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Abstract

We present a predictor—corrector non—interior path following algorithm for the
monotone linear complementarity problem based on Chen—Harker—Kanzow—Smale
smoothing techniques. Although the method is modeled on the interior point predictor—
corrector strategies, it is the first instance of a non—interior point predictor—corrector
algorithm. The algorithm is shown to be both globally linearly convergent and lo-
cally quadratically convergent under standard hypotheses. The approach to global
linear convergence follows the authors’ previous work on this problem for the case of
(P 4+ Ro) LCPs. However, in this paper we use monotonicity to refine our notion of
neighborhood of the central path. The refined neighborhood allows us to establish
the uniform boundedness of certain slices of the neighborhood of the central path
under the standard hypothesis that a strictly positive feasible point exists.

1 Introduction
We consider a path—following algorithm for the monotone linear complementarity problem:
LCP(¢q, M): Find (x,y) € IR" x IR" satisfying

Mx—y+q=0, (1.1)
x>0,y >0,27y=0, (1.2)

where M € IR"*" is positive semi-definite and ¢ € IR".

*This research is supported in part by the National Science Foundation Grant No. CCR-9311621 and
DMS-9303772



Here the path to be followed is the central path
C={(z,y): 0<pu, 0<2, 0<y, Mz —y+q=0, and Xy = p’e} (1.3)

where, following standard usage in the interior-point literature [15], we denote by e € IR"
the vector each of whose components is 1 and by X the diagonal matrix whose diagonal
entries are given by the vector @ € IR". The algorithm is based on Chen-Harker-Kanzow-
Smale smoothing techniques [4, 13, 21] and as such relies on the function

ba,bou) = a+b—fla— by +ap” . (1.4)

This function is a member of the Chen—Mangasarian class of smoothing functions for the

problem LCP(q, M) [6]. It is easily verified that for p > 0
é(a,b,1) = 0 if and only if 0 < @, 0 < b, and ab = u*. (1.5)

As with all path following algorithms for LCP (¢, M), the central idea is to use Newton’s
method to track the central path for decreasing values of the smoothing parameter pu.
The various path following methods are distinguished by the systems of equations used
to identify the central path, or more generally, a smoothing path, and the neighborhood
used to control the deviation from the central path and to update the smoothing parameter.
Regarding the system of equations, we follow the pattern first suggested in the non—interior
point context by Hotta and Yoshise [10] (also see Qi and Sun [18]) and include the smoothing
parameter p in the set of parameters to which the Newton iteration is applied. However,
our choice of neighborhood for the central path differs markedly from that studied in
[10, 18]. In addition, we develop a non-interior predictor—corrector strategy for following the
central path. Our approach is modeled on the predictor—corrector methodology commonly
employed in the interior point literature [16, 24].

The algorithm given in this paper is the first non—interior predictor—corrector strategy
proposed for following the central path. The central idea is to apply Newton’s method to
equations of the form F(x,y, ) = v for various choices of the right hand side v where the

function I : IR" x IR" x IRy — IR" x IR" x IR is given by

Mx—y—+gq
F(l’,y,/,b) = (I)(xvyv/l) ) (16)
M
with
é(x1,y1. 1)
Oz, y,p) = : (1.7)
G2, Yo, 1)
Note that
F(z,y,p) =0 (1.8)
if and only if (x,y) solves LCP(¢q, M), and
0
Flz,y,p)=10 with @ # 0 (1.9)
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if and only if (x,y) is on the central path C with corresponding smoothing parameter f.

The general outline of our predictor—corrector algorithm can now be described. First,
a predictor step is computed. This is the Newton step based on the equation (1.8) at the
current iterate. The predictor step in the x and y variables is either accepted or rejected
depending on whether it is in a pre-specified neighborhood of the central path with the
current value of the smoothing parameter. If it is in this neighborhood, then the predictor
step is accepted and a backtracking routine is applied to the smoothing parameter u to
reduce its value as much as is possible subject to remaining in the neighborhood of the
central path. Next, a corrector step is computed. This is the Newton step based on
the equation (1.9) at the iterate obtained from the predictor step with g taken to be a
fixed fraction of the value for p obtained from the predictor step. Again, a step length is
determined to return the update to the neighborhood of the central path. The technique for
choosing the corrector step guarantees the global linear convergence of the method, while
the technique for choosing the predictor step provides for the local quadratic convergence
of the iterates. The line search routines for both the predictor and corrector steps are based
on finitely terminating backtracking procedures and as such are easily implemented.

A number of non—interior path following algorithms have recently been proposed that
are globally convergent or globally linearly convergent and possess rapid local convergence
properties [2, 3, 4, 5, 7, 8, 10, 11, 13, 18, 19, 23, 25, 26]. The papers [7, 8, 11, 19] are
not path following algorithms and do not establish global rates of convergence. In [7],
Chen, Qi, and Sun consider smoothing methods for box constrained variational inequalities
and established the global convergence and the local super—linear convergence of their
Smoothing Newton Method. Chen and Ye [8] build on the work in [7] and develop a hybrid
smoothing Newton method that is globally convergent, locally super—linear, and possesses
a finite termination property for linear variational inequality problems. Jiang [11] develops
a generalized Newton and Gauss-Newton methods for the complementarity problem. He
establishes both the global convergence and local super—linear convergence of each method.
In [19], Qi, Sun, and Zhou apply techniques from non-smooth equations to obtain the
global convergence and local super—linear convergence of a smoothing method based on
Robinson’s normal equations [20].

The first non—interior path following method for LCP was developed by Chen and
Harker [4]. This method and other closely related methods were further studied by Kanzow
[13]. However, no rate of convergence is established in either [4] or [13].

The concept of a neighborhood for the central path, common in the interior point
literature, is brought to bear on non—interior path following algorithms for the first time
in [1]. By doing so, Burke and Xu are able to obtain the first global linear convergence
result for non—interior path following methods. Their results apply to LCPs whose affine
equation is determined by a matrix that is both a Py and an Ry matrix. Xu [25] develops
an infeasible non-interior path-following method for nonlinear complementarity problems
based on uniform P-functions. Using a more general notion of neighborhood, he establishes
the first global linear convergence result for non—linear complementarity problems using
non—interior path following ideas. Further results concerning boundedness properties for
neighborhoods of the central path, stopping criterion, and complexity of the non-interior
path-following method for monotone LCPs are given by Xu in [26].



A different notion of neighborhood for the central path for monotone NCPs is introduced
in [10] by Hotta and Yoshise. They also study some structural properties of non-interior
smoothing methods and propose an algorithm for which they are able to establish a global
convergence result. In [18], Qi and Sun develop a non-interior path following algorithm
using the neighborhood ideas developed by Hotta and Yoshise [10]. Conditions are given
under which the algorithm is globally linearly convergent, or globally convergent and locally
super—linearly convergent.

The papers [2, 3, 5] modify the neighborhood concepts introduced in [1, 10] and establish
the global linear convergence of their non—interior point path following algorithms. In
addition, they introduce the idea of an Approzimate Newton Step to obtain local quadratic
or super-linear convergence. In [5], Chen and Xiu compute both a centering step and
an approximate Newton step based on a single matrix factorization. If the approximate
Newton step performs better than the centering step, then the new iterate is based on
the approximate Newton step. In [2], only the approximate Newton step is used but two
backtracking line searches are required to obtain both global linear and local super—linear
convergence. In [3], Chen and Chen use a new technique for dynamically updating the
neighborhood of the central path in order to establish global convergence and local super—
linear convergence.

In [23], Tseng combines proof techniques developed in [22] for infeasible interior point
methods with the neighborhood ideas for non—interior point methods to obtain a global
linear convergence for infeasible non—interior path following methods. The search direction
is a combination of a centering step with a step designed to accelerate the method locally.
In addition, an active set strategy is introduced that allows one to establish the local
super—linear convergence of the method under very mild conditions.

The plan of the paper is as follows. In Section 2 we introduce our refined neighborhood
for the central path and establish the uniform boundedness of certain slices of this neigh-
borhood when it is assumed that LCP(g, M) is monotone and has a feasible interior point.
In Section 3, we state our predictor—corrector algorithm and show that it is well-defined.
Finally, Section 4 contains the convergence analysis.

A few words about our notation are in order. All vectors are column vectors with the
superscript T' denoting transpose. The notation IR" is used for real n—dimensional space
and IR"*" is used to denote the set of all n x n real matrices. We denote the positive
orthant in IR" by IR}. Given z,y € IR", we write + < y to indicate that y — 2z € IR}.
Given = € IR", we denote by ||z, ||z]|, and ||z||__, the I-norm, 2-norm, and co—norm of
z, respectively. A matrix M € IR"*" is said to be a P, matrix if all of its principal minors
are non—negative.

2 A Neighborhood of the Central Path

We take the set

2.10
(e, )| < By for some i > 0 (2.10)

N<ﬁ>:={<x,y> Mr =y +q=0. q’”’y”“‘“”’},



as our neighborhood of the central path, where 3 > 0 is given. This neighborhood can be
viewed as the union of the slices

N(Bp):={(z,y) : Mz —y+q=0, ®(z,y,u) <0, [ ®(z,y,p)|| < By} (2.11)

for g > 0. This neighborhood (2.11) refines the neighborhood concept introduced in [1]
by requiring that all points in the neighborhood satisfy the inequality ®(x,y,u) < 0.
Under the assumption of monotonicity plus the existence of a strictly feasible interior point,
this refinement guarantees the boundedness of the sets Upc <, N (3, 1) for any choice of
B > 0and o > 0 (see Lemma 2.1). In addition, it is shown in Theorem 3.1 that the
componentwise concavity of the function ® (Lemma 2.2) implies that if the algorithm is
initiated at a point in this neighborhood, then subsequent iterates automatically satisfy
the inequality ®(x,y,pn) < 0.

The algorithm is constructed so that each iterate is contained in a slice and that the
associated values of y1 can be driven to zero at a linear rate. It then remains to show that
any cluster point of such a sequence solves LCP (g, M). The existence of such cluster points
is established by showing that the slices are uniformly bounded for 0 < p < o for any
choice of 8 > 0 and po > 0.

Assumption (A):

The problem LCP(g, M) is monotone and has a feasible interior point (z,y) € IR"*",
le.,

x>0,y >0and Mz —y+qg=0.

It is well-known [15] that Assumption (A) is sufficient to establish the existence of the
central path and the existence of a solution to LCP(¢, M). We now show that it also
suffices to establish the uniform boundedness of the slices.

Lemma 2.1 Assume that condition (A) holds. Then for any 3 > 0 and o > 0, the set

U0<M§MON(67 M)

is bounded. Indeed, for any (z,y) € Uocu<u N (B, 1), we have fori=1,2,....n

_T— ﬁ _ B 52 .
—(Bpo)/2 <z < vy + ()l + HyﬁHl) + nmax{u, 248}
Yj
_T— ﬁ _ B 52 .
_(ﬁﬂo)/Q Syl < ’ y—l_%("x”l—l_HyiHl)‘anax{Mg’ 4#0}7
Ty

where (z,y) is any feasible interior point, that is, a point satisfying

Mz —g4+q=0, >0, 5>0.



Proof Let 3 > 0, 0 < u < o, and (z,y) € N (53, 1) be given, and let (z,y) be a feasible
interior point for LCP (g, M). First observe that if —6 < ¢(a,b, ), then —4/2 < min{a, b}.
To see this, note that the condition —§ < ¢(a, b, ) implies that

0 < /l(a+6/2) = (b+6/2)] +4p? < (a+6/2) + (b+ 6/2). (2.12)

Squaring both sides and cleaning up yields 0 < p? < (a+4/2)(b+6/2). Thus, since at least
one of (a 4+ §/2) and (b+ §/2) must be positive by (2.12), both must be positive yielding
—§/2 < min{a, b}. This observation implies that

/2> (o) 2, and e > —(G)/2 > —(Gpo) 2, for i = 1.2, . (2.13)

Next, note that if 0 < a and 0 < b, then the inequality ¢(a,b, ) < 0 implies that
0<a+b<y/(a—>b)?+4u>. Again, by squaring and cleaning up, we see that this gives
ab < p?. This observation implies that

zy; < pi foreach s € {1,...,n} with 0 < z;, 0 < y; . (2.14)
We conclude the proof by noting that monotonicity yields 0 < (z — z)T(y — y), or

equivalently 27y + y7x < #Ty + 2Ty. This inequality plus those in (2.13) and (2.14) yield
the bound

Z Ty + Z g < ly+aly— [Z Ty, + Z yixi]

y; >0 ;>0 ;<0 ;<0
Bo

< #'y+a y+—(H H1+HyH )

< g+ 3wy + > ey + 220+ 9l
z; >0 z; <0
y,‘>0 y,<0

T R 5/«60
< 2"y + nmax{ug, 0} + ==z, +[lvll,) -
It follows that if y; > 0, then
2,,2
#Ty + Lo (||z)ly + |lglly) + n max{pd, T2}

yzg Z ’

and, if x; > 0, then

2
#y 4 B (|[z]], + ||g]],) + n max{pu2, 40}
Y '

Ty

a

We conclude this section by cataloging a few technical properties of the function ¢(a, b, i)
for later use.

Lemma 2.2 The function ¢ defined in (1.4) has the following properties:
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(i) [13] The function ¢(a,b, i) is continuously differentiable on IR* x IR, .
(ii) The function ¢(a,b, ) is concave on IR* x IR,
(iii) [18, Lemma 2] For any (a,b,u) € IR*> x Ry, we have

4 2
VQQb a, bv K S S e
H ( )H \/(a—b)2+4M2 7
Proof (ii): It is easy to check that
1 — a—b
(a—b)z—|—4p,2
vqb(av bv M) = 1 —I_ (a_b)2+4u2 ) (215)
I 7 S
(a—b)2+4p?
and
) 4 —/:f /~L22 (a—b)p
Vep(a,b,p) = 5 Il —p —(a—"bju |. (2.16)
(@ =0+ 4> \ (4~ by —(a—bu —(a—b)?

Since V%) (a,b, 1) is negative semi-definite for (a,b,u) € IR* x Ry, the function ¢(a,b, i)
is concave on IR* x IR,. O

3 A Predictor-Corrector Algorithm

In this section, we state our predictor-corrector algorithm and show that it is well-defined.

The Algorithm

Step 0: (Initialization)
Choose z° € IR", set y° = Ma® 4 ¢, and let o > 0 be such that ®(2°,y°, ug) < 0.
Choose 3 > 2y/n so that ||®(2°, 4%, wo)|| < Bro. We now have (29 y°) € N (3, o).
Choose , ay, and ay from (0,1).

Step 1: (The Predictor Step)
Let (Ax*, Az* Apuy) solve the equation

AzF
A/,Lk

F(xkvykvﬂk) + VF(xkvykv/“Lk)T =0 (31)

If HCI)(:L'k + AzF gk + Ayt O)H =0, STOP, (z* + Az* y* + Ay*) solves LCP(q, M) ;
else if

|0 + Ak yF + Ayt )| > Bus,

7



set

=gk gF =k, =, and np =1 (3.2)

else let np = o where s is the positive integer such that

HCI)(:L'k—I—A:z:k,yk—l—Ayk,ozi/,Lk)H < o' Bug, for t=0,1,2,...,s, and(3.3)

[0 + At yF + Ay )| > ot B (3.4)
Set
b= Ak 0 =R+ AYEL = . (3.5)

Step 2: (The Corrector Step)
Let (A%%, Ag*, Afi,) solve the equation

Az 0
F(@F 9% i) + VE@ER 95 )™ | AY | = 0 (3.6)
N ] L =a)
and let A, be the maximum of the value 1,ay,a2, ..., such that
|G + XeAd®, 95 + NeAd®, (1= ahe) )| < (1= ah)Bj. (3.7)
Set ) ) )
xk-l—l - i?k + )\kAj;kv yk-l—l = Qk + )\kA:gkv Hi41 = (1 - a-Ak)/’ALk? (38)

and return to Step 1.

Remarks 1. Note that if the null step (3.2) is taken in Step 1, then the Newton equa-
tions (3.1) and (3.6) have the same coefficient matrix. Therefore only one matrix
factorization is needed to implement both Steps 1 and 2.

2. In the initialization step, setting

o > J max {0,207}

e{1,..., n
0<a?, 0<y?

guarantees that the inequality ®(2° 4% o) < 0 is satisfied. For example, one can
choose (2% y°) = (0, ¢) in which case o can be taken to be any positive number.

3. The condition that 5 > 2/n is only employed in proof of local quadratic convergence.
It is not required to verify the global linear convergence of the method.

4. Observe that the function F' has nonsingular Jacobian at a given point if and only if
V(25 F is nonsingular at that point. In [13, Theorem 3.5], it is shown that if 4 > 0 and
the matrix M is a Py matrix, then V, ) F'(Z,y, 1) is nonsingular for all (z,y) € R*".
Therefore, since the matrix M is assumed to be positive semi—definite and the algo-
rithm is initiated with g > 0 and terminates if x = 0, the Jacobians V F'(z*, y*, 1uz)

8



and VF(2% ¢*, [i;) are always nonsingular and so the Newton equations (3.1) and
(3.6) yield unique solutions whenever (%, y*, 1x) and (2%, 4%, fi) are well-defined. In
addition, since y° = Mz° 4 ¢, we have y* = Ma* + ¢ and §* = Mz* + ¢ for all
well-defined iterates.

In analyzing the algorithm, it is helpful to take a closer look at the Newton equations
(3.1) and (3.6). In (3.1) we have Ay, = —py and so (3.1) reduces to the system

MAzF — Ay* =0

V,0(ck, yb u)TAx + V,0(ck yt u) T Ay = —0(ek, ¥, ) + iV, 0k o ). OO

Similarly, in (3.6), Afi, = —o/fi reducing (3.6) to the system

Y
Vo B(3F, 95, @) AG + V, @85, 55, ) TAY = ~®(3F, 95, ) + oV, (a5, ¥, ).
(3.10)

Theorem 3.1 Consider the algorithm described above and suppose that the matriz M is
a Py matriz. If (z%,y*) € N(B, ) with py, > 0, then either (z* + Az" y* + Ay*) solves
LCP(q, M) or both (2%, 4%, fiy) and (z**!, k"'l,/,LkH) are well-defined with the backtracking
routines in Steps 1 and 2 finitely termmatzng In the latter case, we have (2%, 9%) € N(83, i)
and ("1 g € N(B, ppyr) with 0 < pgyy < fi. Since (2%,y°) € N(ﬁ,/,co) with pig >0,
this shows that the algorithm is well-defined.

Proof Let (z*,y*) € N(B, i) with px > 0. By Remark 4 above, (Az", Ay*, Ap,) exists
and is unique. Since y* + Ay* = M (2% + Az*)+ ¢, we have HCI)(:L'k + AzF gk + Ayk, O)H =0
if and only if (2 + Ax* y* + Ay*) solves LOP(q, M). Therefore, if (2% + Ax* y* + Ay*)
does not solve LCP(q, M), then by continuity, there exist ¢ > 0 and g > 0 such that
|0 + Axk, yF + Ay* )
described in (3.3) and (3.4) of Step 2 is ﬁnitely terminating. Hence (2%, 4%, fi) is well-
defined, with 0 < i, < g, and (AZ*, Ag®, Afi;) is uniquely determined by (3.6). To

see that the backtracking routine in Step 3 is finitely terminating, define ¢ (z,y,u) =
|®(x,y, )] and note that by (3.6)

> ¢ for all u € [0,p]. In this case, the backtracking routine

G(EF, 5 ) (AR AGR Ay)) = — || @@, ¥, )| -

Therefore, (3.7) can be viewed as an instance of a standard backtracking line search routine

and as such is finitely terminating with 0 < g1 < fir < pg (indeed, one can replace the

value of & on the right hand side of (3.7) by any number in the open interval (0,1)).
Since (z*,y*) € N (3, Mk) the argument given above implies that either (z* + Az* y* +

Ay*) solves LCP(q, M) or j¥ = M#* + q with HCI) (&%, 9%, i) H < By and y*tt = Mok g
with HCI)(:I;k"'l, YL ) H < Bpggr. Thus, if (25 4+Azk, y*+Ay*) does not solve LCP(q, M),

we need only show that ®(2%, 9% fiz) < 0 and ®(2*! ¢! 1) < 0 in order to have
(2%, 9%) € N(B, fix) and (21 y**Y) € N(B, pigy1) . First note that the componentwise



concavity of ® implies that for any (z,y, u) € IR*"t with u > 0, and (Ax, Ay, Ap) € R*"!
one has

Ax
Oz + Az, y + Ay, p+ Ap) < O(z,y,p1) + VO(x,y,1)" | Az
Ap
Hence, in the case of the predictor step, either (3.2) holds or
(I)(‘%kv gkv /:Lk)
= (" + Ack Yt + Ay* )
AzF
< Oyt ) + VOt Yt )" | Ay
(e — D)
AzF
= O(a" " ) + VOt yt )" [ Ay |+ ek V@2, y", )
= eV u® (", )
—4
= Tkfk i <0.
Y ET
In either case, ®(2*, 3%, jix) < 0. For the corrector step, we have
O (M Y™ )
= (3" 4+ MAE" G+ MADE i + MAL)
) Azt
< (I)(j;k7yfk7/jbk) +Akvq)(§;kvgk7ﬂk)T AyAk
—5/:%
since we have already shown that ®(2*, 7%, jiz) < 0. This completes the proof. O

4 Convergence

We require the following key assumption:

Assumption (B): Given > 0 and pg > 0, there exists a C' > 0 such that

|V @ 5m7| < €, (4.1)

for all 0 < p < pio and (z,9) € N (5, ).

In [1, Proposition 4.3], we show that such a bound exits under the assumption of a non-
degeneracy condition due to Fukushima, Luo, and Pang [9, Assumption (A2)]. Similar
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results of this type have since been obtained by Chen and Xiu [5, Section 6], Tseng [23,
Corollary 2], and Qi and Sun [18, Proposition 2]. In private discussions, Kanzow [14] points
out that the Fukushima, Luo, and Pang non—degeneracy condition implies the uniqueness
of the solution to LCP(¢, M). Kanzow’s proof, which we give below, easily extends to
show that any condition which implies Assumption (B) also implies the uniqueness of the

solution to LCP(q, M).

Proposition 4.1 [14] If Assumptions (A) and (B) hold, then LCP(q, M) has a unique

solution.

Proof Let S denote the set of solutions to LCP(q, M). Assumption (A) guarantees S is
non—empty. Assumption (B) implies the non—singularity of every element of the so—called
B-subdifferential [17, page 233] of I at every point in S. Thus, by [17, Proposition 2.5], S
contains only isolated points. But then, by [12, Corollary 5], S must be a singleton. O

We are now ready to establish the global linear convergence of the algorithm. This
result depends only on the corrector step (Step 2 of the algorithm) and is independent of
whether or not the predictor step (Step 1 of the algorithm) is implemented on any given
iteration. It is also interesting to note that this approach to global linear convergence is
considerably simpler than the approach given in [1] since the update to the iterates (z*, y*)
and the smoothing parameter u; are computed simultaneously.

Theorem 4.2 (Global Linear Convergence) Suppose that Assumptions (A) and (B) hold.
Let {(x*,y* ux)} be the sequence generated by the algorithm. If the algorithm does not
terminate finitely at the unique solution to LCP(q, M), then for k =0,1,...,

(«*,y") € N (B, ) (4.2)
(1 = 0Ae—1)-1 - (1 = 0%0)nop0 = pin, (4.3)
with .
L] (1.0
CB+20)2+/no?+a(l—0a)p
where C is the constant defined in (4.1). Therefore uy converges to 0 at a global linear rate.
In addition, the sequence {(x*,y*)} converges to the unique solution of LCP(q, M ).

Ar > A= min{l

Proof The inclusion (4.2) has already been established in Theorem 3.1 and the relation
(4.3) follows by construction.

For sake of simplicity, set (z,y, ) = (&1, Ur, fir) and (Az, Ay) = (Az*, Ag*). Then for
i€ {l,...,n}and X € [0,1], Lemma 2.2 and (3.6) imply that

|p(i + Az, yi + Ay, (1 — aA)p)]
Al‘i
— Tty

11



)\2 AJ}Z T AJ}Z
e} ( Aiyi ) V2(x; + 0:AAz, y; + 0.0 Ay;, (1 — 0,560)p) ( Aiyi
— O Uk — Ok
Ax; ?
< (L= Nloal,yf,ml + 5 Hv i+ 00 Azs, v + 00 Ay;, (1= s )| || Av. )
o
< (L= N6y )] + (A, Ay~
—_ 9 9 (1 _ 5‘)\)/,L 9 9

for some 0; € [0,1]. Set t; := ||(Awi, Ays, —Gug)||* for i = 1,...,n, then
[9(x + M.y + Ay, (1 — 23

)\2 tl
< (=A@, y, w)l + 0o ( " )
A2 Az \|? ) s
< (1—A)"@($,yaﬂ)"+m H(Ay) + na/,c)
< (=N o (U5 20 4 Vi) (45)

where the last inequality follows from (3.9) which yields the bound

()

It is easily verified that

< Ve P sy )| (1@, y, )l + 5 [V, @ (2, y, i) < C(3 4+ 20) . (4.6)

2

(1= N3+ 2B+ 20 4 Vol < (1 - o),
whenever (1 - 2)3
A 2 .
= G4 207 + e ol — )3
Therefore (1—o)8
e min{l’ C2(5+ 20)2 + v/no? + o1 — a)ﬁ} '

To conclude, note that the sequence {(x*,y*)} is bounded by Lemma 2.1 and Theorem
3.1. In addition, just as in (4.6), the relations (3.9) and (3.10) yield the bounds

(57)

since 0 < < 1 and 0 < i, < 1 for all k. Therefore, (4.3) and (4.4) imply that

(35 )]+ (55 )]

< 208+ 2)ur <2C(B+2)(1 — U)\)

~k
< C(B+2)pr and H(Aw )

IA

H(xk-|—17yk+1) o (xk7yk)H + )\k

12



Hence, {(2*,y*)} is a Cauchy sequence and so must converge to the unique solution of
LCP(g, M). 0

We now establish the local quadratic convergence of the p’s under the assumption that
the iterates converge to a solution of LCP(g, M) at which strict complementary slackness
is satisfied.

Theorem 4.3 (Local Quadratic Convergence) Suppose Assumption (B) holds and that the
sequence {(z%, y*, i)} generated by the algorithm converges to {(z*,y*,0)} where {(z*,y*)}
is the unique solution to LCP(q, M ). If it is further assumed that the strict complementary
slackness condition 0 < x* + y* is satisfied, then

per1 = O(uf), (4.7)
that is, py converges quadratically to zero.

Proof First observe that due to the strict complementarity of {(«*, y*)}, Part (iii) of
Lemma 2.2 indicates that there exist constants ¢ > 0 and L > 0 such that

|V2é(a,y, )| < L, whenever |[(z,y, 1) = (=", 57, 0)]| < e. (4.8)
Hence, for all k sufficient large and n € (0, 1], we have for each ¢ € {1,...,n} that

|p(xf + Axl, yf + Ayf )|

A:L'f
= |o(f yl, ) + Vo(al, yl, i) Ayk +
(77 - 1)/«%
1 7 7
5 ( Ayt ) V3 + 0;Aak, y + 0,005, (1 + 0:(n — 1)) ( Ayt )
(n — 1)p (n— 1)y
Azk
= qb(va yf? Mk) + qub(va yf? Mk) Ayzk + Uﬂkvuﬁb(l’ka ykv Mk) +
s
1 A:L'f T A:L'f
5 Ayt V2(xF + 0:AzF, y + 0:8yF, (14 0:(n — 1)) Ayk
(n — 1)p (n — 1)p

L 2
< sl Vidlet yt )l + 5 [(Aak, Ak, (n = D)
+(1- n)QMZ)

Now using an argument similar to that used to obtain (4.5), we have

‘ 2

= e + g (H(Al’f,Ayf)

L
| 2" + Aty 4 Ay )| < 2vm g+ S(CP(5 4 2)° + V(1 — )}

< oVt SO + (4.9)

13



Hence, since 3 > 2y/n, the inequality (3.3) in Step 1 of the algorithm holds with ¢ = 0 for
all k sufficiently large. It is easy to verify that

2/ np + g(cz(ﬁ +2)% + V/n)ug, < 0B, (4.10)

whenever

L 2 2
n 2= W[C (8+2)" + v/nlu.

Hence, by (3.4), we have

L 2 2
ang < W[C (84 2)* + Vn]us,

and so

[C2(B+ 2)* + /], (4.11)

- L
= 20— 2ym)

for all k& sufficient large. Therefore, by (3.5),

per1 = O(u).
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