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Abstract. The abscissa mapping on the affine variety Mn of monic polynomials of degree n
is the mapping that takes a monic polynomial to the maximum of the real parts of its roots. This
mapping plays a central role in the stability theory of matrices and dynamical systems. It is well
known that the abscissa mapping is continuous on Mn, but not Lipschitz continuous. Furthermore,
its natural extension to the linear space Pn of polynomials of degree n or less is not continuous. In
our analysis of the abscissa mapping, we use techniques of modern nonsmooth analysis described
extensively in Variational Analysis (R. T. Rockafellar and R. J.-B. Wets, Springer-Verlag, Berlin,
1998). Using these tools, we completely characterize the subderivative and the subgradients of the
abscissa mapping, and establish that the abscissa mapping is everywhere subdifferentially regular.
This regularity permits the application of our results in a broad context through the use of standard
chain rules for nonsmooth functions. Our approach is epigraphical, and our key result is that the
epigraph of the abscissa map is everywhere Clarke regular.
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Let Pn denote the linear space of complex polynomials of degree n or less, and
let Mn denote the affine variety in Pn consisting of the monic polynomials of degree
n. In this article we study variational properties of the abscissa mapping

a :Mn → R

given by

a(p) = max {Re ζ | p(ζ) = 0} .

Our study is partly motivated by the need to provide tools for understanding the
variational behavior of the spectral abscissa mapping on the n by n complex matrices
defined by

α(M) = a(det(λI −M)).

Properties of the spectral abscissa are closely tied to stability theory for matrices
and dynamical systems. Thus, the variational behavior of the spectral abscissa has
important consequences for the sensitivity of the stability properties of such systems
under perturbation. In [BO], we apply the variational results obtained in this paper
to study the variational behavior of the spectral abscissa map.

The abscissa mapping has a number of characteristics that make it difficult to
analyze. It is well known that a is continuous, but not Lipschitz continuous, on
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1652 JAMES V. BURKE AND MICHAEL L. OVERTON

Mn. In addition, the natural extension of a to all of Pn is not continuous at any
point of the subspace Pn−1. In this paper, we show that the techniques of modern
nonsmooth analysis described in the recent book [RW98] are ideally suited to the study
of mappings of this type. Thus, a secondary purpose of this paper is to illustrate the
usefulness of the nonsmooth analysis techniques developed by many authors over the
last 30 years by applying them to a classical function of great practical importance.
Using techniques from nonsmooth analysis, we are able to establish that the abscissa
mapping is everywhere subdifferentially regular. This remarkable result has major
consequences for the development of a calculus for the variational behavior of the
abscissa mapping under composition.

It needs to be stated that our analysis owes a great debt to earlier work of Levan-
tovskii [Lev80]. Levantovskii studied the set of stable polynomials, i.e., the set of
polynomials whose abscissa is nonpositive, and provided an outline for the derivation
of the tangent cone to this set. We generalize this proof technique to establish the
key result of section 1 (Theorem 1.2).

The paper is organized as follows; we assume that the reader is familiar with
[RW98]. Section 1 is devoted to the derivation of the subderivative of a. This is done
via an epigraphical approach, where we derive the formula for the subderivative from a
description of the tangent cone to the epigraph of the abscissa mapping a. In addition,
we develop some basic tools that relate the prime factorization of a polynomial to a
factorization of the tangent cone. The key to this result is the local factorization
Lemma 1.4. In section 2, we use the representation of the tangent cone obtained in
section 1 to derive a representation for the set of regular normals to the epigraph of
a. This in turn yields a representation for the set of regular subgradients for a at
any point in Mn. In section 3, we establish that the abscissa mapping is everywhere
subdifferentially regular. The key result is that the epigraph of the abscissa map is
Clarke regular.

Most of the notation that we use is introduced as it is required. However, it is
useful to briefly describe our conventions for discussing polynomials in their distinct
roles as points in the linear space Pn and as functions over the complex field. One
could identify Pn with C

n+1 and attempt to derive the variational properties of a as a
mapping on C

n+1, but this would completely ignore the very rich underlying algebraic
structure of polynomials. Since it is the roots of polynomials that lie at the heart of
the mapping a, it is the polynomial perspective that drives our analysis. Given a
polynomial p ∈ Pn, we will always use the Greek letter λ to denote the indeterminant
associated with representing the polynomial as a function. Thus we write p(λ) as the
associated polynomial function. Monomials and shifted monomials play a central role
in our analysis. For this reason we give them a special notation so that we can discuss
them as points in Pn. We write

e(�,λ0)(λ) = (λ− λ0)
�.

1. The subderivative and the tangent cone. To apply the tools developed
in [RW98], we first extend the definition of a to the entire linear space Pn:

a : Pn → R

is given by

a(p) =

{
max {Re ζ | p(ζ) = 0} if p ∈ Mn,
+∞ otherwise.
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THE ABSCISSA MAPPING 1653

This extension allows us to focus our attention on the set of monic polynomials.
In particular, we have dom (a) = {p | a(p) < +∞} = Mn. Given p ∈ Mn, our
goal is to derive a formula for da(p), the subderivative of the mapping a. Following
[RW98, Definition 8.1], the subderivative of a at a point p ∈ Mn is the mapping
da(p) : Pn → R ∪ {±∞} given by

da(p)(q̂) = lim inf
τ↘0
q→q̂

a(p+ τq)− a(p)

τ
,

where the parameter τ is understood to be real. Since a is +∞ on Pn\Mn, we have

dom (da(p)) = {p | da(p) < +∞} ⊂ Pn−1.

Hence, we restrict our attention to the behavior of da(p) on the subspace Pn−1.
We approach the problem of computing da(p) from an epigraphical perspective.

The epigraph of a is the set

epi (a) = {(p, µ) | a(p) ≤ µ < +∞} .

Using this set, we can construct da(p) from the formula

epi (da(p)) = Tepi (a)(p, a(p))(1.1)

[RW98, Theorem 8.2]. Here Tepi (a)(p, a(p)) is the tangent cone to the set epi (a) at
the point (p, a(p)). For a subset C of a finite dimensional linear space X, we have

TC(x) =

{
d

∣∣∣∣ ∃ {xk} ⊂ C and {tk} ⊂ R+ such that
xk → x, tk ↘ 0, and t−1

k (xk − x)→ d

}
(1.2)

=

γd

∣∣∣∣∣∣
γ ≥ 0, and there exits {xk} ⊂ C

with xk → x such that d = lim
k→∞

xk − x

‖xk − x‖

 ,(1.3)

where R+ is the set of nonnegative real numbers and ‖·‖ is any norm on X. By
considering Pn−1 as a subspace of Pn, we have

Tepi (a)(p, µ) ⊂ Pn−1 × R for all µ ≥ a(p),(1.4)

since a is +∞ on Pn\Mn. In particular,

Tepi (a)(p, µ) = Pn−1 × R whenever µ > a(p),(1.5)

since a is continuous on Mn.
In our first lemma we show that the tangential geometry of epi (a) remains essen-

tially unchanged under the linear transformations corresponding to a uniform shift of
the roots. For each λ0 ∈ C

n define the linear transformation Hλ0 : Pn → Pn by

Hλ0(p)(λ) = p(λ− λ0).

Lemma 1.1. Let λ0 be a given complex number. Then

Tepi (a)(Hλ0
(p), η + Re (λ0)) = {(Hλ0

(v), µ) : (v, µ) ∈ Tepi (a)(p, η)} .D
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1654 JAMES V. BURKE AND MICHAEL L. OVERTON

Proof. Define the affine transformation Ĥλ0
: Pn × R → Pn × R by

Ĥλ0(p, µ) = (Hλ0(p), µ+ Re (λ0)).

Clearly, the mapping Ĥλ0 is invertible (indeed, Ĥ
−1
λ0
= Ĥ−λ0). In addition,

Ĥ−1
λ0
(epi (a)) = epi (a).

Therefore, by [RW98, Exercise 6.7] and the invertibility of Ĥλ0 , we have

Tepi (a)(Hλ0
(p), µ+ Re (λ0)) = Tepi (a)(Ĥλ0(p, µ))

= ∇Ĥλ0(p, µ)Tepi (a)(p, µ)

= {(Hλ0(v), µ) : (v, µ) ∈ Tepi (a)(p, η)}.
We now derive a formula for the tangent cone to epi (a) at (e(n,0), 0). All of our

subsequent analysis relies on this key result. The proof is rather long and involved.
It is based on an outline provided by Levantovskii [Lev80] for deriving a formula for
the tangent cone to the set of stable polynomials.

Theorem 1.2. We have (v, η) ∈ Tepi (a)(e(n,0), 0), with

v = β1e(n−1,0) + β2e(n−2,0) + · · ·+ βn,(1.6)

if and only if

Reβ1 ≥ −nη,(1.7)

Reβ2 ≥ 0,(1.8)

Imβ2 = 0, and(1.9)

βk = 0 for k = 3, . . . , n.(1.10)

Therefore, for v ∈ Pn−1 given by (1.6), we have

da(e(n,0))(v) =

{
− Re β1

n if (1.8)–(1.10) hold, and
+∞ otherwise.

Proof. We begin by showing that (1.7)–(1.10) and (1.6) imply that (v, η) is an
element of the tangent cone Tepi (a)(e(n,0), 0). This is done by constructing a curve
in epi (a) converging to (e(n,0), 0) and having derivative equal to (v, η). Consider the
polynomials having coefficients that are polynomials in ξ and given by

p(λ, ξ) =

(
λ+

β1

n
ξ

)n−2(
λ+

√−1(β2ξ)
1
2 +

β1

n
ξ

)(
λ− √−1(β2ξ)

1
2 +

β1

n
ξ

)
=

(
λn−2 + (n− 2)β1

n
ξλn−3 + o(ξ)

)(
λ2 + 2

β1

n
ξλ+ β2ξ + o(ξ)

)
= λn + β1ξλ

n−1 + β2ξλ
n−2 + o(ξ)

= λn + ξv(λ) + o(ξ) .

Let ξ be real and positive. Then a(p(λ, ξ)) = − Re (β1)
n ξ. Therefore,

lim
ξ↘0

a(p(λ, ξ))− a(λn)

ξ
= − Re (β1)

n
≤ η,
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THE ABSCISSA MAPPING 1655

which yields the result.
We now show that any element (v, η) in the tangent cone Tepi (a)(e(n,0), 0) must

satisfy (1.7)–(1.10) if v is given the representation (1.6). To this end, we make use of
the following norm on Pn × R:∥∥(b0e(n,0) + b1e(n−1,0) + · · ·+ bn, µ)

∥∥ = max{ |b0| , |b1| , . . . , |bn| , |µ| } .

Let (v, η) ∈ Tepi (a)(e(n,0), 0) with v written as in (1.6). By definition there is a
sequence {(pk, µk)} ∈ epi (a) with (pk, µk)→ (e(n,0), 0) and

((pk, µk)− (e(n,0), 0))∥∥(pk, µk)− (e(n,0), 0)
∥∥ → (γv, γη)(1.11)

for some γ > 0.
Given ε ∈ C

n, define σj : C
n → C for j = 1, 2, . . . , n to be the symmetric

functions

σ1(ε) =

n∑
t=1

εt and σj(ε) =
∑

1≤t1<t2<···<tj≤n

(
j∏

s=1

εts

)
for j = 2, . . . , n,(1.12)

and set σ = (σ1, σ2, · · · , σn)
T . For each k = 1, 2, . . . there exist complex numbers

εk = (εk1, εk2, . . . , εkn)
T → 0 such that Re (εkj) ≥ −µk for j = 1, 2, . . . , n and

pk(λ) =

n∏
j=1

(λ+ εkj) = (λ
n + σ1(ε

k)λn−1 + · · ·+ σn(ε
k)) .(1.13)

For each k = 1, 2, . . ., set

νk =
∥∥(pk, µk)− (e(n,0), 0)

∥∥ = max{(∥∥σ(εk)∥∥∞ , |µk| }.
Then the limit (1.11) can be interpreted componentwise as

γβj = lim
k→∞

σj(ε
k)

νk

for j = 1, 2, . . . , n. Set σ̃j = γβj for j = 1, 2, . . . , n. We establish the result by showing
that

Re σ̃1 ≥ −nγη, Re σ̃2 ≥ 0, Im σ̃2 = 0, and σ̃k = 0 for k = 3, 4, . . . , n.(1.14)

Clearly, Re (σ̃1) ≥ −nγη since Re (σ1(ε
k)) =

∑n
j=1 Re (εkj) ≥ −nµk for all

k = 1, 2, . . . and µk/νk → γη. We now show that σ̃j = 0 for j = 3, 4, . . . , n. First note
that

σj(ε) = o(‖ε‖2
∞) for j = 3, 4, . . . , n.(1.15)

Define

αkj = Re εkj and δkj = Im εkj(1.16)

for j = 1, 2, . . . , n and k = 1, 2, . . .. Note that αkj ≥ −µk for j = 1, 2, . . . , n and
k = 1, 2, . . .. In addition, it is easily verified that

Reσ2(ε
k) =

∑
s<t

[αksαkt − δksδkt] and Imσ2(ε
k) =

[∑
s<t

αksδkt +
∑
s<t

δksαkt

]
.
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1656 JAMES V. BURKE AND MICHAEL L. OVERTON

Then, by definition,∣∣σ1(ε
k)
∣∣ 2 = ∥∥εk∥∥2

2
+ 2

∑
s<t

Re (ε̄ksεkt)

=
∥∥εk∥∥2

2
+ 2

∑
s<t

αksαkt + 2
∑
s<t

δksδkt

=
∥∥εk∥∥2

2
+ 4

∑
s<t

αksαkt + 2
∑
s<t

[δksδkt − αksαkt]

=
∥∥εk∥∥2

2
+ 4

∑
s<t

αksαkt − 2Reσ2(ε
k)

≥ ∥∥εk∥∥2

∞ − 2n(n− 1)µ2
k − 2Re (σ2(ε

k))

≥ ∥∥εk∥∥2

∞ − 4n(n− 1)max{ |µk| ,
∣∣σ2(ε

k)
∣∣ } ,

whenever |µk| ≤ 1. Hence, if εk and µk are such that
∣∣σ1(ε

k)
∣∣ <

‖εk‖∞
2 and |µk| ≤ 1,

then, for ∆ = 3
16n2 , we have

max{ |µk| ,
∣∣σ2(ε

k)
∣∣ } > ∆

∥∥εk∥∥2

∞ .

On the other hand, if
∣∣σ1(ε

k)
∣∣ ≥ ‖εk‖∞

2 and
∥∥εk∥∥∞ ≤ 1, then

∣∣σ1(ε
k)
∣∣ ≥ ‖εk‖2

∞
4 .

Thus, in either case, we have

max( |µk| ,
∣∣σ1(ε

k)
∣∣ , ∣∣σ2(ε

k)
∣∣ ) ≥ ∆

∥∥εk∥∥2

∞ ,(1.17)

whenever
∥∥εk∥∥∞ ≤ 1 and |µk| ≤ 1. This implies that

νk ≥ ∆
∥∥εk∥∥2

∞(1.18)

for all k sufficiently large. This bound, in conjunction with (1.15), allows us to
conclude that

σ̃j = lim
k→∞

σj(ε
k)

νk
= 0 for j = 3, 4, . . . , n.

We now turn our attention to the coefficient σ̃2. If

max{ ∣∣σ1(ε
k)
∣∣ , ∣∣σ2(ε

k)
∣∣ } = o(νk),

we are done since then σ̃ = 0. Hence, we assume that

max{ ∣∣σ1(ε
k)
∣∣ , ∣∣σ2(ε

k)
∣∣ } �= o(νk)

so that

νk = max{
∣∣σ1(ε

k)
∣∣ , ∣∣σ2(ε

k))
∣∣ , |µk| }

for all k sufficiently large. Set ν̃kj = max{
∣∣σj(ε

k)
∣∣ , |µk| } for j = 1, 2. Observe that

if limk→∞
σ2(ε

k)
ν̃k1

= 0, then we are done since in this case νk = ν̃k1 for all k sufficiently
large which implies that σ̃2 = 0. Hence, with no loss in generality, we can assume
that there is a constant c > 0 such that∣∣σ2(ε

k)
∣∣ ≥ cν̃k1 for all k = 1, 2, . . ..(1.19)
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THE ABSCISSA MAPPING 1657

Therefore, there is a constant K > 0 such that

K
∣∣σ2(ε

k)
∣∣ ≥ νk for all k sufficiently large.(1.20)

Now observe that

|σ2(ε)| =
∣∣∣∣∣∑
s<t

εsεt

∣∣∣∣∣ ≤∑
s<t

|εs| |εt| ≤ n(n− 1)
2

‖ε‖2
∞ .(1.21)

Therefore, for all k sufficiently large,

c
∣∣Re (σ1(ε

k))
∣∣ ≤ c

∣∣σ1(ε
k)
∣∣ ≤ cν̃k1 ≤ ∣∣σ2(ε

k)
∣∣ ≤ n(n− 1)

2

∥∥εk∥∥2

∞ ,

and so, from (1.20), we have

|µk| ≤ νk ≤ Kn(n− 1)
2

∥∥εk∥∥2

∞ .(1.22)

In particular, this implies that

µk

‖εk‖∞
→ 0.

In addition, since αkj + µk ≥ 0 for each j = 1, 2, . . . , n and all k = 1, 2, . . . and

0 ≤
n∑

j=1

αkj + µk

‖εk‖∞
≤
∣∣Re (σ1(ε

k))
∣∣ + n |µk|

‖εk‖∞
≤ n(n− 1)

2

(
1

c
+Kn

)∥∥εk∥∥∞ ,

for all k = 1, 2, . . . (recall the definition of the αkj ’s from (1.16)), we obtain

lim
k→∞

αkj

‖εk‖∞
= 0 for j = 1, 2, . . . , n.(1.23)

Putting together the bounds (1.18), (1.20), and (1.22), we obtain the relation

∆
∥∥εk∥∥2

∞ ≤ νk ≤ K
∣∣σ2(ε

k)
∣∣ ≤ K

n(n− 1)
2

∥∥εk∥∥2

∞ ,(1.24)

for all k = 1, 2, . . .. In addition, the bound (1.19) implies that∣∣ Im (σ1(ε
k))
∣∣ 2

|σ2(εk)| ≤
∣∣σ1(ε

k)
∣∣ 2

|σ2(εk)| ≤ 1

c2
∣∣σ2(ε

k)
∣∣

so that ∣∣ Im (σ1(ε
k))
∣∣ 2

|σ2(εk)| → 0.

Now since
∣∣ Im (σ1(ε

k))
∣∣ 2 =∑n

j=1 δ2
kj + 2

∑
s<t δksδkt, this implies that

lim
k→∞

∑
s<t

δksδkt
|σ2(εk)| ≤ 0.(1.25)
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1658 JAMES V. BURKE AND MICHAEL L. OVERTON

Finally, recall that

σ2(ε
k) =

[∑
s<t

αksαkt −
∑
s<t

δksδkt

]
+ i

[∑
s<t

αksδkt +
∑
s<t

δksαkt

]
.

Therefore, by (1.24), (1.25), and (1.23), we see that

Re (σ̃2) = lim
k→∞

Re (σ2(ε
k))

νk
≥ 0.

Similarly, from (1.24) and (1.23), we have

| Im (σ̃2)| = lim
k→∞

∣∣ Im (σ2(ε
k))
∣∣

νk

≤ ∆−1 lim
k→∞

∑
s<t

( |αks|
‖εk‖∞

|δkt|
‖εk‖∞

+
|αkt|
‖εk‖∞

|δks|
‖εk‖∞

)
= 0,

since
|δkj |

‖εk‖∞
≤ 1 for all j = 1, 2, . . . , n and k = 1, 2, . . ..

The final statement of the theorem concerning the formula for da(e(n,0))(v) now
follows immediately from the equivalence of (1.1) and (1.7)–(1.10).

By combining Lemma 1.1 with Theorem 1.2, we obtain the following corollary.
Corollary 1.3. Given λ0 ∈ C, we have (v, η) ∈ Tepi (a)(e(n,λ0), Re (λ0)), with

v = β1e(n−1,λ0) + β2e(n−2,λ0) + · · ·+ βn ,(1.26)

if and only if β1, β2, . . . , βn satisfy the conditions (1.7)–(1.10). Therefore, for v ∈ Pn−1

given by (1.26), we have

da(e(n,λ0))(v) =

{
− Re β1

n if (1.8)–(1.10) hold,
+∞ otherwise.

We now show that the factorization of a polynomial into powers of linear factors
(or the prime factorization) can be used to obtain a description of the tangent cone
to the epigraph of a from Corollary 1.3. We begin by developing a tool that allows us
to treat each of the linear factors in the prime factorization separately. We then glue
the results for each of the factors back together to obtain a result for the polynomial
as a whole. This tool is provided in the next lemma which establishes a local property
for factorizations into relatively prime factors.

Lemma 1.4. Let (n1, n2, . . . , nm) be a partition of n, that is, for j = 1, 2, . . . ,m
each nj is a positive integer and n =

∑m
j=1 nj. Set

S = C × Pn1−1 × Pn2−1 × · · · × Pnm−1

and let pj ∈ Mnj for j = 1, 2, . . . ,m. Consider the mapping F : S → Pn given by

F (v0, v1, v2, . . . , vm) = (1 + v0)

m∏
j=1

(pj + vj) .

If the polynomials p1, . . . , pm are relatively prime(i.e., have no common roots), then
there exist open neighborhoods U of 0 ∈ S and W of F (0) ∈ Pn such that F is
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THE ABSCISSA MAPPING 1659

a homeomorphism between U and W with ∇(F−1) existing, continuous on W , and
satisfying ∇(F−1)(F (u)) = [∇F (u)]−1 for all u ∈ U . Thus, in particular, we have
Ran (∇F (0)) = Pn; that is, every polynomial h ∈ Pn can be written as

h = ∇F (0)(w0, w1, . . . , wm) =

m∑
j=0

rjwj ,(1.27)

for some (w0, w1, . . . , wm) ∈ S, where

r0 =

m∏
j=1

pj and rs =
∏
j �=s

pj for s = 1, 2, . . . ,m.(1.28)

Proof. Since dim(S) = n + 1 = dim(Pn), the result follows from the classical
inverse function theorem once it is shown that ker (∇F (0)) = {0}. Let Zj denote the
set of zeros of the polynomial pj counting multiplicity, for j = 1, 2, . . . ,m, and let
(w0, w1, . . . , wm) ∈ ker (∇F (0)). Since the polynomials p1, p2, . . . , pm are relatively
prime, we have Zj ∩ Zs = ∅ whenever j �= s. Equations (1.27) and (1.28) and the
inclusion (w0, w1, . . . , wm) ∈ ker (∇F (0)) imply that for each s = 1, 2, . . . ,m the
polynomial

fs = rsws

has zeros not only at the points ∪j �=sZj (with the corresponding multiplicities) but
also at the points Zs (with the corresponding multiplicities). Hence, each fs is either
the zero polynomial or its degree is at least n. However, the degree of each fs is at most
n−1, since ws ∈ Pns−1. Therefore, fs is the zero polynomial for s = 1, 2, . . . ,m. This
in turn implies that wj = 0 for j = 1, 2, . . . ,m, and finally that w0 = 0. Consequently,
ker (∇F (0)) = {0}.

As a first application of Lemma 1.4, we show if a polynomial is written as a
product of relatively prime factors, then the tangent cone to the epigraph of a at this
polynomial is contained within a kind of product of the tangent cones associated with
each of the relatively prime factors.

Theorem 1.5. Let (n1, n2, . . . , nm) be a partition of n, and let pj ∈ Mnj for
j = 1, 2, . . . ,m be relatively prime. Set p =

∏m
j=1 pj ∈ Mn. Let the space S and the

function F : S → Pn be as given in Lemma 1.4. If (h, ω) ∈ Tepi (a)(p, a(p)), then
there exists (0, w1, w2, . . . , wm) ∈ S such that h is given by (1.27) and (1.28), where,
for j = 1, . . . ,m, (wj , ω) ∈ Tepi (anj

)(pj , a(p)) and anj denotes the abscissa mapping

on Pnj .
Proof. Let (h, ω) be a nonzero element of the tangent cone Tepi (a)(p, a(p)). Then

there is a sequence {(qk, αk)} ⊂ epi (a) ⊂ Mn × R and a scalar γ > 0 such that

(qk, αk)→ (p, a(p)) and
(qk, αk)− (p, a(p))

‖(qk, αk)− (p, a(p))‖ → (γh, γω) .

Let F : S → Pn be as in Lemma 1.4. Then, by trimming finitely many terms
from the beginning of the sequence if necessary so that qk is sufficiently close to p,
Lemma 1.4 yields the existence of a sequence {(0, vk1, vk2, . . . , vkm)} ⊂ S such that
(0, vk1, vk2, . . . , vkm)→ 0 and

qk = F (0, vk1, vk2, . . . , vkm) =

m∏
j=1

(pj + vkj) for all k = 1, 2, . . . ,
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1660 JAMES V. BURKE AND MICHAEL L. OVERTON

since {qk} ⊂ Mn = dom (a). Since (qk, αk) ∈ epi (a), we have

(pj + vkj , αk) ∈ epi (anj ) for all j = 1, 2, . . . ,m and k = 1, 2, . . .(1.29)

and

(pj + vkj , αk)→ (pj , a(p)) for all j = 1, 2, . . . ,m.(1.30)

Set vk = (0, vk1, vk2, . . . , vkm) for k = 1, 2, . . ., and set v̄ = 0 so that vk → v̄. Then

qk − p = F (vk)− F (v̄)

= ∇F (v̄)(vk − v̄) + o(
∥∥vk − v̄

∥∥) .(1.31)

By Lemma 1.4, ∇(F−1) is continuous in a neighborhood of p so that F−1 is Lipschitz
continuous near p. Consequently, there is a constant K > 0 such that

∥∥vk − v̄
∥∥ ≤

K ‖qk − p‖ for all k = 1, 2, . . .. This fact, combined with (1.31), yields

γh = lim
k→∞

qk − p

‖(qk, αk)− (p, a(p))‖

= ∇F (v̄) lim
k→∞

vk − v̄

‖(qk, αk)− (p, a(p))‖
= ∇F (0)(0, ŵ1, ŵ2, . . . , ŵm),(1.32)

where

ŵj = lim
k→∞

vkj
‖(qk, αk)− (p, a(p))‖ for j = 1, 2, . . . ,m.

Equation (1.32) verifies (1.27) with wj = γ−1ŵj for j = 1, 2, . . . ,m. From (1.29),
(1.30), and definition (1.2) (here tk = ‖(qk, αk)− (p, a(p))‖), we have that (wj , ω) is
an element of Tepi (anj

)(pj , a(p)), for j = 1, 2, . . . ,m, which proves the result.

We now apply Corollary 1.3, Lemma 1.4, and Theorem 1.5 to obtain a complete
representation of the tangent cone to the epigraph of the abscissa mapping at an
arbitrary polynomial. This representation involves the prime factorization of the
polynomial. For this purpose, and for the application of this result in later sections,
it is useful to introduce some more notation.

Let p ∈ Mn have prime factorization

p =

m∏
j=1

e(nj ,λj),(1.33)

where λ1, . . . , λm are distinct complex numbers and (n1, n2, . . . , nm) is a partition of
n. Define Sp to be the product space

Sp = C × Pn1−1 × Pn2−1 × · · · × Pnm−1.(1.34)

In conjunction with Sp, we define the mapping Fp : Sp → Pn by

Fp(v0, v1, . . . , vm) = (1 + v0)

m∏
j=1

(e(nj ,λj) + vj) for all (v0, v1, . . . , vm) ∈ Sp,(1.35)
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THE ABSCISSA MAPPING 1661

so that Fp(0) = p. By analogy with (1.27), for every (w0, w1, . . . , wm) ∈ S, we have

∇Fp(0)(w0, w1, . . . , wm) =

m∑
j=0

rjwj ,(1.36)

where

r0 = p and rs =
∏
j �=s

e(nj ,λj) for s = 1, 2, . . . ,m.(1.37)

In addition, we define

I(p) = {j ∈ {1, 2, . . . ,m} | a(p) = Reλj } ,(1.38)

the set of indices of active roots of p.
We now state and prove the main result of this section.
Theorem 1.6. Let p ∈ Mn have factorization (1.33). Then (h, ω) is an element

of Tepi (a)(p, a(p)) if and only if there exists a vector (w0, w1, w2, . . . , wm) ∈ Sp such
that

h = ∇Fp(0)(w0, w1, w2, . . . , wm),(1.39)

where ∇Fp(0) is defined in (1.36)–(1.37),

w0 = 0,(1.40)

and

(wj , ω) ∈ Tepi (anj
)(e(nj ,λj), a(p)) for j = 1, 2, . . . ,m.(1.41)

In addition, if for each j = 1, 2, . . . ,m, wj is given the representation

wj = βj1e(nj−1,λj) + βj2e(nj−2,λj) + · · ·+ βjnj
,(1.42)

then, for each j ∈ I(p), a necessary and sufficient condition for (1.41) to hold is that

Reβj1 ≥ −njω,(1.43)

Reβj2 ≥ 0,(1.44)

Imβj2 = 0, and(1.45)

βjs = 0 for s = 3, 4, . . . , nj .(1.46)

Proof. Let us first assume that (h, ω) ∈ Tepi (a)(p, a(p)) and show that (h, ω)
must satisfy (1.39), (1.40), and (1.41). By Lemma 1.4, there must exist a vector
(w0, w1, w2, . . . , wm) in Sp such that (1.39) holds. The fact that w0 = 0 follows from
(1.4), while (1.41) follows immediately from Theorem 1.5. The conditions (1.43)–
(1.46) follow from (1.41) and Corollary 1.3.

Next, let us assume that (h, ω) ∈ Pn−1×R satisfies (1.39), (1.40), and (1.41). We
need to show that (h, ω) ∈ Tepi (a)(p, a(p)). We accomplish this by following the ap-
proach taken in Theorem 1.2. That is, we will exhibit a curve in epi (a) passing through
(p, a(p)) and having the tangent direction (h, ω) at (p, a(p)). For j = 1, 2, . . . ,m, give
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1662 JAMES V. BURKE AND MICHAEL L. OVERTON

each wj in (1.39) the representation (1.42). Then, by Corollary 1.3, we know that the
conditions (1.43)–(1.46) are satisfied for j ∈ I(p). For each such j ∈ I(p), define

pj(λ, ξ) =

(
(λ− λj) +

βj1

nj
ξ

)nj−2

×
(
(λ− λj) +

√−1(βj2ξ)
1
2 +

βj1

nj
ξ

)(
(λ− λj)− √−1(βj2ξ)

1
2 +

βj1

nj
ξ

)
= (λ− λj)

nj + (βj1ξ)(λ− λj)
nj−1 + βj2ξ(λ− λj)

nj−2 + o(ξ)

= (λ− λj)
nj + ξwj(λ) + o(ξ),(1.47)

and, for j ∈ {1, 2, . . . ,m}\I(p), define
pj(λ, ξ) = (λ− λj)

nj + ξwj(λ) .(1.48)

Set p(λ, ξ) =
∏m

j=1 pj(λ, ξ), so that, from (1.36), (1.37), and (1.39),

p(λ, ξ) = p(λ) + ξ

m∑
j=1

rj(λ)wj(λ) + o(ξ)

= p(λ) + ξ∇Fp(0)(0, w1, . . . , wm)(λ) + o(ξ)

= p(λ) + ξh(λ) + o(ξ).

Then, for all ξ small, positive, and real,

a(p(λ, ξ)) = max
j∈I(p)

Re

(
λj − βj1

nj
ξ

)
≤ a(p) + ξω

so that (p(λ, ξ), a(p)+ξω) ∈ epi (a) for all ξ small, positive, and real. Therefore, since

lim
ξ↘0

(p(λ, ξ), a(p) + ξω)− (p(λ), a(p))
ξ

= (h(λ), ω),

we have (h, ω) ∈ Tepi (a)(p, a(p)), completing the proof.
Corollary 1.7. Let p ∈ Mn have factorization (1.33) and let h ∈ Pn. By

Lemma 1.4, there exists (w0, w1, w2, . . . , wm) in Sp such that (1.39) holds, where, for
each j = 1, 2, . . . ,m, wj can be written as in (1.42). With this representation for h,
either w0 = 0 and (1.44)–(1.46) hold for j ∈ I(p), in which case

da(p)(h) = max
j∈I(p)

−Re (βj1)

nj
,

or

da(p)(h) = +∞.

Proof. By Theorem 1.6, we know that da(p)(h) = +∞ if either w0 �= 0 or the
coefficients βjs, s = 1, 2, . . . , nj , do not satisfy one of the conditions in (1.44)–(1.46)
for every j ∈ I(p). On the other hand, if w0 = 0 and all of the conditions in
(1.44)–(1.46) are satisfied for every j ∈ I(p), then the inequality (1.43) in Theorem
1.6 implies that (h, ω) ∈ Tepi (a)((p, a(p))) if and only if ω ≥ −Re (βj1)

nj
for every

j ∈ I(p). Since Tepi (a)((p, a(p))) = epi (da(p)) [RW98, Theorem 8.2], this proves the
corollary.
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THE ABSCISSA MAPPING 1663

2. Regular subgradients and the normal cone. We now turn our attention
to the variational objects dual to the subderivative and the tangent cone. These are
the subgradients and the normal cone. These objects are defined in terms of a duality
pairing between the linear space Pn and its dual space. Traditionally the dual space
is the space of continuous linear functionals on the primal space (which in our setting
is Pn). The duality pairing is then the continuous bilinear functional obtained by
evaluating a given linear functional at a given point. However, in general, the dual
space may have many possible representations and for each representation there may
be any number of bilinear functionals that pair the spaces in duality.

In our analysis, we have chosen to regard Pn as a Hilbert space, in which case
the dual of Pn is itself. However, we will need to consider a whole family of duality
pairings, or inner products, on Pn. To describe this family of inner products, recall
that for each λ0 ∈ C, the polynomials

e(j,λ0), j = 0, 1, . . . , n,(2.1)

form a basis for Pn. Hence, for each λ0 ∈ C, we can define a real inner product on
Pn associated with the representation in this basis. Given p =

∑n
j=1 aje(n−j,λ0) and

q =
∑n

j=1 bje(n−j,λ0), define the inner product

〈· , ·〉(n,λ0)
: Pn × Pn → R

by

〈p , q〉(n,λ0)
= Re

n∑
j=0

ājbj .(2.2)

Thus, in the case n = 0, we recover the real inner product on C. Note that this family
of inner products behaves continuously in p, q, and λ0 in the sense that the mapping

(p, q, λ) �→ 〈p , q〉(n,λ)(2.3)

is continuous on Pn×Pn×C. To see this, note that the expansions of the polynomials
p and q in the basis (2.1) are just their Taylor series expansions at λ0, hence,

〈p , q〉(n,λ) = Re

 n∑
j=0

p(j)(λ)

j!

q(j)(λ)

j!

 ,

where f (j) denotes the jth derivative of the function f .
By setting λ0 = 0 in (2.1), we obtain the standard basis for Pn. The inner product

(2.2) associated with the standard basis is simply written 〈· , ·〉.
The spaces Sp defined in (1.34) also play a key role in our analysis; therefore, we

need an inner product on these spaces as well. We use the inner product

〈(u0, u1, . . . , um) , (v0, v1, . . . , vm)〉p =
m∑
s=0

〈us , vs〉(ns−1,λs)
,(2.4)

for every (u0, u1, . . . , um) and (v0, v1, . . . , vm) in Sp, where we define n0 = 1 in this
expression and hereafter.

Spaces paired in duality give rise to the notion of the adjoint of a linear transfor-
mation. Suppose (X,X∗) and (Y, Y ∗) are spaces paired in duality, with the duality
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1664 JAMES V. BURKE AND MICHAEL L. OVERTON

pairing between X and X∗, and Y and Y ∗ given by 〈· , ·〉X and 〈· , ·〉Y , respectively.
If A is a linear transformation mapping X to Y , then the adjoint of A, denoted A∗,
is the linear transformation mapping Y ∗ to X∗ defined by the condition that

〈A∗y , x〉X = 〈y ,Ax〉Y for all x ∈ X and y ∈ Y ∗.

The dual variational objects studied in this section are the cone of regular normals
and the set of regular subgradients. The cone of regular normal vectors to the epigraph
of a at a point (p, µ) ∈ epi (a), denoted N̂epi (a)(p, µ), is given by{

(z, η)

∣∣∣∣ 〈(z, η) , (q, τ)− (p, µ)〉 ≤ o(‖(q, τ)− (p, µ)‖)
∀ (q, τ) ∈ epi (a)

}
,

where 〈(z, η) , (q, τ)〉 = ητ + 〈z , q〉 (note that epi (a) ⊂ Pn × R so that η and τ are
real). The cone of regular normals is defined to be the empty set at points not in the
epigraph of a. The set of regular subgradients of a at p ∈ dom a =Mn is given by

∂̂a(p) = {z | a(q) ≥ a(p) + 〈z , q − p〉+ o(‖q − p‖) ∀ q ∈ Pn } .

If p �= Mn, we define ∂̂a(p) to be the empty set. By [RW98, Theorem 8.9], we have
the following relationship between the cone of regular normals and the set of regular
subgradients:

∂̂a(p) =
{
z
∣∣∣ (z,−1) ∈ N̂epi (a)(p, a(p))

}
.(2.5)

In addition, [RW98, Proposition 6.5] tells us that the cone of regular normals is the
polar of the tangent cone at points (p, a(p)) ∈ epi (a):

N̂epi (a)(p, a(p)) = Tepi (a)(p, a(p))
◦ ,(2.6)

where

Tepi (a)(p, a(p))
◦ =

{
(z, ξ)

∣∣ 〈(z, ξ) , (h, ω)〉 ≤ 0 ∀ (h, ω) ∈ Tepi (a)(p, a(p))
}
.

We take a moment to observe two important consequences of the equivalence (2.6).
These observations are based on the relations (1.4) and (1.5). By (1.4), we have that
the vector (e(n,0), 0) is orthogonal to every vector in Tepi (a)(p, a(p)), regardless of the
choice of the polynomial p ∈ Mn. Therefore, by (2.6),{

(βe(n,0), 0) |β ∈ C
} ⊂ N̂epi (a)(p, a(p)) for every p ∈ Mn.(2.7)

In addition, (1.5) and (2.6) imply that{
(βe(n,0), 0) |β ∈ C

}
= N̂epi (a)(p, µ), whenever µ > a(p).(2.8)

We now proceed to derive an expression for N̂epi (a)(p, a(p)) using (2.6) and The-

orem 1.6. We then use the relation (2.5) to determine ∂̂a(p).
Theorem 2.1. Let p ∈ Mn have factorization (1.33) and let I(p) be as defined

in (1.38). Then (z, η) is an element of the normal cone N̂epi (a)(p, a(p)) if and only if

η ≤ 0(2.9)
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THE ABSCISSA MAPPING 1665

and the vector u ∈ Sp defined by u = ∇Fp(0)
∗z and given the representation

uj =

nj∑
l=1

µjle(nj−l,λj) for j = 1, . . . ,m(2.10)

satisfies

uj = 0 for j /∈ I(p) and j �= 0,(2.11)

Reµj1 ≤ 0 and Imµj1 = 0 for j ∈ I(p),(2.12)

Reµj2 ≤ 0 for j ∈ I(p), and(2.13) ∑
j∈I(p)

njµj1 = η.(2.14)

Proof. Let (h, ω) ∈ Tepi (a)(p, a(p)). By Theorem 1.6, we know that there exists
(0, w1, w2, . . . , wm) ∈ Sp such that h = ∇Fp(0)(0, w1, w2, . . . , wm), where for j =
1, 2, . . . ,m each wj has the representation (1.42) with the coefficients βjs satisfying
(1.43)–(1.46) for j ∈ I(p), and, for j /∈ I(p),

βjs, s = 1, 2, . . . , nj , are unrestricted.(2.15)

Now let (z, η) ∈ Pn ×R and set u = (u0, u1, . . . , um) = ∇Fp(0)
∗z, where each uj ,

j = 1, . . . ,m is given the representation (2.10). Then, from definition (2.4), we have

〈(z, η) , (h, ω)〉 = ηω + 〈z , h〉
= ηω + 〈z ,∇Fp(0)(0, w1, w2, . . . , wm)〉
= ηω + 〈∇Fp(0)

∗z , (0, w1, w2, . . . , wm)〉p
= ηω + 〈(u0, u1, . . . , um) , (0, w1, w2, . . . , wm)〉p

= ηω +

m∑
j=1

〈uj , wj〉(nj−1,λj)

= ηω +

m∑
j=1

nj∑
l=1

Re µ̄jlβjl.(2.16)

Hence, by (2.6), (z, η) ∈ N̂epi (a)(p, a(p)) if and only if

ηω +

m∑
j=1

nj∑
l=1

Re µ̄jlβjl ≤ 0(2.17)

for all choices of ω and βjl, j = 1, . . . ,m, l = 1, . . . , nj , satisfying (1.43)–(1.46) for
each j ∈ I(p).

We first show that any (z, η) ∈ Pn × R for which the associated vector u =
(u0, u1, . . . , um) = ∇Fp(0)

∗z, where each uj , j = 1, . . . ,m, has representation (2.10)
and for which η and µjl, j = 1, . . . ,m, l = 1, . . . , nj , satisfy (2.9) and (2.11)–(2.14) is

necessarily an element of the normal cone N̂epi (a)(p, a(p)). For this purpose, suppose
that ω and βjl, j = 1, . . . ,m, l = 1, . . . , nj satisfy (1.43)–(1.46) for each j ∈ I(p) so
that the corresponding vector (h, ω) is an element of the tangent cone Tepi (a)(p, a(p)).
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1666 JAMES V. BURKE AND MICHAEL L. OVERTON

Then

〈(z, η) , (h, ω)〉 = ηω +

m∑
j=1

nj∑
l=1

Re µ̄jlβjl

= ηω +
∑

j∈I(p)

[µj1Reβj1 + Reµj2Reβj2]

≤ ηω −
∑

j∈I(p)

njµj1

(−Reβj1

nj

)
≤ ηω −

∑
j∈I(p)

njµj1ω

= 0,

where the first equality follows from (2.16), the second equality from (2.11), (2.12),
(1.45), and (1.46), the first inequality from (2.13) and (1.44), the second inequality
from (1.43), and the final equality from (2.14). Therefore, the set of (z, η) satisfying

(2.9)–(2.14) is contained in N̂epi (a)(p, a(p)).

We now show the reverse inclusion. Let (z, η) ∈ N̂epi (a)(p, a(p)) and set u =
(u0, u1, . . . , um) = ∇Fp(0)

∗z with each uj , j = 1, . . . ,m given representation (2.10).
We show that (z, η) must satisfy the conditions (2.11)–(2.14) by requiring that the
inequality (2.17) holds for every (h, ω) in the tangent cone Tepi (a)(p, a(p)). To this end,
let (h, ω) be any element of the tangent cone Tepi (a)(p, a(p)) so that the corresponding
vectors wj , j = 1, . . . ,m, satisfy (1.43)–(1.46) for each j ∈ I(p) and (2.15) for j /∈
I(p). By setting ω = 1 and all βjl equal to zero in (2.17), we find that η ≤ 0. By
(2.15), βjs is free for j /∈ I(p), s = 1, 2, . . . , nj , so that (2.17) implies that (2.11)
holds. Since Imβj1 is free whenever j ∈ I(p), (2.17) implies that Imµj1 = 0 for
all j ∈ I(p). In addition, (1.43) and (2.17) imply that Reµj2 ≤ 0 for all j ∈ I(p).
Therefore, (2.9), (2.11), the second half of (2.12) (i.e., the equality), and (2.13) have
been verified.

We now establish the first half of (2.12) (i.e., the inequality) and (2.14). By taking
Reβj2 = 0 for j ∈ I(p), the expression (2.16) can be simplified to

〈(z, η) , (h, ω)〉 = ηω +
∑

j∈I(p)

µj1Reβj1.(2.18)

By combining this with (2.17), we must have∑
j∈I(p)

µj1Reβj1 ≤ −ηω(2.19)

for all choices of ω and Reβj1, j ∈ I(p), satisfying (1.43). Observe that (1.43) holds
if and only if

ω ≥ max
j∈I(p)

−Reβj1

nj
.(2.20)

Since −η ≥ 0, we can multiply this inequality through by −η to obtain the inequality

−ηω ≥ −η max
j∈I(p)

−Reβj1

nj
.(2.21)
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THE ABSCISSA MAPPING 1667

Since the right-hand side of this inequality yields the smallest possible value of the
product −ηω, we find that (1.43) and (2.19) hold if and only if∑

j∈I(p)

µj1Reβj1 ≤ (−η) max
j∈I(p)

−Reβj1

nj
∀βj1 ∈ C, j ∈ I(p).(2.22)

Consider two cases: η = 0 and η < 0. If η = 0, then (2.22) implies that µj1 = 0
for all j ∈ I(p) so that (2.12) and (2.14) are satisfied. On the other hand, if η < 0,

define µ̃j =
nj

η µj1 and β̃j =
−Re βj1

nj
for j ∈ I(p). Substituting into (2.22), we obtain∑

j∈I(p)

µ̃j β̃j ≤ max
j∈I(p)

β̃j ∀β̃j ∈ R.(2.23)

But this holds if and only if µ̃j ≥ 0 for j ∈ I(p) and ∑j∈I(p) µ̃j = 1, or equivalently,

(2.12) and (2.14) hold.
Theorem 2.1 and (2.5) immediately yield the following representation for the set

of regular subgradients.
Theorem 2.2. Let p ∈ Mn have factorization (1.33). Then z ∈ ∂̂a(p) if and

only if the vector of polynomials

∇Fp(0)
∗z = (u0, u1, . . . , um) ∈ Sp,

with

uj =

nj∑
l=1

µjle(nj−l,λj), j = 1, 2, . . . ,m,

is such that

uj = 0 for j /∈ I(p) and j �= 0,
Reµj1 ≤ 0 and Imµj1 = 0 for j ∈ I(p),

Reµj2 ≤ 0 for j ∈ I(p), and∑
j∈I(p)

njµj1 = −1.

A more concise representation for the set of regular subgradients is possible. First
note that if p = e(n,λ0), then, for (h0, h1) ∈ Sp = C × Pn−1,

∇Fp(0)(h0, h1) = h0e(n,λ0) + h1

and

∇Fp(0)
∗

n∑
j=0

bje(n−j,λ0) =

b0,

n∑
j=1

bje(n−j,λ0)

 ,(2.24)

since〈
n∑

j=0

bje(n−j,λ0) , h0e(n,λ0) + h1

〉
(n,λ0)

=

〈
(b0,

n∑
j=1

bje(n−j,λ0)) , (h0, h1)

〉
p
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1668 JAMES V. BURKE AND MICHAEL L. OVERTON

In this case ∇Fp(0)
∗ = ∇Fp(0)

−1. Hence, by Theorem 2.2, we have the following
formula for the set of regular subgradients of a at e(n,λ0):

∂̂a(e(n,λ0)) =

z

∣∣∣∣∣∣
z =

∑n
j=0 µje(n−j,λ0),

where µj ∈ C, j = 0, 1, . . . , n,
µ1 =

−1
n , and Re (µ2) ≤ 0

 .(2.25)

In the general case a similar formula can be obtained with the aid of the recession
cone of the set ∂̂a(e(n,λ0)):

∂̂a(e(n,λ0))
∞ =

z

∣∣∣∣∣∣
z =

∑n
j=0 µje(n−j,λ0),

where µj ∈ C, j = 0, 1, . . . , n,
µ1 = 0, and Re (µ2) ≤ 0

 .(2.26)

Define ∂̂a(e(n,λ0))
∞̃ as the projection of ∂̂a(e(n,λ0))

∞ onto Pn−1:

∂̂a(e(n,λ0))
∞̃ =

z

∣∣∣∣∣∣
z =

∑n
j=1 µje(n−j,λ0),

where µj ∈ C, j = 1, . . . , n,
µ1 = 0, and Re (µ2) ≤ 0

 .

Then, given a polynomial p ∈ Mn having prime factorization (1.33), the set of regular
subgradients of a at p has the form

∂̂a(p) = ∇Fp(0)
−∗ [conv {vj | j ∈ I(p)}+K] ,(2.27)

where v1, . . . , vm ∈ Sp are given by

v1 = − 1

n1
(0, e(n1−1,λ1), 0, . . . , 0),

v2 = − 1

n2
(0, 0, e(n2−1,λ2), 0, . . . , 0),

...

vm = − 1

nm
(0, 0, . . . , 0, e(nm−1,λm)),

and K is the convex cone in Sp given by

K = C × ∂̂a(e(n1,λ1))
∞̃ × · · · × ∂̂a(e(nm−1,λm))

∞̃.

Observe that this implies the recession cone of ∂̂a(p) is given by

∂̂a(p)∞ = ∇Fp(0)
−∗K.(2.28)

3. Subdifferential regularity. The set of normal vectors to epi (a) at a point
(p, µ) ∈ epi (a) is given by

Nepi (a)(p, µ) =

(z, ω)
∣∣∣∣∣∣∣∣
∃ {(pk, µk)} ⊂ epi (a), {(zk, ωk)} ⊂ Pn × R

with (zk, ωk) ∈ N̂epi (a)(pk, µk) ∀ k,
such that

(pk, µk)→ (p, µ) and (zk, ωk)→ (z, ω)

 .(3.1)D
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THE ABSCISSA MAPPING 1669

By convention Nepi (a)(p, µ) = ∅ if (p, µ) �∈ epi (a). The abscissa mapping a is said to
be subdifferentially regular at a point (p, µ) ∈ epi (a) (equivalently, epi (a) is Clarke
regular at (p, µ)) if

N̂epi (a)(p, µ) = Nepi (a)(p, µ)(3.2)

[RW98, Definition 7.25]. The goal of this section is to show that the set epi (a) is
everywhere subdifferentially regular.

Some simplification in definition (3.1) is possible due to the continuity of a on its
domain Mn. Recall from (2.8) that

N̂epi (a)(p, µ) =
{
(βe(n,0), 0) |β ∈ C

}
whenever µ > a(p).

Since this subspace is constant on the set {(p, µ) |µ > a(p)}, we find that

Nepi (a)(p, µ) = N̂epi (a)(p, µ) whenever µ > a(p).

Therefore, to establish that a is everywhere subdifferentially regular we need only
establish the equivalence (3.2) at the points (p, a(p)) for p ∈ Mn. In addition, from

(2.7), we have
{
(βe(n,0), 0) |β ∈ C

} ⊂ N̂epi (a)(p, µ) for all (p, µ) ∈ epi (a). Hence, it
is always the case that

N̂epi (a)(p, η) ⊂ N̂epi (a)(p, µ) whenever a(p) ≤ µ < η.

Therefore, the representation for the normal cone at the points (p, a(p)) for p ∈ Mn

can be refined to

Nepi (a)(p, a(p)) =

(z, ω)
∣∣∣∣∣∣∣∣

∃ {pk} ⊂ Mn, {(zk, ωk)} ⊂ Pn × R

with (zk, ωk) ∈ N̂epi (a)(pk, a(pk)) ∀ k,
such that

pk → p and (zk, ωk)→ (z, ω)

 .(3.3)

However, even with this simplification, we are confronted with a significant tech-
nical hurdle. Recall from Theorem 2.1 that the regular normals are characterized
through the adjoint operator ∇Fp(0)

∗. Therefore, we now need to compute limits
of these operators along sequences pk → p. But these adjoints are defined as linear
transformations from Pn to Spk

and are based on the inner products 〈· , ·〉pk
. How can

we interpret limits of the adjoints ∇Fpk
(0)∗ when the spaces Spk

and their associated
inner products 〈· , ·〉pk

may not even be commensurate? The answer again lies with
the local factorization lemma, Lemma 1.4.

Suppose that the polynomial p ∈ Mn has prime factorization (1.33) and let
{pk} be a sequence of monic polynomials converging to p. Lemma 1.4 says that, by
trimming off finitely many elements of the sequence if necessary, we may assume with
no loss of generality that each of the polynomials pk has a factorization of the form

pk =

m∏
j=1

qkj ,(3.4)

where the roots of the polynomials qkj , j = 1, . . . ,m, are pairwise disjoint and
qkj → e(nj ,λj) for each j = 1, . . . ,m. Moreover, since there are only finitely many
partitions of n, we may assume with no loss in generality (by extracting a subsequence
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1670 JAMES V. BURKE AND MICHAEL L. OVERTON

if necessary) that there exist positive integers <j , j = 1, . . . ,m, and njs, j = 1, . . . ,m,

s = 1, . . . , <j , with
∑�j

s=1 njs = nj , such that, for each k = 1, 2, . . .,

qkj =

�j∏
s=1

e(njs,λkjs),(3.5)

where the complex numbers λkjs, j = 1, . . . ,m, s = 1, . . . , <kj are distinct and satisfy
λkjs → λj for s = 1, . . . , <j . Hence, for each k = 1, 2, . . ., we have

Spk
= C ×

 m×
j=1

(
Pnj1−1 × · · · × Pnj�j

−1

) ,(3.6)

Fpk
(v0, v11, . . . , v1�1 , . . . , vm1, . . . , vm�m) = (1 + v0)

m∏
j=1

�j∏
s=1

(e(njs,λkjs) + vjs),(3.7)

and

∇Fpk
(0)(h0, h11, . . . , h1�1 , . . . , hm1, . . . , hm�m) = h0rk0 +

m∑
j=1

rkj

 �j∑
s=1

r̂kjshjs

 ,(3.8)

where

rk0 = pk and rkj0 =
∏
j �=j0

�j∏
s=1

e(njs,λkjs), j0 = 1, . . . ,m,

and

r̂kj0s0 =

�j0∏
s=1
s�=s0

e(nj0s,λkj0s), j0 = 1, . . . ,m, s0 = 1, . . . , <j .

Let us write Ŝ = Spk
, since Spk

is fixed for all k = 1, 2, . . .. Note that as k → ∞, we
have rkj → rj , where rj is defined in (1.37), for j = 0, 1, . . . ,m, and r̂kjs → e(n̄js,λj),
where n̄js = nj − njs, for j = 1, . . . ,m, s = 1, . . . , <j . Hence, ∇Fpk

(0) → Ψ, where

the linear transformation Ψ : Ŝ → Pn is given by

Ψ(h0, h11, . . . , h1�1 , . . . , hm1, . . . , hm�m) = h0r0 +

m∑
j=1

rj

 �j∑
s=1

e(n̄js,λj)hjs

 .(3.9)

Observe that the representation of ∇Fp(0) given in (1.36) and (1.37) enables us to
write the operator Ψ as the composition

Ψ = ∇Fp(0) ◦ Ξ,(3.10)

where the linear operator Ξ : Ŝ → Sp is given by

Ξ(h0, h11, . . . , h1�1 ,. . ., hm1, . . . , hm�m)

=

(
h0,

�1∑
s=1

e(n̄1s,λ1)h1s, . . . ,

�m∑
s=1

e(n̄ms,λm)hms

)
.(3.11)
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THE ABSCISSA MAPPING 1671

Theorem 2.1 gives us access to the regular normals through the adjoint operators
∇Fp(0)

∗. Thus, in order to understand the normal cone, which consists of the limits of
the regular normals, we need to come to an understanding of the limit of the adjoints
∇Fpk

(0)∗. This limit is an adjoint of the operator Ψ. However, what this means
needs clarification since each of the adjoints ∇Fpk

(0)∗ arises from a different duality
pairing. We need to determine the correct duality pairing for the definition of the
adjoint Ψ∗ so that it is the limit of the operators ∇Fpk

(0)∗.
The duality pairing that we seek is obtained from our earlier observation (2.3)

that the mapping (p, q, λ) �→ 〈p , q〉(n,λ) is continuous. This continuity implies that

the pointwise limit of the inner products 〈· , ·〉pk
exists as k → ∞. Indeed, for each

u = (u0, u11, . . . , u1�1 , . . . , u1�m , . . . , um�m)

and

v = (v0, v11, . . . , v1�1 , . . . , v1�m , . . . , vm�m)

in Ŝ, we have
〈u , v〉pk

→ 〈u , v〉∞ ,

where

〈u , v〉∞ = 〈u0 , v0〉+
m∑
j=1

�j∑
s=1

〈ujs , vjs〉(njs−1,λj)
.(3.12)

Therefore, if we define Ψ∗ to be the adjoint of Ψ with respect to the duality pairings
(Pn, 〈· , ·〉) and (Ŝ, 〈· , ·〉∞), then

∇Fpk
(0)∗ → Ψ∗.(3.13)

Our next task is to derive a representation for the operator Ψ∗. Using the rep-
resentation for Ψ given in (3.10), this reduces to deriving a representation for the
adjoint of the operator Ξ. For this, the following lemma provides the key.

Lemma 3.1. Let λ0 ∈ C and let δ = (n1, n2, . . . , nm) be a partition of n. Define
Dδ to be the product space

Dδ = P(n1−1) × P(n2−1) × · · · × P(nm−1),

endowed with the inner product

〈(u1, . . . , um) , (v1, . . . , vm)〉(δ,λ0)
=

m∑
j=1

〈uj , vj〉(nj−1,λ0)
.

For j = 1, 2, . . . ,m, define n̄j = n−nj and consider the linear transformation Φ(δ,λ0) :
Dδ → Pn−1 given by

Φ(δ,λ0)(h1, . . . , hm) =

m∑
j=1

e(n̄j ,λ0)hj .

Then the adjoint of Φ(δ,λ0) with respect to the duality pairings

(Pn−1, 〈· , ·〉(n−1,λ0)
) and (Dδ, 〈· , ·〉(δ,λ0)

)
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1672 JAMES V. BURKE AND MICHAEL L. OVERTON

is given by

Φ∗
(δ,λ0)

 n∑
j=1

bje(n−j,λ0)

 =

 n1∑
j=1

bje(n1−j,λ0), . . . ,

nm∑
j=1

bje(nm−j,λ0)

 .

Proof. Define Js = {j |nj ≥ s} for s = 1, 2, . . . , n. Note that Js may be empty
for some values of s. For example, if m ≥ 2, then Jn = ∅. Let (h1, . . . , hm) ∈ Dδ,
where each hj ∈ Pnj−1 has representation

hj = aj1e(nj−1,λ0) + aj2e(nj−2,λ0) + · · ·+ ajnj
.

Given q ∈ Pn−1 with

q = b1e(n−1,λ0) + · · ·+ bn,

we have〈
q ,Φ(δ,λ0)(h1, . . . , hm)

〉
(n−1,λ0)

=

〈(
b1e(n−1,λ0) + · · ·+ bn

)
,

e(n−1,λ0)

∑
j∈J1

aj1


+ e(n−2,λ0)

∑
j∈J2

aj2

+ · · ·+
∑

j∈Jn

ajn

〉
(n−1,λ0)

= Re

b̄1
∑

j∈J1

aj1

+ · · ·+ b̄n

∑
j∈Jn

ajn


= Re

[
n1∑
s=1

b̄sa1s +

n2∑
s=1

b̄sa2s + · · · +
nm∑
s=1

b̄sams

]

=

〈(
n1∑
s=1

bse(n1−s,λ0), . . . ,

nm∑
s=1

bse(nm−s,λ0)

)
,(

n1∑
s=1

a1se(n1−s,λ0), . . . ,

nm∑
s=1

amse(nm−s,λ0)

)〉
(δ,λ0)

=

〈(
n1∑
s=1

bse(n1−s,λ0), . . . ,

nm∑
s=1

bse(nm−s,λ0)

)
, (h1, . . . , hm)

〉
(δ,λ0)

.

Since this relation holds for all possible choices of q ∈ Pn−1 and (h1, . . . , hm) ∈ Dδ,
we have established the result.

By using the notation developed in Lemma 3.1, we can rewrite the operator
Ξ : Ŝ → Sp, defined in (3.11), as

Ξ =
(
I,Φ(δ1,λ1), . . . ,Φ(δm,λm)

)
,(3.14)

where δj = (nj1, nj2, . . . , nj�j ) is a partition of nj for each j = 1, 2, . . . ,m. Hence,
from (3.10), we have

Ψ∗ = Ξ∗ ◦ ∇Fp(0)
∗,(3.15)
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THE ABSCISSA MAPPING 1673

where Ξ∗ : Sp → Ŝ can be written as

Ξ∗ =
(
I,Φ∗

(δ1,λ1)
, . . . ,Φ∗

(δm,λm)

)
.(3.16)

An explicit representation for the operator Ξ∗ can be obtained by applying Lemma
3.1 to each of the operators Φ(δj ,λj) for j = 1, 2, . . . ,m.

We now prove the main result of this section.
Theorem 3.2. The abscissa mapping a is everywhere subdifferentially regular.

Equivalently, epi (a) is Clarke regular.
Proof. Let p ∈ Pn have factorization (1.33). Let (z, ω) ∈ Nepi (a)(p, a(p)) so

that there exist sequences {pk} ⊂ Mn and {(zk, ωk)} ⊂ Pn × R such that pk → p,

(zk, ωk)→ (z, ω), and (zk, ωk) ∈ N̂epi (a)(pk, a(pk)) for k = 1, 2, . . .. We need to show

that (z, ω) ∈ N̂epi (a)(p, a(p)).
The discussion preceding this theorem shows that we may assume with no loss of

generality that (3.4)–(3.16) hold for the sequence {pk}. Hence, we make free use of
these facts and their associated notations.

Let Ĩ(pk) = {(j, s) | a(pk) = Reλkjs }. Since (zk, ωk) ∈ N̂epi (a)(pk, a(pk)) for
k = 1, 2, . . ., Theorem 2.1 states that ωk ≤ 0 and there exists

uk = (uk0, uk11, . . . , uk1�1 , . . . , ukm1, . . . , ukm�m) ∈ Ŝ
with

ukjs =

njs∑
t=1

µkjste(njs−t,λkjs),

k = 1, 2, . . . ,
j = 1, 2, . . . ,m,
s = 1, 2, . . . , <j ,

such that

uk = ∇Fpk
(0)∗zk,(3.17)

ukjs = 0 for (j, s) �∈ Ĩ(pk),(3.18)

Reµkjs1 ≤ 0 and Imµkjs1 = 0 for (j, s) ∈ Ĩ(pk),(3.19)

Reµkjs2 ≤ 0 for (j, s) ∈ Ĩ(pk), and(3.20) ∑
(j,s)∈Ĩ(pk)

njsµkjs1 = ωk.(3.21)

Due to the finiteness of the index sets, we may assume with no loss of generality
that Ĩ(pk) = Ĩ for all k = 1, 2, . . .. Define

Î =
{
j
∣∣∣ (j, s) ∈ Ĩ for some s = 1, . . . , <j

}
.

By the continuity of the roots of the monic polynomials (as a multivalued mapping),
we have Î ⊂ I(p), where I(p) is defined in (1.38).

Using (3.13), let

u = Ψ∗z = lim
k→∞

∇Fpk
(0)∗zk = lim

k→∞
uk(3.22)

and write

u = (u0, u11, . . . , u1�1 , . . . , um1, . . . , um�m) ∈ Ŝ

D
ow

nl
oa

de
d 

11
/1

4/
17

 to
 2

05
.1

75
.1

18
.1

96
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1674 JAMES V. BURKE AND MICHAEL L. OVERTON

where

ujs =

njs∑
t=1

µjste(njs−t,λj),(3.23)

with µkjst → µjst for j = 1, . . . ,m, s = 1, . . . , <j , t = 1, . . . , njs. By (3.22) and
(3.17)–(3.21), we have

ujs = 0 for (j, s) �∈ Ĩ,(3.24)

Reµjs1 ≤ 0 and Imµjs1 = 0 for (j, s) ∈ Ĩ,(3.25)

Reµjs2 ≤ 0 for (j, s) ∈ Ĩ, and(3.26) ∑
(j,s)∈Ĩ

njsµjs1 = ω.(3.27)

Set

(w0, w1, . . . , wm) = ∇Fp(0)
∗z,(3.28)

with

wj =

nj∑
s=1

bjse(nj−s,λj) for j = 1, . . . ,m.(3.29)

By (3.15), (3.16), (3.22), and (3.28), we have

(uj1, uj2, . . . , uj�j ) = Φ
∗
(δj ,λj)

wj for j = 1, . . . ,m.

Consequently, by Lemma 3.1 and (3.23),

ujs =

njs∑
t=1

µjste(njs−t,λj) =

njs∑
t=1

bjte(njs−t,λj)

for j = 1, . . . ,m, s = 1, . . . , <j , or equivalently,

µjst = bjt for j = 1, . . . ,m, s = 1, . . . , <j , t = 1, . . . , njs.(3.30)

Combining this with (3.24) and the definitions (3.23) and (3.29), we find

wj = 0 for j /∈ Î,(3.31)

and combining (3.30) with (3.25) and (3.26) yields

Re bj1 ≤ 0 and Im bj1 = 0 for j ∈ Î and(3.32)

Re bj2 ≤ 0 for j ∈ Î.(3.33)

Finally, by combining (3.30) with (3.27), we find∑
(j,s)∈Ĩ

njsbj1 = ω.(3.34)D
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THE ABSCISSA MAPPING 1675

Note that the equivalence (3.30) implies that for every j ∈ Î for which bj1 �= 0 it

must be the case that µjs1 �= 0 for s = 1, 2, . . . <j and so {(j1), (j2), . . . , (j<j)} ⊂ Ĩ.
Therefore, by (3.27) and (3.34),

ω =
∑

(j,s)∈Ĩ
njsbj1 =

∑
j∈Î

�j∑
s=1

bj1njs =
∑
j∈Î

bj1nj .

Consequently, by (3.28), (3.29), (3.31), (3.32), (3.33), the inclusion Î ⊂ I(p), and
Theorem 2.1, we find that (z, ω) ∈ N̂epi (a)(p, a(p)), which establishes the result.

Just as the set of normal vectors is defined to be the set of limits of regular
normal vectors, the set of subgradients is defined to be the set of limits of regular
subgradients:

∂a(p) =

q

∣∣∣∣∣∣
∃ {pk} ⊂ dom (a) and {qk} ⊂ Pn,

such that qk ∈ ∂̂a(pk)∀ k = 1, 2, . . . ,
pk → p and qk → q

 ,(3.35)

with ∂a(p) = ∅ if p /∈ dom a =Mn. The set of horizon subgradients, denoted ∂∞α(p),
is defined similarly, however, instead of qk → q one has tkqk → q for some sequence of
positive real numbers {tk} converging to zero. By convention, we have ∂∞a(p) = {0}
if p /∈ dom a. As in the case of regular subgradients, there is a relationship between
these subgradients and the normal cone at a polynomial p ∈ Mn [RW98, Theorem
8.9]:

∂a(p) =
{
q
∣∣ (q,−1) ∈ Nepi (a)(p, a(p))

}
and

∂∞a(p) =
{
q
∣∣ (q, 0) ∈ Nepi (a)(p, a(p))

}
.

Using these relationships, Theorem 3.2 and [RW98, Corollary 8.11] imply that

∂a(p) = ∂̂a(p) and ∂∞a(p) = ∂̂a(p)∞(3.36)

whenever p ∈ Mn (see (2.27) and (2.28)).
The subdifferential regularity of the abscissa mapping implies that it possesses a

rich subdifferential calculus. For example, the following chain rule holds.
Theorem 3.3 (see [RW98, Theorem 10.6]). Let X be a finite dimensional Eu-

clidean space, and suppose G : X → Pn is continuously differentiable in the real
sense. Consider the composite mapping g = a ◦G. If x ∈ X is such that G(x) ∈ Mn

and the only polynomial q ∈ ∂∞a(G(x)) with ∇G(x)∗q = 0 is q = 0, then

∂g(x) = ∇G(x)∗∂a(G(x)), ∂∞g(x) = ∇G(x)∗∂∞a(G(x)),

and

dg(x)(d) = da(G(x))(∇G(x)d).

To illustrate these results, we apply Theorem 3.3 to the example studied in [BLO].
Let X be C

n with the standard real inner product, and consider the composition of
the abscissa function with the affine mapping G : Cn → Pn given by

G(x) = (1 + x0)e(n,0) + x1e(n−1,0) −
n∑

j=2

xj−1e(n−j,0).
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1676 JAMES V. BURKE AND MICHAEL L. OVERTON

In [BLO, Theorem 2.1], it is shown that x = 0 is a strict global minimizer of the
function g = a ◦G. Since G is affine, we have

∇G(0)d = d0e(n,0) + d1e(n−1,0) −
n∑

j=2

dj−1e(n−j,0),

and

∇G(0)∗
n∑

j=0

yje(n−j,0) = (y0, y1 − y2,−y3, . . . ,−yn).

The representation for ∂∞a(e(n,0)) given by (3.36) and (2.26) shows that the only
q ∈ ∂∞a(e(n,0)) with ∇G(0)∗q = 0 is q = 0. Therefore, Theorem 3.3 and the relations
(3.36) and (2.25) show that

∂̂g(0) = ∂g(0) =

{(
z0, z1 − 1

n
, z2, . . . , zn−1

)
| Re z1 ≥ 0

}
.

Finally, observe that since the origin is in the interior of ∂̂g(0), we have, directly from
the definition of regular subgradients, that x = 0 is a sharp minimizer of g in the
sense that there exist ε > 0 and κ > 0 such that

g(x) ≥ g(0) + κ ‖x‖ whenever ‖x‖ ≤ ε.

Further consequences of these results are explored in [BLO].
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