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Abstract

In this paper we develop the mathematical foundation of, and numerical solution techniques
for the problem of deconvolution and wavefront reconstruction. This problem is fundamentally
ill-posed. Following the work of previous investigators, this issue is addressed by solving an ap-
proximation problem using regularized least-squares and Fourier transform techniques. We show
that steepest descent optimization methods applied to a least-squares objective is equivalent to
a specific implementation of an iterative transform algorithm. The convergence properties of
the method can be derived from standard results in the optimization literature. Convergence is
accelerated by using limited memory techniques with trust-regions. CPU time for the method is
reduced by using multi-resolution techniques. Numerical experiments on simulated data suggest
that the method is both efficient and robust.
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1 Introduction

In this paper we develop numerical methods for the problem of non-parametric deconvolution
and wavefront reconstruction. This problem is fundamentally ill-posed. Following the work of
previous investigators, this issue is addressed by solving an approximate regularized problem using
least-squares and Fourier transform techniques. An algorithmic approach based on limited memory,
trust-region, and multiresolution techniques is proposed. The convergence properties of the method
can be derived from standard results in the optimization literature. The results of numerical
experimentation on simulated data suggest that the method is both efficient and robust.

Phase reconstruction and deconvolution problems arise in diverse fields such as microscopy,
optical design, crystallography, and astronomy. The physical setting is that of a wave generated
from an incoherent, monochromatic, far-field source depicted in figure (1). The wave passes through
a diffraction grating and is focused with a thin lens onto an array of receptors that measure intensity
in a plane parallel to the diffraction grating. The plane in which the receptors lie is referred to
as the image plane, and the plane in which the diffraction grating lies is referred to as the pupil
plane. The intensity mapping resulting from a point source is the Green’s function or the point
spread function of the optical system. What is often referred to as the phase retrieval problem
involves recovering the phase of an electromagnetic wave from intensity measurements alone when
the source is a point source. If the image plane lies within a certain region relative to the focal
point of the lens, to first order (i.e. in the Fraunhoffer approximation), the intensity mapping is
the the modulus squared of the Fourier transform of the wavefront on the support of the diffraction
grating [14]. In this case, the problem of phase retrieval is one of determining the phase of the
wavefront from amplitude measurements in the spatial and Fourier domains. The problem is greatly
complicated when the wave source is an unknown extended object rather than a point source. This
situation often arises in earth-based optical astronomy where the atmosphere causes aberrations
in the wavefront. In this situation one wishes to find both the unknown source and the wavefront
aberration simultaneously.

Until the 1970’s the problem of phase retrieval was thought to be hopeless for a number of
reasons. In particular, in one dimension the discrete problem has a multitude of solutions. Indeed
there are as many solutions to the problem as there are grid points. To address this problem a
number of researchers have proposed the addition of constraints to narrow the number of poten-
tial solutions [21, 16, 24]. In 1972 Gerchberg and Saxton [12] proposed a particularly simple and
successful projection algorithm for solving phase retrieval problems in two dimensions, though it’s
convergence properties are not well understood. In 1981 Hayes [15] showed that the solution to the
two dimensional phase retrieval problem, if it exists, is almost surely unique up to rotations and
linear shifts. One year later Fienup [11] generalized the Gerchberg-Saxton algorithm and analyzed
many of it’s convergence properties, showing, in particular, that the directions of the projections in
the Gerchberg-Saxton algorithm are similar to directions of steepest descent for a least squares per-
formance measure. We show below that the steepest descent direction is equivalent to an averaged,
simultaneous projection algorithm. Also in 1982, Gonsalves [13] proposed a stable solution for the
more general problem of simultaneous phase reconstruction and deconvolution which involved find-
ing the least squares solution for several diversity measurements. The solution to the deconvolution
problem over several measurements is the phase diversity solution. Since the introduction of the
Gerchberg-Saxton algorithm and phase diversity numerous papers have been published on both of
these problems, too many to provide a comprehensive list here. With a few notable exceptions,
e.g. [10], all of the methods for solving the wavefront reconstruction and (simultaneous) deconvo-
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Figure 1: Model optical system

lution problems have at their core the Gerchberg Saxton algorithm and phase diversity. Showing
convergence of these algorithms has proven to be notoriously difficult. In particular, with regard to
projection algorithms, the nonconvexity of the underlying sets is a fundamental limitation. What
are often referred to as convergence results for projection algorithms are statements that the error
between iterations will not increase. To date, mathematical convergence for the nonconvex case
with convergence rates has not been shown. In what follows we provide a heuristic foundation
for stronger, global convergence results for a class of non-convex projection algorithms. A detailed
convergence proof is beyond the scope of this paper, but can be found in [18]. Our main focus is
on algorithms and implementation.

In section 2 we derive the mathematical model for diffraction imaging. In the same section we
formulate the abstract optimization problem associated with image recovery. To place our algorithm
in the context of previous work we detail the specific optimization problem for the least squares
performance measure. Other performance measures, however, are possible. Paxman et al [23] have
noted that the stochastic model implied by the least squares formulation is not appropriate for all
situations. The algorithmic approach we study in this paper is not dependent on the performance
measure and therefore can be applied to other statistical models and other performance measures.
In Section 3 we detail the limited memory algorithm and the incorporation of trust regions. Section
4 details the performance of the algorithm on simulated data.

2 Mathematical formulation

2.1 Mathematical Model of Diffraction Imaging

What follows is a development of the formalism necessary for a precise discussion of the mathe-
matical model. For ease of exposition we formulate the problem in the continuum leaving dis-
cretization until the very end. We represent the wavefront as a complex phasor, feiθ, with
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amplitude f and phase θ. We limit our discussion to ordered pairs (f, θ) ∈ S where S ⊂
(L1 ∩ L2)[R2, R] × (L1 ∩ L2)[R2, R]. We denote the source by the function ϕ : R2 → R and
the image by the function ψ : R2 → R. For reasons that will become clear below, we restrict
our attention to sources ϕ ∈ U ⊂ (L1 ∩ L2)[R2, R]. We show that the images therefore belong to
(L1 ∩ L2)[R2, R].

The optical system we model includes all of space from the pupil plane to the image plane.
In the perfect imaging system of figure (1) we assume that the true wavefront is planar and that
any deviations from this are aberrations in the optical system. Perturbations in the wavefront are
reflected in the phase term, θ, and may occur at any point along the axis of propagation. To first
order, the data recorded in the image plane is a geometric projection along the axis of propagation.
Thus the locations of the aberrations along this axis are not important. Accordingly, we consider the
phase of the wavefront to be the phase or aberration of the generalized pupil function, P : R2 → C,
P (x) = f(x)eiθ(x), lying in the pupil plane (see figure 1). The support of f describes the geometry
of the aperture in the pupil plane, and θ describes imperfections in the optics that cause changes
in the optical path length. For a thorough treatment of the physics see [4, 14]. A simple example
of an aberration is defocus. Defocus is often added to the optical system to stabilize numerical
schemes.

The ideal optical system of figure (1) is modeled as a convolution operator. The image ψ
resulting from a source ϕ emitting an incoherent, monochromatic, planar, optical wave is given by
a Fredholm integral equation of the first kind:

K[f, θ]ϕ = ψ. (1)

Here K[f, θ] is a convolution operator whose kernel, |κ[f, θ]|2, is parameterized by f and θ:

K[f, θ]ϕ ≡ |κ[f, θ]|2 ∗ ϕ, (2)

where

κ[f, θ] = (feiθ)∧. (3)

The kernel of the convolution operator is the pointspread function of the optical system. We denote
convolution by ∗. The symbols ∧ and ∨ denote the Fourier transform and it’s inverse respectively.
Since we have limited our discussion to functions on (L1 ∩ L2)[R2, R] we can define the Fourier
transform in the usual sense:

u∧(ξ) ≡
∫

n
u(x)e−2πix·ξ dx.

The Fourier transform is an isomorphism. Consequently,

κ ∈ (L1 ∩ L2)[R2, C]

and

K : (L1 ∩ L2)[R2, R]→ (L1 ∩ L2)[R2, R].

Thus we require ψ ∈ (L1 ∩ L2)[R2, R]. The problem of recovering ϕ as well as θ from data ψ and
the magnitude of the wavefront, f = A, is an ill-posed inverse problem, linear in ϕ (deconvolution),
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and nonlinear in θ (wavefront reconstruction). Phase retrieval is a specialization of (1) to the case
where ϕ = δ, the Dirac delta function.

In phase diversity several data sets, ψj , j = 1, . . . ,m, are collected with the goal of finding the
unknown phase common to all. The data sets are called diversity images. The diversity images are
generated by adding known phase aberrations, φj, j = 1, . . . ,m, to the unknown phase aberration
on the support of the pupil:

|κ[(Xf, θ + φj)]|2 ∗ ϕ = ψj , (4)

where the indicator function X denotes the support of the pupil. We formulate the diversity
problem as a system of operator equations

K[f, θ]ϕ = ψ, (5)

where K[f, θ] : (L1 ∩ L2)[R2, R] → (L1 ∩ L2)m[R2, R] and ψ ∈ (L1 ∩ L2)m[R2, R]. Here K[f, θ] is a
linear operator parameterized by the functions f and θ, and defined by

K[f, θ] = (K1[f, θ], . . . , Km[f, θ])
≡ (K[(Xf, θ + φ1)], . . . , K[(Xf, θ + φm)]) . (6)

Thus Kϕ = (K1ϕ, . . . , Kmϕ). The space (L1 ∩ L2)m[R2, R] inherits the usual product space
topology.

One must regularize the problem in order to obtain numerical stability since (5) is a Fredholm
integral equation of the first kind. We achieve this by perturbing (5) to a “nearby” Fredholm
integral equation of the second kind. For small α > 0,

(K[f, θ] + αN [f, θ])ϕ = ψ (7)

where the zero function is the only function contained in the null space of the components of both
K and N . This is a slightly different way of arriving at some of the more common regularization
techniques, among which is the well known Tikhonov regularization. Regularization is a rich topic
in and of itself, but we will not touch on it here. For our purposes we require the operator N to
be a convolution operator with a real valued kernel satisfying

null [(K[f, θ] + αN [f, θ])∗ (K[f, θ] + αN [f, θ])] = {0},

where (·)∗ denotes the adjoint. The kernel of the jth component of N , νj ∈ L1 ∩ L2[R2, R], is
parameterized by the functions f and θ:

Nj[f, θ]ϕ = νj[f, θ] ∗ ϕ.

Problem (5) is still ill-posed, even with regularization. We must therefore seek the best object
estimate, ϕ∗, and the best wavefront estimate, f∗eiθ∗ , for a given performance measure, ρ:

(P) minimize ρ
[
ψ, (K[f, θ] + N [f, θ])ϕ

]

over ϕ ∈ U, (f, θ) ∈ S,

where φj , and ψj (j = 1, 2, . . . ,m) are given and U ⊂ (L1 ∩ L2)[R2, R] and S ⊂ (L1 ∩ L2)2[R2, R].
If in addition the amplitude f is assumed known, problem (P) is the phase diversity problem.
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We diagonalize the system of equations (7) by transforming the equation to it’s Fourier dual.
We define the Fourier dual to a functional equation as the Fourier transform of both sides of the
equation. For example, by the convolution theorem any convolution operator, G, with kernel g ∈ L1,
is associated with a dual multiplication operator G, with “kernel” g∧, defined by the Fourier dual
to the corresponding operator equation:

Gϕ ≡ g ∗ ϕ = ψ
F←→ Gϕ∧ ≡

(
g∧
) (
ϕ∧) = ψ∧.

Given that K + αN is a convolution operator with real kernel, we can apply the convolution
theorem to define a dual operator that is diagonal with a Hermitian kernel. By Hermitian we
mean a function u : Rn → C satisfying u(x) = u(−x). Equivalently, u is Hermitian if and only
if u∧ is a real valued function. As we will see below, this will greatly simplify calculations of the
gradient of the objective. As a simple example, let ν = δ, the Dirac delta function, then N is the
identity operator. Alternatively, if we define ν = (1− XΩ)∨, where XΩ is the indicator function of
the support, Ω, of [|κ[f, θ]|2]∧, then N [f, θ] is the projection onto the null space of K[f, θ].

From equations (2) and (3) it is clear that kernel of the convolution operator K is the modulus
squared of the Fourier transform of the generalized pupil functional, |κ[f, θ]|2 =

(
feiθ

)∧ (feiθ)∧.
Using the identity u∧∧ = u(−x) = u∨∨, it is straight forward to verify that, for any complex valued
scalar functions u, v ∈ L1 ∩ L2[Rn, C], one has

((
u∧) (v∨

))∧ = u ⋆ v, (8)

where ⋆ is the correlation operator defined by

u ⋆ v(x) ≡
∫

n
u(x′)v(x + x′)dx′. (9)

Thus
[
|κ[f, θ]|2

]∧ = (feiθ) ⋆
(
feiθ

)
. (10)

We denote the Fourier dual of K by K where

K[f, θ]ϕ∧ =
([(

Xfeiθ+φ1

)
⋆
(
Xfeiθ+φ1

)]
, . . . ,

[(
Xfeiθ+φm

)
⋆
(
Xfeiθ+φm

)])
ϕ∧

=
([(

Xfeiθ+φ1

)
⋆
(
Xfeiθ+φ1

)]
ϕ∧, . . . ,

[(
Xfeiθ+φm

)
⋆
(
Xfeiθ+φm

)]
ϕ∧
)

.

(11)

Similarly, the Fourier dual to N is a multiplication operator denoted by N with

N [f, θ]ϕ∧ =
(
(ν1[Xf, θ + φ1])∧ , . . . , (ν1[Xf, θ + φm])∧

)
ϕ∧.

We can thus write the Fourier dual of (7) as

(K + αN)ϕ∧ = ψ∧. (12)

The diagonalization of the convolution operator is a crucial property for numerical solutions and
the reason for choosing N to be a convolution operator. Note also that the kernel of K + αN is
Hermetian.
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Using the Fourier dual representation we can also write the pointspread function as a quadratic
in the dual function f̃ ∈ S∧ ⊂ (L1∩L2)[R2, R] where f̃eiθ̃ is the Fourier dual of the wavefront feiθ:

|κ|2 = f̃2. (13)

It is useful to interpret the functions f̃eiθ̃ in terms of wave propagation. In geometric optics f̃ eiθ̃

represents the distribution of ray components, i.e. the directions of propagation, of the wave feiθ.
In studies of wave propagation in which the Wigner distribution plays a role, the domain of interest
is the product space including the physical domain and the frequency domain. The wavefront exists
in the physical domain and the distribution of rays exists in the frequency domain. This product
space is called phase space. Analogously we can formulate problem (P) in phase-space,

(P ′) minimize ρ
[
ψ,K[f, θ]ϕ, K̃[f̃ , θ̃]ϕ

]

subject to (feiθ)∧ = f̃eiθ̃

(f, θ) ∈ S, (f̃ , θ̃) ∈ S∧

ϕ ∈ U

Here K̃[f̃ , θ̃] : (L1 ∩ L2)[R2, R]→ (L1 ∩ L2)m[R2, R] is a convolution operator defined by

K̃[f̃ , θ̃]ϕ =

(∣∣∣∣
[
X eiφ1(f̃ eiθ̃)∨

]∧ ∣∣∣∣
2

∗ ϕ, . . . ,

∣∣∣∣
[
X eiφ̃m(f̃ eiθ̃)∨

]∧ ∣∣∣∣
2

∗ ϕ
)

. (14)

For a general review of this theory see [1, 2].

2.2 Least Squares Minimization

The system of equations (7) is linear in ϕ and nonlinear in (f, θ). This structure allows us to split
the corresponding optimization problem using a Benders decomposition [3]. Benders decomposi-
tions are common techniques for splitting large-scale optimization problems such as (P) into smaller
problems which can be solved independently of one another in sequence. The least squares perfor-
mance measure admits a particularly simple way to split the problem. This was first recognized by
Gonsalves [13] and later generalized by Paxman et al [23].

A common assumption in adaptive optics is that the amplitude of the wavefront across the
support of the pupil is constant with unit magnitude. We add this constraint as a penalty in the
objective function. Using the least squares performance measure, the problem (P) becomes

(PLS) minimize JLS =
1
2
∥∥(K[f, θ] + αN [f, θ])ϕ− ψ

∥∥2 +
1
2
∥∥f2 − X 2

∥∥2

over ϕ ∈ U, (f, θ) ∈ S,

Benders decomposition involves first obtaining ϕ∗ by optimizing over ϕ for fixed f and θ. Next
we optimize over f and θ holding ϕ∗ fixed. The process is repeated until the iterates exceed some
tolerance. Let (PLS)(f,θ) denote the least squares problem (P) with (f, θ) fixed. For the least
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squares performance measure, the optimal solution ϕ∗ to (PLS)(f,θ) can be written in closed form.
We obtain this by considering the Fourier dual to (PLS)(f,θ)

(PL̂S)(f,θ) minimize J∧
LS =

1
2
∥∥(K[f, θ] + αN [f, θ])ϕ∧ − ψ∧∥∥2 +

1
2
∥∥f2 −X 2

∥∥2
.

over ϕ∧ ∈ U

Assume that N has been chosen so that it’s Fourier dual satisfies

null [(K[f, θ] + N [f, θ])∗ (K[f, θ] + N [f, θ])] = {0}.

The optimal dual object estimate, denoted ϕ∧
∗ , is the solution to the normal equations:

ϕ∧
∗ = [(K + αN)∗ (K + αN )]−1 (K + αN )∗ψ∧, (15)

By Parseval’s relation the optimal values of (P
LS

)(f,θ) and (PLS)(f,θ) are equivalent. The optimal
solution to (PLS) is thus ϕ∗ ≡ [ϕ∧

∗ ]∨. The first step of Benders decomposition can therefore be
executed implicitly by substituting [ϕ∧

∗ ]∨ directly into (PLS) and optimizing over f and θ alone.
Expression (15) is a generalized Wiener filter for diffraction limited systems. The regularization
reflects the diffraction limits of the optical system.

If JLS is Fréchet differentiable and the feasible set U ∩ S is nonempty and compact then a
solution to (PLS) exists. The analytic properties of the objective are detailed in a forthcoming
paper [19]. For our purposes we assume that a solution exists and that the objective is uniformly
differentiable with uniformly continuous derivative.

2.3 Phase Retrieval

Projection algorithms, among which are iterative transform methods, are central to current numer-
ical techniques for solving the phase retrieval problem [5, 8, 11, 12, 17, 20, 29, 28]. In this section
we derive the minimization problem that these projection algorithms attempt to solve. Before we
do this, however, we show the relationship between the phase retrieval problem as it is commonly
posed and (PLS).

When ϕ = δ, the Dirac delta function, the objective JLS in (PLS), minus the magnitude
constraint, simplifies to

1
2
∥∥(K[f, θ] + αN [f, θ]) δ − ψ

∥∥2 =
1
2

m∑

j=1

∥∥∥|κj |2 + ανj − ψj

∥∥∥
2
.

Here κj = κ[Xf, θ + φj]. Regularization of the linear convolution problem is no longer necessary,
so we take α = 0. It has been noted, however, that the linearized least squares phase retrieval
problem is in some sense still ill-posed. To address this a Tikhonov regularization strategy has
been suggested. The regularization is critical to theoretical convergence results, though its effect
on numerical performance is not always crucial. For details see [10].

The norm squared and modulus squared make the objective effectively a quartic in the unknowns
which will tend to flatten out the objective and slow convergence. We therefore consider the
following quadratic objective

J̃ =
1
2

m∑

j=1

∥∥∥|κj|− ψ1/2
j

∥∥∥
2
. (16)
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We know ahead of time that the data ψ is non-negative, so the square root is not problematic.
Adding to J̃ a quadratic constraint on the amplitude yields the sum of set distance errors:

Jsde =
1
2

m∑

j=1

∥∥∥|κj |− ψ1/2
j

∥∥∥
2
+

1
2
∥f −X∥2 . (17)

The phase retrieval problem is posed as finding the minimum of the set distance error Jsde:

(Psde) minimize Jsde[f, θ]
over (f, θ) ∈ S.

The objective Jsde is not differentiable in the usual sense. What is needed is a less restrictive
notion of differentiation. Variational analysis [25] provides just such tools, however this is beyond
the scope of this paper. For our purposes it suffices to perturb the problem (Psde) to a nearby
optimization problem with an objective function which is differentiable. The gradient is well
defined for the perturbed objective function Jϵ

sde:

Jϵ
sde =

1
2

m∑

j=1

∥∥∥∥∥
|κj|2

|κj | + ϵ
− ψ1/2

j

∥∥∥∥∥

2

+
1
2

∥∥∥∥
f2

f + ϵ
− X

∥∥∥∥
2

. (18)

We solve the optimization problem

(Pϵ
sde) minimize Jϵ

sde[f, θ]
over (f, θ) ∈ S.

As with the regularization suggested in [10], while the regularization above is necessary for theo-
retical purposes it does not have dramatic numerical effect.

3 Numerical Methods

3.1 Limited Memory BFGS with Trust regions

In this section we briefly review limited memory techniques with trust regions for solving the
equation ∇J [f∗, θ∗] = 0. An optimal solution (f∗, θ∗) to (P ′

LS) or (Psde), if it exists, will satisfy
∇J [f∗, θ∗] = 0. The objective functions JLS and Jϵ

sde are not convex in f and θ. Therefore all that
can be said of the point (f∗, θ∗) is that it is a critical point. This is fundamental to the theory of
optimization and is covered at length in [18]. For the purposes of this paper we will be satisfied
with solving the equation ∇J [f, θ] = 0, recognizing, however, that the solution to this equation is
not necessarily a solution to the corresponding optimization problem.

The method we propose uses as much information about the objective function as possible while
preserving the non-parametric nature of the formulation. Newton’s method is an efficient iterative
algorithm for solving equations and is based on the first two terms of the Taylor series expansion.
For ∇J this can be written formally as

∇J [(f, θ) + d] ≈ ∇J [f, θ](d) +∇2J [f, θ](d, d). (19)
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Near a solution Newton iterates converge quadratically, i.e. if at step i the value of the function
is 10−2, the value of the function at the next iterate will be 10−4; the following iterate will yield
a function value of 10−8 and so forth. The Hessian, ∇2J [f, θ; d], of a function J : Rn → R is
an n × n matrix; thus for large systems it is not feasible to represent the Hessian explicitly in a
computer. The approach we follow involves a discretization in terms of pixels. A 512× 512 image,
for example, yields an optimization problem with 210 variables (recall that we treat both the phase θ
and amplitude f as unknowns so we have 2×29 unknowns). The corresponding Hessian, assuming it
exists, is a 210× 210 matrix. Limited memory methods provide an efficient way to use approximate
Hessian information without explicitly forming the matrix. These techniques are derived from
quasi-Newton, or matrix secant methods. Quasi-Newton methods are two step quadratic methods
that approximate the Hessian by divided differences of the gradients. Newton and Newton-like
methods, however, cannot be expected to converge for starting guesses far from the solution or
when the curvature is nearly zero. These methods are made robust with the introduction of trust
regions. For a thorough treatment of matrix secant and trust region methods see [9].

We denote the discretized unknown functions (f, θ) by u ∈ Rn. Matrix secant iterates are
generated by

uk+1 = uk − (λkMk)−1∇J(uk) (20)

where λk ∈ R is a scaling factor for the step length and Mk ∈ Rn×n is an approximation to
∇2J [f, θ; d] satisfying the quasi-Newton equation:

Mk(uk−1 − uk) = ∇J(uk−1)−∇J(uk). (21)

Equation (21)) is a system of n equations in n2 unknowns, thus infinitely many solutions are pos-
sible. Broyden’s update, symmetric rank one (SR1) matrices, and the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) update are common choices for the matrix secant Mk. The BFGS update has been
shown empirically to be superior in many cases. We will review the limited memory techniques for
BFGS matrices, however similar methods for alternative updates are possible.

The BFGS approximation to the true Hessian is given by

Mk = Mk−1 +
ykyT

k

yT
k sk
−

Mk−1sksT
k Mk−1

sT
k Mk−1sk

, k = 1, 2, . . . (22)

where

yk ≡ ∇J(uk+1)−∇J(uk), sk ≡ uk+1 − uk.

The BFGS approximation is symmetric positive definite as long as sT
k yk > 0.

In [7] Byrd et al derive compact representations of the BFGS approximation. Just as with
conjugate gradients, these representations allow one to compute the product M−1

k ∇J(uk) without
actually forming the matrix M−1

k . Let Sk ≡ [sk−m, . . . , sk−1] ∈ Rn×m denote a matrix of steps from
previous iterations. Similarly we store previous gradient differences, Yk ≡ [yk−m, . . . , yk−1] ∈ Rn×m.
Limited memory techniques amount to generating at each iteration the BFGS matrix from the m

most recent of the pairs {yi, si}k−1
i=1 and the generating matrix M (0)

k . Typically m ∈ [5, 10]. The
choice of M (0)

k that is often used is M (0)
k = λkI where I is the identity matrix and λk is some scaling

(see [26]). With this generating matrix limited memory BFGS is equivalent to doing m steps of
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conjugate gradients at each iteration. Using limited memory BFGS, denoted L-BFGS, it can be
shown that the complexity of calculating (20) is on the order of mn + m3. See [7] for details.

Before accepting the step to the next iterate one usually checks the accuracy of the quadratic
approximation

J̃(uk+1) = J(uk) +∇J(uk)T · sk +
1
2
sT
k Mksk (23)

against the true function value J(uk+1). Usually what is computed is the ratio of the actual change
in the function value between iterates uk and uk+1 and the predicted change, i.e.

r(sk) =
predicted changek

actual changek
. (24)

If the ratio is below some tolerance, the quadratic model is constrained by a trust region, i.e. a
ball around the current iterate uk that contains the largest “trustworthy” step length to the next
iterate given the unreliable quadratic model. The trust region subproblem with trust region radius
∆ is given by

TR(∆) minimize ∇J(uk)T s +
1
2
sT Mks.

∥s∥ ≤ ∆

The Lagrangian of TR(∆) yields the following unconstrained, implicit trust region subproblem

TR′(µ) minimize ∇J(uk)T s +
1
2
sT (Mk + µI) s.

s ∈ Rn

A solution, s∗(µ), to TR′(µ) corresponds to a solution to TR(∆) with ∆ = ∥s∗(µ)∥. The larger µ
the smaller the trust region radius ∆.

In [6] Burke and Wiegmann derive a compact representation of the inverse of the matrix µI+Mk

for solving the trust region subproblem. This inverse can be computed with the same computational
complexity as the computation of M−1

k . The basic assumption of the trust region step is that the
step sk is at least as effective as the step obtained by moving in the direction of steepest descent.
Thus the strategy is “global” in the sense that far from the solution the method will perform at
least as well as gradient descent while near a solution the second order information will accelerate
convergence.

3.2 Algorithms and Implementation

As noted in [6], for the proper scaling, λk, the trust region is required only a small fraction of the
time. This scaling is key to the success of the algorithm. There are many definitions for the optimal
scaling λk [22]. We follow the scaling suggested by Shanno and Phua [26]

λk =
yT

k−1yk−1

sT
k−1yk−1

. (25)

In our implementations we default to the unconstrained L-BFGS method, i.e. by default µ = 0 in
TR′(µ) at the beginning of each iteration. The trust region is invoked only if the ratio r(sk) falls
below a given tolerance, indicating that the quadratic model (23) is not reliable, i.e. r(sk) < tolTR.
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Numerical experiments indicate, however, that when a step does not give sufficient decrease in
the objective value, or even causes an increase in the objective, it is worthwhile to keep that step
direction and use it to update the L-BFGS matrix, even though the step is not taken. The rational
behind this is that bad steps still contain curvature information that is useful in approximations to
the Hessian of the objective.

Algorithm 3.1 (Limited Memory Trust Region BFGS) For k ≥ 1, given the vectors uk−1 ∈
Rn, ∇J(uk−1), the scalars J(uk−1), ∥∇J(uk−1)∥22, m ∈ {1, 2, . . . , n}, and the tolerance tolMS:

0. Set Sk−2 = Yk−2 = [ ], the empty matrix, and m = 0. Use some line search method ( e.g. line
search with backtracking) to find a direction of descent to the point uk. Calculate the vectors
sk−1, yk−1, ∇J(uk), and the scalar ∥∇J(uk)∥22.

1. If sT
k−1yk−1 ≤ 0 , goto step 0.; otherwise set m = min{m + 1,m}, λk = yT

k−1yk−1/(sT
k−1yk−1)

and update Sk−1, Yk−1, Y T
k−1Yk−1, and ST

k−1Yk−1 (see algorithm 3.1 of [7]).

2. If r(sk) < tolTR restrict trust region ∆ and solve the trust region subproblem (see [6]); oth-
erwise calculate ∇J(uk+1), ∥∇J(uk+1)∥22, and update Sk, Yk and the limited matrix BFGS
matrix (see [7]).

3. If ∥∇J(uk+1)∥22 < tolMS, end; otherwise calculate the actual change, the predicted change,
r(sk) via (24), set k = k + 1 and return to 1.

3.3 Gradients

In the appendix we outline the derivation for the formal derivative of JLS in the direction d =
(δf, δθ, δϕ). For a regularization operator N that is independent of (f, θ) we have:

∇JLS [f, θ,ϕ](d) =

〈

d, 2Re

⎡

⎣
m∑

j=1

g
j

⎤

⎦
〉

+
〈

d, 2f · rX
(

1
0

)〉
(26)

where

g
j

=
(
X e−i(θ+φj)

[(
ϕ∨r∧j

)
⋆
(
Xfei(θ+φj)

)]
, −iXfe−i(θ+φj)

[(
ϕ∨r∧j

)
⋆
(
Xfei(θ+φj)

)]
,

1
2
κ̃j ⋆ rj

)

(27)

and

rj ≡
(
|κj |2 + αN

)
∗ ϕ− ψj , rX ≡ f2 − X , κ̃j = |κj|2 + αN . (28)

Solving for ϕ in terms of f and θ via (15), the directional derivative∇JLS [f, θ](d) for d = (δf, δθ)
takes the form

∇JLS [f, θ](d) =

〈

d, 2Re

⎡

⎣
m∑

j=1

g̃
j

⎤

⎦
〉

+
〈

d, 2f · rX
(

1
0

)〉
(29)
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where

g̃
j
≡ X e−i(φj+θ)

[(
ϕ∨
∗ r∧j

)
⋆
(
Xfei(θ+φj)

)]( 1
−if

)
. (30)

A Cartesian representation of the wavefront yields a simpler expression than (30). Let w+ iz =
feiθ. The directional derivative of JLS with respect to w and z is

∇JLS [w, z](d) =

〈
d, 2Re

⎡

⎣
m∑

j=1

X e−iφj

[(
ϕ∨
∗ r∧j

)
⋆
(
X eiφj (w + iz)

)]( 1
−i

)⎤

⎦
〉

+
〈

d, 2Re

[
(w + iz) · rX

(
1
−i

)]〉
. (31)

Note that the components of the gradient with respect to w and z are the real and imaginary parts
of

2
m∑

j=1

X e−iφj

[(
ϕ∨
∗ r∧j

)
⋆
(
X eiφj (w + iz)

)]
+ 2(w + iz) · rX

respectively. Expression (31) is more efficient to calculate and does not suffer from 2π ambiguities
in the phase.

The gradient of the set distance error objective Jϵ
sde, also derived in the appendix, is formally

∇Jϵ
sde[f, θ](d) =

〈
d, Re

⎡

⎣
m∑

j=1

X e−i(θ+φj)

[(
|κj | + 2ϵ

(|κj | + ϵ)2

)
κj · rj

]∨(
1
−if

)⎤

⎦
〉

+
〈

d,

(
f + 2ϵ

(f + ϵ)2

)
f · rX

(
1
0

)〉
. (32)

where rj = |κj |2
|κj |+ϵ −ψ

1/2 and rX = f2

f+ϵ −X . In the limit as ϵ→ 0 this expression formally becomes

∇Jsde[f, θ](d) =

〈

d, Re

⎡

⎣
m∑

j=1

X e−i(θ+φj)

[
κj

|κj |
rj

]∨( 1
−if

)⎤

⎦ + rX

(
1
0

)〉

. (33)

Note that if κj(x) > 0 for all x, then (33) is simply the sum of the simultaneous projections onto all
the magnitude constraints. Thus, at least heuristically, a gradient descent method for this objective
can be viewed as a particular case of a projection method. Convergence results for projection
methods applied to this problem do not exist since the problem is non-convex. Convergence results
for gradient descent algorithms, however, can be derived from standard results in the optimization
literature.

4 Results

In this section we report the performance of the algorithm described in section (3.2) on simulated
data. We discretize the functions above into a pixel basis. Thus for a 512 × 512 image the
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Figure 2: Seven paneled, segmented aperture with phase aberrations.

optimization problem (PLS) involves 786432 variables. In all simulations we used little or no
regularization. We begin with the simplest problem, phase retrieval.

The first example shows the performance of the limited memory algorithm with the objective
Jϵ

sde against a common iterative transform algorithm called the Misell algorithm [5, 20]. The Misell
algorithm projects between several diversity images in a sequential manner. The same information,
two out of focus images and one in focus image, is available to the Misell algorithm that is available
to the limited memory algorithm. We take the parameter ϵ in Jϵ

sde to be machine precision, 10−16.
With this small regularization, a steepest descent algorithm applied to Jϵ

sde is practically the same
as a simultaneous, weighted projection algorithm. Given the connection between the gradient (33)
and evenly weighted, simultaneous projections, the difference between the two algorithms is the
weighting of the projections, and, in the case of limited memory, the use of previous iterations for
acceleration. Figure (3a) shows the performance of the two algorithms on a single panel of the
aperture shown in figure (2b). Figure (3b) shows the performance of the algorithms on the full
segmented pupil with a resolution of 512 × 512 pixels. The limited memory algorithm has trouble
finding a descent direction in the middle iterations, but converges rapidly toward the end. The
Misell algorithm has trouble resolving the boundaries of the pupil. This test was terminated after
1000 iterations, at which point the Misell algorithm had made no further progress than it had in
the first 200 iterations.

Figure (4) shows the performance of various implementations of the limited memory algorithm.
In all examples the given test problem was the full segmented aperture shown in figure(2b) at
512× 512 resolution. In figure(4a) limited memory with the objective function JLS is compared to
limited memory with the objective Jϵ

sde. Both examples started from the same zero phase initial
guess. The polar wavefront representation was used with f fixed. For random initial guesses the
Cartesian representation outperformed all other formulations on average, though performance is
comparable.

Figure (4b) illustrates the “flat” spot in the objective Jsde. In the middle iterations the gradient
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Figure 3: Comparison of the Misell algorithm with limited memory.
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Figure 4: Comparison of limited memory implementations.

becomes very small, indicating that a strong direction of descent is not being found. Lacking better
curvature information, we make use of a multi-resolution strategy that ensures that the “hard” work
of the middle iterations is performed at low resolutions where the computations are inexpensive.
The more expensive, higher resolution computations are only executed after the low resolution
images have converged. This is shown in figure (4c).

The multi-resolution strategy is implemented by iterating only on the center pixels of the data
image ψj and expanding the portion included pixels by factors of 2 to allow for fullest use of the
fast Fourier transform. The solution at resolution 2n is used as the first guess for the problem at
resolution 2n+l. The solution to the multiresolution example is shown in figure(2). In figure (4c)
we started with the center 32×32 pixels of ψj . We used the solution at this resolution as the initial
guess for the problem at resolution 128×128. Once a solution at 128×128 was found, we used this
solution as the initial guess for the full resolution problem. The jumps in the gradient indicate where
the resolution has changed. At resolutions of 128× 128 and 512× 512 less than 15 iterations were
necessary to achieve the desired tolerance. At the tolerance shown in figure (4c) the maximum per
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pixel wavefront error is less than 10−3 wavelengths, well below the tolerance of most operational
systems (see figure (2d)). The computation time for the multi-resolution implementation from
random initial guesses is on average 3.5 minutes using Matlab on a dec alpha workstation.

Figure (5) shows the numerical solution to the phase diversity problem. The method successfully
converges to a diffraction limited solution, however, the rate of convergence is extremely slow, as
is indicated by the performance with the JLS objective in figure (4a). It has been noted that the
BFGS approximation to second order information is not a competitive substitute for true second
order information [27]. A method for incorporating second order information has been proposed
by Dobson [10]. This is an active area of research.
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Figure 5: Phase diversity.

5 Conclusion

The phase retrieval and phase diversity problems are fundamentally ill-posed. Not only is the math-
ematical model ill-posed, but the underlying functions are not differentiable. A precise mathemat-
ical framework is necessary for a thorough treatment of these issues. The proposed regularization
strategy for the phase diversity algorithm involves perturbing the original ill-posed problem to a
nearby, numerically stable problem. Similarly, the non-differentiability of the set distance error used
in phase retrieval is addressed by perturbing the objective to a nearby differentiable function which
is asymptotically consistent with the original problem. Dobson [10] shows that the gradient of the
JLS objective is a compact operator. This introduces instabilities into the linearized problem which
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necessitates further regularization. The non-parametric approach we take here allows researchers
the freedom to choose a regularization that is physically justified. More work on regularization is
necessary not only for theoretical results, but for faster algorithms.

Prototype test examples indicate that limited memory methods with trust regions are more
robust than iterative transform methods and have faster rates of convergence. The performance
measure is crucial to fast convergence. One critical advantage of the trust region limited memory
techniques over iterative transform methods is in the careful scaling of the step size (25). This in
conjunction with multi-resolution implementations decrease cpu time dramatically. Further speed
up in run time is possible by processing the expressions for the gradients (31) and (32) in parallel.
The limited memory BFGS algorithm with trust regions converges to diffraction limited solutions
for the phase diversity problem, though convergence is slow. More work is needed to find efficient
algorithms that make use of second order information.
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A Gradient Calculations

The formulas for the gradients follow from tedious, though elementary vector calculus. Wherever
possible we detail the operations in general, leaving the particulars of the specific operators for the
reader. The reader will not, therefore, find complete explicit formulations in what follows. Where
there is no chance for confusion, we omit the arguments from the operators.

• Convolution and Correlation identities: Define the convolution operator, ∗, by

u ∗ v(x) ≡
∫

n
u(x′)v(x− x′)dx′. (34)

Define the correlation operator, ⋆, by

u ⋆ v(x) ≡
∫

n
u(x′)v(x + x′)dx′. (35)

We define the inner product to be ⟨u, v⟩ ≡
∫

n u(x)v(x)dx. It is elementary to verify the
following identities.

u ⋆ v = u∧∧ ∗ v; (36)
u ∗ v = [u∧ · v∧]∨ = [u∨ · v∨]∧; (37)
u ⋆ v = [u∨ · v∧]∨ = [u∧ · v∨]∧; (38)

⟨u ∗ v, h⟩ = ⟨v, u ⋆ h⟩; (39)
⟨u ⋆ v, h⟩ = ⟨h ⋆ v, u⟩; (40)

if h∨ is real then ⟨v ⋆ u, h⟩ = ⟨h ⋆ v, u⟩. (41)

• Least squares gradient: For p ∈
[
L2[Rn, C]

]m, an m-vector of complex valued, Fréchet
differentiable functionals pj : S → L2[Rn, C] (j = 1, . . . ,m), where S ⊂

[
L2[Rn, R]

]m, the
variational derivative of 1

2

∥∥p[u]
∥∥2 at u ∈ S in the direction d ∈ S is given by

[
∇1

2
∥p[u]∥2

]
(d) =

m∑

j=1

Re ⟨∇pj[u](d), pj[u]⟩

=
m∑

j=1

⟨d, Re [∇pj[u]]∗ (pj[u])⟩

=

〈

d, Re
m∑

j=1

[∇pj[u]]∗ (pj[u])

〉

(42)

• Convolution adjoints: Let p, q ∈ L2[Rn, C], and given S ⊂
[
L2[Rn, R]

]m let g : S →
L2[Rn, C] be the Fréchet differentiable kernel of the convolution operator G. The directional
derivative of G at [u] in the direction d, where [u], d ∈ S is given by (∇G(d)) p = [∇g[u](d)]∗p.
Applying Tonelli’s theorem we define the adjoint with respect to d by

⟨[∇G[u](d)] p, q⟩ ≡ ⟨∇g[u](d) ∗ p, q⟩
= ⟨∇g[u](d), p ⋆ q⟩
= ⟨d, [∇g[u]]∗ (p ⋆ q)⟩ . (43)
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Thus we define

[∇Gp]∗ (q) ≡ [∇g[u]]∗ (p ⋆ q) . (44)

Note that while (∇G(d)) p ∈ L2[Rn, C], the adjoint [∇g[u]]∗ (p ⋆ q) ∈
[
L2[Rn, C]

]m
.

• Multiplicative adjoints: Let p, q ∈ L2[Rn, C], and let g : S → L2[Rn, C], where S ⊂[
L2[Rn, R]

]m, be a Fréchet differentiable “kernel” of the multiplication operator G. The
directional derivative of the multiplication operator at [u] in the direction d, where [u], d ∈ S
is given by (∇G(d)) p = [∇g[u](d)] p. The adjoint with respect to d is defined by

⟨[∇G[u](d)] p, q⟩ ≡ ⟨[∇g[u](d)] p, q⟩
= ⟨∇g[u](d), pq⟩
= ⟨d, [∇g[u]]∗ (pq)⟩ . (45)

Thus we define

[∇Gp]∗ (q) ≡ [∇g[u]]∗ (pq) . (46)

Again, note that while (∇G(d)) p ∈ L2[Rn, C], the adjoint [∇g[u]]∗ (pq) ∈
[
Ln[R2, C]

]m
.

• The Lebesuge dominated convergence theorem and it’s consequences: The formulas
for the gradient given by (26, (29), (32), and (33) assume that the generalized pupil function
feiθ satisfies |f(x)|→ 0 as |x|→∞. In the case of the Cartesian representation this condition
is |w(x) + iz(x)| → 0 as |x| → ∞. The Lebesgue dominated convergence theorem then
implies that the variational directional derrivative commutes with the Fourier transform, i.e
that ∇w,z[(w + iz)∧](d) = [∇w,z[w + iz](d)]∧ where ∇w,z[·](d) is defined as the variation with
respect to the functions w and z in the direction d.
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