires that each
iterate not deviate too much from the corresponding iterate produced by an iteration of
the classical proximal point algorithm. Deviation from a classical proximal point iterate
is regulated by the condition

∥∥(I − Hk)wk∥∥ ≤ ρ − ϵ̂

2
∥∥wk∥∥ , (36)

which is required to hold on every iteration. If Hk ̸= Ĥk, then Ĥk failed to satisfy (36),
in which case Hk = I and zk+1 is the result of a classical proximal point iteration
since dk = 0. Condition (36), with Hk replaced by Ĥk, acts as a switch that toggles
the iteration process between a globally convergent first–order method (the classical
proximal point algorithm) and a locally convergent second–order method (the VMPPA
of Sect. 2).

An equally important consequence of Theorem 6 is that τk ≡ 1 for all k greater
than some k̃. That is, eventually the unit step is always accepted and no line search
is performed. The significance of this is that from iteration k̃ onward the algorithm is
an instance of the VMPPA introduced in Sect. 2. Consequently, the technical results
Lemma 1, Lemma 2, and Lemma 3 can be applied to reveal further insight into the
behavior of the iteration process.

In the second stage of the proof, we show that Hk = Ĥk from some iteration
k̂ onward. This, combined with the fact that eventually the line search parameter τk
always has the value 1, implies that there is an iteration k0 such that from k0 onward
the iterates generated by the Chen–Fukushima algorithm are identical to the iterates
generated by the algorithm of Sect. 3 initiated at zk0 . Once this is accomplished, then
the superlinear convergence of the iterates follows from Theorem 1.

The second stage of the proof hinges on the theorem of Byrd and Nocedal (Theo-
rem 4). Here it is important to note that the sequences {yk} and {sk} in Theorem 4
need not depend on the sequence {Bk} (or, equivalently, {Ĥk}). Consequently, we can
derive properties of the sequence {Ĥk} even though Ĥk may not have been used in the
computation of sk . We then use these properties to show that eventually it must be the
case that Hk = Ĥk. This technique of proof is the reason why we continue to update the
sequence Ĥk even though it may not be used in the computation of sk .

Theorem 7. Let ρ ∈ (0, 1) be as in the statement of the Chen–Fukushima algorithm
and choose ϵ̂ ∈ (0, 0.1ρ). Suppose that the following conditions are satisfied:

(i) The operator (∂ f )−1 satisfies the quadratic growth condition at the origin with

(∂ f )−1(0) = {z̄} and ∇(∂ f )−1(0) = J.

(ii) λ > 2
ρ−ϵ̂

∥J∥.
(iii) In Step 1 of the Chen–Fukushima algorithm, the point u j(k) must satisfy both of

the conditions (24) and (25) where the non–increasing sequence {δk} is chosen to
satisfy

∑∞
k=0 δk < ∞ .
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Let {zk} be any sequence generated by the Chen–Fukushima algorithm using the BFGS
updating strategy formulated above for Step 3 of the algorithm. Assume that zk ̸= z̄ for
all k = 0, 1, 2, . . . . Then hypotheses (H1)–(H4) of Sect. 3.1 are satisfied with T = ∂ f
and there is an iteration k0 such that

(a) ykT sk > 0 for all k ≥ k0,
(b) Hk = Ĥk for all k ≥ k0,
(c) the sequences {∥Hk∥} and {∥H−1

k ∥} are bounded, and
(d) the sequence {zk} converges to z̄ at a super–linear rate.

Proof. Hypotheses (H1) follows from hypotheses (i), hypothesis (H4) follows from
hypothesis (ii) and the choice of ϵ̂ and ρ, and hypothesis (H2) follows from (iii) and
Proposition 2 (ii). We now proceed to show that (H3) follows from Theorem 6. To apply
Theorem 6, we must show that (32) is satisfied for all k sufficiently large where the
sequence {βk} is defined in (30). First note that the BFGS updating strategy for the
Chen–Fukushima algorithm guarantees that

∥∥(Hk − I )wk∥∥ ≤ ρ − ϵ̂

2
∥wk∥ (37)

for all k. In particular, this implies that the sequence {∥Hkwk∥/∥wk∥} is bounded by
(1+ ρ−ϵ

2 ). Hypothesis (H1) implies that (∂ f )−1(0) = {z̄}. Therefore, Corollary 1 implies
that

zk → z̄, D(zk) → 0, and wk → 0 .

By (37) and (ii), we have
∥∥∥
(
Hk −

(
I + 1

λ
J
))

wk
∥∥∥ ≤

∥∥(Hk − I )wk∥∥ + ∥J∥
λ

∥wk∥ ≤ (ρ − ϵ̂)∥wk∥ .

Hence βk ≤ ρ− ϵ̂ < ρ− ϵ̂
2 .But then, since δk → 0, condition (32) is eventually satisfied

for all k sufficiently large with ϵ̄ = ϵ̂
2 . We can now apply Theorem 6 to say that z

k → z̄
at a linear rate and there exists k̂ such that τk ≡ 1 for all k ≥ k̂. Therefore, hypotheses
(H1)–(H4) are all satisfied and τk = 1 for all k ≥ k̂.

We now show (a). With no loss of generality, we may assume that the algorithmwas
initiated at zk̂. If necessary, one can re-label the sequences so that

zk = zk̂+k, wk = wk̂+k, sk = sk̂+k, yk = yk̂+k,

Hk = Hk̂+k, and Ĥk = Ĥ k̂+k

for k = 0, 1, 2, . . . . With this re-labeling, we have τk ≡ 1 for all k. Since no line search
is being performed, we have that for this particular sequence the Chen-Fukushima
algorithm is an instance of the VMPPA of Sect. 2. In addition, since the hypotheses
(H1)–(H4) hold, we have that the technical results Lemma 1, Lemma 2, and Lemma 3
also apply as these lemmas only require the symmetry and positive definiteness of the
matrices Hk. In particular, we have from Lemma 2 that there is a k̃ such that yk

T sk > 0
for all k ≥ k̃ which verifies (a), and, from Lemma 3, (12) holds.
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We now show (b) and (c). Again, with no loss of generality, we may assume that the
algorithmwas initiated at zk̃. As above, this only involves a re-labeling of the sequences
so that

zk = zk̃+k, wk = wk̃+k, sk = sk̃+k, yk = yk̃+k,

Hk = Hk̃+k, and Ĥk = Ĥ k̃+k

for k = 0, 1, 2, . . . . Since (a) and (12) hold, we can apply Theorem 4 with G =
(I + 1

λ J)
−1 and Bk = Ĥ−1

k to say that the sequences {∥Ĥk∥} and {∥Ĥ−1
k ∥} are bounded

and ∥∥∥
(
Ĥ−1
k −

(
I + 1

λ J
)−1)

sk
∥∥∥

∥∥sk
∥∥ → 0 ,

or equivalently, ∥∥∥
(
I −

(
I + 1

λ J
)
Ĥ−1
k

)
sk

∥∥∥
∥∥sk

∥∥ → 0 .

Therefore,
∥∥∥Ĥksk − sk + 1

λ Ĥk J Ĥ
−1
k sk

∥∥∥
∥∥sk

∥∥ ≤
∥∥Ĥk

∥∥
∥∥∥
(
I −

(
I + 1

λ J
)
Ĥ−1
k

)
sk

∥∥∥
∥∥sk

∥∥ → 0 .

But then there is a sequence ζk → 0 such that
∥∥∥∥Ĥks

k − sk + 1
λ
Ĥk J Ĥ−1

k sk
∥∥∥∥ ≤ ζk∥sk∥ ,

which in turn implies that
∥∥(I − Ĥk)sk

∥∥ ≤
(1
λ

∥∥Ĥk J Ĥ−1
k

∥∥ + ζk
)
∥sk∥

=
(1
λ

∥J∥ + ζk

)
∥sk∥ ≤ ρ − ϵ̂

2
∥sk∥ (38)

for all k sufficiently large since λ > 2
ρ−ϵ̂

∥J∥ by (ii). If Hk ̸= Ĥk, then it must be the
case that

∥∥(I − Ĥk)sk
∥∥ >

ρ − ϵ̂

2
∥sk∥ ,

since the algorithm sets sk = wk (recall τk ≡ 1). By (38) this cannot occur for k
sufficiently large, therefore eventually Hk = Ĥk establishing (b). Note that this also
verifies (c) since it has already been shown that the sequences {∥Ĥk∥} and {∥Ĥ−1

k ∥} are
bounded.

So far we have shown the existence of an iteration k0 ≥ k̂ + k̃ such that for all
k ≥ k0 we have that yk

T sk > 0, the line search parameter τk always takes the value 1,
and the inverse Hessian approximations Hk are always updated by the formula given
in (3). Thus, if the variable metric proximal point algorithm given in Sect. 2 using
the symmetric updating scheme of Sect. 3.1 were initiated at zk0 with initial Hessian
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estimate Hk0 , then this algorithm would produce exactly the same iterates as given by
the VMPPA sequence {zk : k ≥ k0} using formula (3). Consequently, since (H1)–(H4)
are satisfied, (d) follows from Theorem 1.

⊓#
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