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Abstract. The abscissa mapping on the affine variety M, of monic polynomials of degree n
is the mapping that takes a monic polynomial to the maximum of the real parts of its roots. This
mapping plays a central role in the stability theory of matrices and dynamical systems. It is well
known that the abscissa mapping is continuous on M, but not Lipschitz continuous. Furthermore,
its natural extension to the linear space P of polynomials of degree n or less is not continuous. In
our analysis of the abscissa mapping, we use techniques of modern nonsmooth analysis described
extensively in Variational Analysis (R. T. Rockafellar and R. J.-B. Wets, Springer-Verlag, Berlin,
1998). Using these tools, we completely characterize the subderivative and the subgradients of the
abscissa mapping, and establish that the abscissa mapping is everywhere subdifferentially regular.
This regularity permits the application of our results in a broad context through the use of standard
chain rules for nonsmooth functions. Our approach is epigraphical, and our key result is that the
epigraph of the abscissa map is everywhere Clarke regular.
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Let P,, denote the linear space of complex polynomials of degree n or less, and
let M,, denote the affine variety in P,, consisting of the monic polynomials of degree
n. In this article we study variational properties of the abscissa mapping

a: M, —R
given by

a(p) =max{Re( |p(¢() =0}.

Our study is partly motivated by the need to provide tools for understanding the
variational behavior of the spectral abscissa mapping on the n by n complex matrices
defined by

a(M) = a(det(AI — M)).

Properties of the spectral abscissa are closely tied to stability theory for matrices
and dynamical systems. Thus, the variational behavior of the spectral abscissa has
important consequences for the sensitivity of the stability properties of such systems
under perturbation. In [BO], we apply the variational results obtained in this paper
to study the variational behavior of the spectral abscissa map.

The abscissa mapping has a number of characteristics that make it difficult to
analyze. It is well known that a is continuous, but not Lipschitz continuous, on
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M,,. In addition, the natural extension of a to all of P, is not continuous at any
point of the subspace P,,—1. In this paper, we show that the techniques of modern
nonsmooth analysis described in the recent book [RW98] are ideally suited to the study
of mappings of this type. Thus, a secondary purpose of this paper is to illustrate the
usefulness of the nonsmooth analysis techniques developed by many authors over the
last 30 years by applying them to a classical function of great practical importance.
Using techniques from nonsmooth analysis, we are able to establish that the abscissa
mapping is everywhere subdifferentially regular. This remarkable result has major
consequences for the development of a calculus for the variational behavior of the
abscissa mapping under composition.

It needs to be stated that our analysis owes a great debt to earlier work of Levan-
tovskii [Lev80]. Levantovskii studied the set of stable polynomials, i.e., the set of
polynomials whose abscissa is nonpositive, and provided an outline for the derivation
of the tangent cone to this set. We generalize this proof technique to establish the
key result of section 1 (Theorem 1.2).

The paper is organized as follows; we assume that the reader is familiar with
[RW98]. Section 1 is devoted to the derivation of the subderivative of a. This is done
via an epigraphical approach, where we derive the formula for the subderivative from a
description of the tangent cone to the epigraph of the abscissa mapping a. In addition,
we develop some basic tools that relate the prime factorization of a polynomial to a
factorization of the tangent cone. The key to this result is the local factorization
Lemma 1.4. In section 2, we use the representation of the tangent cone obtained in
section 1 to derive a representation for the set of reqular normals to the epigraph of
a. This in turn yields a representation for the set of reqular subgradients for a at
any point in M,,. In section 3, we establish that the abscissa mapping is everywhere
subdifferentially regular. The key result is that the epigraph of the abscissa map is
Clarke regular.

Most of the notation that we use is introduced as it is required. However, it is
useful to briefly describe our conventions for discussing polynomials in their distinct
roles as points in the linear space P,, and as functions over the complex field. One
could identify P,, with C**! and attempt to derive the variational properties of a as a
mapping on C"*1, but this would completely ignore the very rich underlying algebraic
structure of polynomials. Since it is the roots of polynomials that lie at the heart of
the mapping a, it is the polynomial perspective that drives our analysis. Given a
polynomial p € P,,, we will always use the Greek letter A to denote the indeterminant
associated with representing the polynomial as a function. Thus we write p(\) as the
associated polynomial function. Monomials and shifted monomials play a central role
in our analysis. For this reason we give them a special notation so that we can discuss
them as points in P,,. We write

ey = (A = Xo)".

1. The subderivative and the tangent cone. To apply the tools developed
in [RW98], we first extend the definition of a to the entire linear space P,:

a:Pp—R
is given by

a(p) { max {Re¢ |p(¢) =0} if p € My,

+o00 otherwise.
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This extension allows us to focus our attention on the set of monic polynomials.
In particular, we have dom(a) = {p|a(p) < +oo} = M,. Given p € M,, our
goal is to derive a formula for da(p), the subderivative of the mapping a. Following
[RW98, Definition 8.1], the subderivative of a at a point p € M,, is the mapping
da(p) : Pp, — RU{£o0} given by

da(p)(q) = lim inf w7
T (? T

where the parameter 7 is understood to be real. Since a is +00 on P,\M,,, we have
dom (da(p)) = {p [da(p) < +o0} C Pp_1.

Hence, we restrict our attention to the behavior of da(p) on the subspace P,,_1.
We approach the problem of computing da(p) from an epigraphical perspective.
The epigraph of a is the set

epi(a) = {(p,p) |a(p) < p < Fo0}.
Using this set, we can construct da(p) from the formula
(1.1) epi (da(p)) = Tepi(a) (p: a(p))

[RW98, Theorem 8.2]. Here Tip; (q)(p, a(p)) is the tangent cone to the set epi(a) at
the point (p,a(p)). For a subset C of a finite dimensional linear space X, we have

(1.2) Te(x) = {d

3 {z*} € C and {t;} C R, such that
¥ — 2, 1, \, 0, and t;l(xk —xz)—d

v >0, and there exits {z¥} c C
(1.3) =< vd zh — ,

with ¥ — 2z such that d = lim —————
k—o0 ||J,‘k — Z‘H

where R, is the set of nonnegative real numbers and ||-|| is any norm on X. By
considering P, _1 as a subspace of P,, we have

(1.4) Tepi(a)(Ps 1) C Py X R for all u > a(p),
since a is 400 on P,\M,,. In particular,
(1.5) Tepi(a)(Ps 1) = Pr1 X R whenever u > a(p),

since a is continuous on M,,.

In our first lemma we show that the tangential geometry of epi (a) remains essen-
tially unchanged under the linear transformations corresponding to a uniform shift of
the roots. For each Ao € C" define the linear transformation Hy, : P, — P, by

Hy, (p)(A) = p(A = Ao).

LEMMA 1.1. Let \g be a given complex number. Then

Tepia)(Hxo (), n + Re(Xo)) = {(Hxo(v), 1) = (v, ) € Tepiay(pm)} -
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Proof. Define the affine transformation I;B\O :Pp xR — P, xR by

Hy,(p, i) = (Hx, (p), 11 + Re (Xo)).

Clearly, the mapping fAIAO is invertible (indeed, f[;ol = IA{_AO). In addition,

Hy ! (epi(a)) = epi(a).
Therefore, by [RW98, Exercise 6.7] and the invertibility of H Aos We have

Tepi (a) (H)\o (p)a H + Re ()‘0)) = Tepi (a) (ﬁ/\o (p7 ,LL))
= VH)\U (pa M)Tepi (a)\P ( :u)
= {(H)\O (U)a M) : ( ) € Tep1 (a) (p7 77)} O
We now derive a formula for the tangent cone to epi(a) at (e(,0),0). All of our
subsequent analysis relies on this key result. The proof is rather long and involved.
It is based on an outline provided by Levantovskii [Lev80] for deriving a formula for

the tangent cone to the set of stable polynomials.
THEOREM 1.2. We have (v,n) € Tepi(a)(€n,0,0), with

(1.6) v=[1€(m-1,0) T B26(m-20) + + B,
if and only if

(1.7) Refy > —nn,

(1.8) Re 35 > 0,

(1.9) ImfBy, =0, and

(1.10) Br=0fork=3,...,n

Therefore, for v € Pn_1 given by (1.6), we have

R€ﬁ1 .
——L  4f (1.8)—(1.10) hold, and
da(e(mo))(v) - { +oon ojjffieruzz's(e. :

Proof. We begin by showing that (1.7)—(1.10) and (1.6) imply that (v,n) is an
element of the tangent cone Ttp;(q)(€(n,0),0). This is done by constructing a curve
in epi (a) converging to (e(n,0),0) and having derivative equal to (v,7). Consider the
polynomials having coefficients that are polynomials in £ and given by

p\€) = (A " ﬁlf) (A () + 515) (A — (o)t + 2 s)

= (-2 2er s o) (2 +2Ron+ mag+ ofe))
= X"+ BEN"T 4 B8N + 0(€)
= A"+ &v(N\) +0(§) .

Let & be real and positive. Then a(p()\,§)) = —%f. Therefore,

a(p(\; €)) — a(A") Re (61)

lim = — <,
£\0 13 n =1
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which yields the result.

We now show that any element (v,7) in the tangent cone Ty (4)(€(n,0),0) must
satisfy (1.7)—(1.10) if v is given the representation (1.6). To this end, we make use of
the following norm on P, x R:

||(b0€(n,0) + ble(nfl,O) +oF bnvl”')” = max{ |b0| ) |b1| PR} |bn| ’ |H’| } .

Let (v,n) € Topi(a)(€(n,0),0) with v written as in (1.6). By definition there is a
sequence {(px,px)} € epi(a) with (pg, px) — (€(n,0),0) and

((pka:u’k) (6(710)7 ))
(| (e 1) = (€(n,09,0)]

(1.11) | = (yv,ym)

for some v > 0.

Given € € C", define 0; : C* — C for j = 1,2,...,n to be the symmetric
functions

(1.12) o1 (e) = Zet and oj(e) = Z (H 6t5> forj=2,...,n

t=1 1<t) <tg<---<t;j<n \s=1
and set 0 = (01,09, ++,0,)T. For each k = 1,2,... there exist complex numbers
€ = (ep1, €r2,---,€rn)T — 0 such that Re (exj) > —pp for j =1,2,...,n and
n
(1.13) eV =[]+ €)= (A" + o1 (A" + -+ o ()
j=1

For each k=1,2,..., set

Vg = H(pk,uk) (e(no H = max{( HU )Hoo’ |k }-
Then the limit (1.11) can be interpreted componentwise as
26, = i, 4
forj=1,2,...,n. Set 6; =B, for j =1,2,...,n. We establish the result by showing
that
(1.14) Reé1 > —nyn, Reda >0, Imée =0, and 6, =0 for k =3,4,...,n

Clearly, Re(é1) > —nyn since Re(oy(€¥)) = > i=1 Re(er;) > —npy for all
k=1,2,...and p/viy — vn. We now show that 6; = 0 for j = 3,4,...,n. First note
that

(1.15) oj(€) =o(|le]%) forj=3,4,...,n

Define

(1.16) ar; = Reer; and  Op; = Imey;

for j = 1,2,...,nand k = 1,2,.... Note that ay; > —pu for j = 1,2,...,n and

k=1,2,.... In addition, it is easily verified that

Reoy(eF) = Z[aksakt — bksOkt] and Im oa(ef) = Zaksékt + Zéksakt

s<t s<t s<t



Downloaded 11/14/17 to 205.175.118.196. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1656 JAMES V. BURKE AND MICHAEL L. OVERTON
Then, by definition,

|01(ek)| 2= HekH; + QZ Re (Exs€rt)

s<t
= H€kHz + 22 QsOlt + 2 Zéksékt
s<t s<t
- HekH; + 42 OpsOkt + 2 Z[&ksékt — Qs Okt
s<t s<t
= H€’“H§ +4Zaksakt — 2Reoy(e")
s<t

> ||€¥]|2. = 2n(n — 1) — 2Re (02(e"))

> [[e¥]|2, — 4n(n — 1) max{ |l , |o2(c5)]} |

k
whenever |uy| < 1. Hence, if € and yy, are such that |01(ek)| < Il and |ug| <1,

_ _3
then, for A = £, we have

max{ |ugl, |02(€k)| }>A ||€kHio :

On the other hand, if |01(ek)| > ”62”00 and ||ekHoo < 1, then }al(ek)| >
Thus, in either case, we have

(1.17) max( |ux|, |o1(e%)] . |oa(e®)]) = Al .
whenever He’“”oo <1 and |ug| < 1. This implies that
(1.18) v > A2,

for all k sufficiently large. This bound, in conjunction with (1.15), allows us to
conclude that
(K
5, = tim 2
k—oo Vg

=0 forj=3,4,...,n.

We now turn our attention to the coefficient 5. If

max{ |1 (e")|, |o2(e")| } = o(w),

we are done since then ¢ = 0. Hence, we assume that

aa(€")|} # o(vr)

max{ ‘al(ek)

9

so that

v = max{ |o1(e")], oa(e"))], |}

for all k sufficiently large. Set 7j; = max{ |o;(e¥)|, |ux| } for j = 1,2. Observe that
Ug(ék)

if limg_ o0 —=— =0, then we are done since in this case vy = vy for all k£ sufficiently
large which implies that 6o = 0. Hence, with no loss in generality, we can assume
that there is a constant ¢ > 0 such that

(1.19) |o2(€")| > ey forall k=1,2,....



Downloaded 11/14/17 to 205.175.118.196. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

THE ABSCISSA MAPPING 1657
Therefore, there is a constant K > 0 such that
(1.20) K |oa (ek)‘ >y, for all k sufficiently large.

Now observe that

<Y feel el < 20 2,

s<t

(1.21) |o2(e)] =

EEEt

s<t

Therefore, for all k sufficiently large,

—1
c¢|Re(o1("))| < clor(e®)| < e < Joa(eh)] < %HE’“H;,

and so, from (1.20), we have
Kn(n—-1 2
(122) k] < v < % [

In particular, this implies that

_ Mk
1€¥]] oo

In addition, since ay; + p, > 0 for each 7 =1,2,...,nand all k =1,2,... and

Qg + p [Re (o1 ()] +nlpx]l _nn-1) (1 k
°<Z e . <75 et ) Il

for all k=1,2,... (recall the definition of the ay;’s from (1.16)), we obtain

(1.23) lim —d

=0 forj=12,...,n
b oo HekH or j » < ;1

Putting together the bounds (1.18), (1.20), and (1.22), we obtain the relation

1
(1.24) AN, < v < K foa(e)] < 20D e

for all k =1,2,.... In addition, the bound (1.19) implies that

Im (oq (€¥))] 2 o1(eF)|? 1
‘ |(§2(€(k)|))| = }|02((€k))|| Sg‘@(ﬁk”

so that

‘ Im (01(6’“))’ 2
|02 (€")]

Now since |Im (o (ek))’ 2= E?Zl (5,%]- 423, OrsOke, this implies that

5ks5kt
(1.25) IHOOZ o
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Finally, recall that

D sk = Y Orsbit

s<t s<t

Therefore, by (1.24), (1.25), and (1.23), we see that

Re (62) = lim M

k—o0 Vi

+1

D ksl + > kst

s<t s<t

> 0.
Similarly, from (1.24) and (1.23), we have

I k
T (63)] = lim [T (o2(D)]
k—o00 Vi

<A~ lim Z( lovks| |0k + loke|  |Oks] )

k=00 £t \ ¥l oo €l 11€¥ Moo Nl oo

:0’

since \"‘Hl <lforalj=1,2,....nand k=1,2,....

The final statement of the theorem concerning the formula for da(e(, 0))(v) now
follows immediately from the equivalence of (1.1) and (1.7)—(1.10). |

By combining Lemma 1.1 with Theorem 1.2, we obtain the following corollary.

COROLLARY 1.3. Given Ao € C, we have (v,1) € Tepi(a)(€(n,ng), Re (X)), with

(1.26) V= B1em—1,0) T B2€(n—20) T+ Bn ,

if and only if B1, B2, - . -, Bn satisfy the conditions (1.7)—(1.10). Therefore, forv € Pp_1
given by (1.26), we have

da(€e(n,xg))(v) ={ —Besr (1.8)(1.10) hold,

+o00  otherwise.

We now show that the factorization of a polynomial into powers of linear factors
(or the prime factorization) can be used to obtain a description of the tangent cone
to the epigraph of a from Corollary 1.3. We begin by developing a tool that allows us
to treat each of the linear factors in the prime factorization separately. We then glue
the results for each of the factors back together to obtain a result for the polynomial
as a whole. This tool is provided in the next lemma which establishes a local property
for factorizations into relatively prime factors.

LEMMA 1.4. Let (ny,na,...,ny) be a partition of n, that is, for j =1,2,...,m
each n; is a positive integer and n = ZJ 1 n. Set

S=CXxXPp—1 XPpy_1 X XPp _1

and let pj € My, for j =1,2,...,m. Consider the mapping F : S — P, given by
m
F(vg,v1,02, ..., Um) 14+ ) Hpj—l—vj

If the polynomials p1,...,pm are relatively prime(i.e., have no common roots), then
there exist open neighborhoods U of 0 € & and W of F(0) € P, such that F is
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a homeomorphism between U and W with V(F~1) existing, continuous on W, and
satisfying V(F~1)(F(u)) = [VF(u)]™! for all w € U. Thus, in particular, we have
Ran (VF(0)) = Py; that is, every polynomial h € P,, can be written as

(1.27) h=VF(0)(wo,wr,...,wy)= erw_j ,
§=0
for some (wo, w1, ..., wy) €S, where
(1.28) 7‘0:Hpj and rsznpj fors=1,2,...,m.
Jj=1 Jj#s

Proof. Since dim(S) = n + 1 = dim(P,), the result follows from the classical
inverse function theorem once it is shown that ker (VF(0)) = {0}. Let Z; denote the
set of zeros of the polynomial p; counting multiplicity, for j = 1,2,...,m, and let
(wg, w1, ..., wy) € ker (VF(0)). Since the polynomials py,po,...,pm are relatively
prime, we have Z; N Z; = () whenever j # s. Equations (1.27) and (1.28) and the
inclusion (wg,wy,...,wy) € ker (VF(0)) imply that for each s = 1,2,...,m the
polynomial

fs = TsWs

has zeros not only at the points Ujx,Z; (with the corresponding multiplicities) but
also at the points Z, (with the corresponding multiplicities). Hence, each fs is either
the zero polynomial or its degree is at least n. However, the degree of each f; is at most
n—1, since ws € Py,—1. Therefore, f; is the zero polynomial for s =1,2,...,m. This
in turn implies that w; = 0 for j = 1,2,...,m, and finally that wy = 0. Consequently,
ker (VF(0)) = {0}. d

As a first application of Lemma 1.4, we show if a polynomial is written as a
product of relatively prime factors, then the tangent cone to the epigraph of a at this
polynomial is contained within a kind of product of the tangent cones associated with
each of the relatively prime factors.

THEOREM 1.5. Let (ni,na,...,ny) be a partition of n, and let p; € M, for
j=1,2,...,m be relatively prime. Set p = H;nzl pj € M,,. Let the space S and the
function F' : S — Py be as given in Lemma 1.4. If (h,w) € Tepi(a)(p,a(p)), then
there exists (0,w1,wa, ..., wy) €S such that h is given by (1.27) and (1.28), where,
forj=1,....m, (w;,w) € Tepi(a”j)(pj,a(p)) and an; denotes the abscissa mapping
on Py, .

Proof. Let (h,w) be a nonzero element of the tangent cone Tep; (4)(p, a(p)). Then
there is a sequence { (g, @x)} C epi(a) C M,, x R and a scalar v > 0 such that

(qr, ax) — (p, a(p))
H(qk,ak) - (ILG(P))

Let F : § — P, be as in Lemma 1.4. Then, by trimming finitely many terms
from the beginning of the sequence if necessary so that ¢ is sufficiently close to p,
Lemma 1.4 yields the existence of a sequence {(0,vk1, k2, .-, Vkm)} C S such that
(0, Vg1, Vk2y - -+ s Ukm) — 0 and

(Qkyak) - (pva(p)) and H - (7h77w) .

m

qr = F(0,051, V%2, -+, Upm) = H(pj + ;) forall k=1,2,...,
j=1
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since {qx} € M,, = dom (a). Since (gx, o) € epi(a), we have

(1.29)  (pj +vkj, o) €epi(ay;) forallj=1,2,...,mand k=1,2,...

and

(1.30) (pj + vkj,ar) — (pj,a(p)) forall j=1,2,...,m

Set v* = (0, V1, Vk2, - .., Vpm) for k=1,2,..., and set ¥ = 0 so that v¥ — ©. Then
. —p=F(*) — F(v)

(1.31) = VE(@)(v" — ) +of[|[v" — 7| .

By Lemma 1.4, V(F~1) is continuous in a neighborhood of p so that F~! is Lipschitz
continuous near p. Consequently, there is a constant K > 0 such that ||v’C — z_)H <
K ||gr — p|| for all k =1,2,.... This fact, combined with (1.31), yields

vh = lim 4 — D
k—oco |[(qr, o) — (P, a(p))|l
vk — o
=VF hm
©) 5 T a0) = e

(1.32) = VF(0)(0,1,Ws,...,Wn),

where
w; = lim Uk forj=1,2,....m

k—oo ||(Qk,0¢k) (p7a(p))||

Equation (1.32) verifies (1.27) with w; = vy~ 'w; for j = 1,2,...,m. From (1.29),
(1.30), and definition (1.2) (here tx = ||(qr, ax) — (p, a(p))||), we have that (w;,w) is
an element of T¢p; (an]‘)(pj, a(p)), for j = 1,2, ..., m, which proves the result. 0

We now apply Corollary 1.3, Lemma 1.4, and Theorem 1.5 to obtain a complete
representation of the tangent cone to the epigraph of the abscissa mapping at an
arbitrary polynomial. This representation involves the prime factorization of the
polynomial. For this purpose, and for the application of this result in later sections,
it is useful to introduce some more notation.

Let p € M,, have prime factorization

m
(1.33) p= H €(n;A;)s
j=1
where A1, ..., A, are distinct complex numbers and (n1,n2,...,n,,) is a partition of

n. Define S, to be the product space
(1.34) Sp:(CX'Pnlfl X'Pn271 Xoee X'an,l.

In conjunction with Sp, we define the mapping F), : S, — P, by

(1.35) F,(vo,v1,...,v (1 + vp) H €(n;ny) T v5)  forall (vo,v1,...,0m) €Sy,
j=1
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so that F,(0) = p. By analogy with (1.27), for every (wo,wn,...,wn) € S, we have

(1.36) VE,(0)(wo, wy, ..., W) = erwj ,
=0
where
(1.37) ro=p and rs:He(nj,Aj) fors=1,2,...,m.
J#s

In addition, we define

(1.38) I(p)={je{1,2,...,m} |a(p) = ReA;},

the set of indices of active roots of p.
We now state and prove the main result of this section.
THEOREM 1.6. Let p € M,, have factorization (1.33). Then (h,w) is an element

of Tepi(a)(p, a(p)) if and only if there exists a vector (wo,wy,wa, ..., wy) € Sy such
that
(139) h’:VFP(O)(w()awlaw27"'7wm)7

where VF,(0) is defined in (1.36)—(1.37),

(1.40) wo = 0,

and

(1.41) (wj,w) € Tepl-(a"j)(e(njm),a(p)) forj=1,2,...,m.
In addition, if for each j = 1,2,...,m, w; is given the representation
(1.42) wj = Bi1€(n;—1,7;) + Bj2€(n,—2x,) + + Bin;

then, for each j € I(p), a necessary and sufficient condition for (1.41) to hold is that

(1.43) RefBj1 > —njw,

(1.44) ReBj2 > 0,

(1.45) ImpBjs =0, and

(1.46) Bjs =0 fors=3,4,...,n; .

Proof. Let us first assume that (h,w) € Tepi(a)(p,a(p)) and show that (h,w)
must satisfy (1.39), (1.40), and (1.41). By Lemma 1.4, there must exist a vector
(wo, w1, W, ..., W) in S, such that (1.39) holds. The fact that wy = 0 follows from
(1.4), while (1.41) follows immediately from Theorem 1.5. The conditions (1.43)—
(1.46) follow from (1.41) and Corollary 1.3.

Next, let us assume that (h,w) € P,,_1 x R satisfies (1.39), (1.40), and (1.41). We
need to show that (h,w) € Typi (o) (p, a(p)). We accomplish this by following the ap-
proach taken in Theorem 1.2. That is, we will exhibit a curve in epi (a) passing through
(p,a(p)) and having the tangent direction (h,w) at (p,a(p)). For j =1,2,...,m, give
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each w; in (1.39) the representation (1.42). Then, by Corollary 1.3, we know that the
conditions (1.43)—(1.46) are satisfied for j € Z(p). For each such j € Z(p), define

J

x ((A ) V(B8 + 5%) ((A ) = V(B + 5]’?5)

n;j

= (A=) + (B A = X)) 71+ Bjn€(A = X)™ 7% + 0(€)
(1.47) = (A=) 4+ &w;(N) + o(§),
and, for j € {1,2,...,m}\Z(p), define
(1.48) pi(A,€) = (A= X)™ + &w;(A)

Set p(\, &) = H;nzl p; (A, ), so that, from (1.36), (1.37), and (1.39),

P €)= p(N) +& D (Nw;(N) + (&)
j=1
=p(A) + EVEF,(0)(0, w1, ..., wm)(A) + o(§)
= p(A) +ER(A) + o(§).
Then, for all £ small, positive, and real,
_ B
a(p(A,€)) = jmax Re ( - 5)
< a(p) +&w
so that (p(A, &), a(p)+£&w) € epi(a) for all € small, positive, and real. Therefore, since

i POS0), ap) + €0) — (p(V), alp)
EN0 3

= (h(A),w),

we have (h,w) € Tepi (a)(p; a(p)), completing the proof. O

COROLLARY 1.7. Let p € M,, have factorization (1.33) and let h € P,. By
Lemma 1.4, there ezists (wo, w1, Wa, ..., Wn) in Sy such that (1.39) holds, where, for
each j =1,2,...,m, w; can be written as in (1.42). With this representation for h,
either wg = 0 and (1.44)—(1.46) hold for j € Z(p), in which case

da(p)(h) = +oo.

Proof. By Theorem 1.6, we know that da(p)(h) = +oo if either wy # 0 or the
coefficients ;s, s =1,2,...,n;, do not satisfy one of the conditions in (1.44)-(1.46)
for every 5 € Z(p). On the other hand, if wy = 0 and all of the conditions in
(1.44)—(1.46) are satisfied for every j € Z(p), then the inequality (1.43) in Theorem
1.6 implies that (h,w) € Tepi(a)((p,a(p))) if and only if w > #jﬁjl) for every
J € Z(p). Since Typi (o) ((p,a(p))) = epi(da(p)) [RWI8, Theorem 8.2], this proves the
corollary. a
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2. Regular subgradients and the normal cone. We now turn our attention
to the variational objects dual to the subderivative and the tangent cone. These are
the subgradients and the normal cone. These objects are defined in terms of a duality
pairing between the linear space P, and its dual space. Traditionally the dual space
is the space of continuous linear functionals on the primal space (which in our setting
is Pn). The duality pairing is then the continuous bilinear functional obtained by
evaluating a given linear functional at a given point. However, in general, the dual
space may have many possible representations and for each representation there may
be any number of bilinear functionals that pair the spaces in duality.

In our analysis, we have chosen to regard P, as a Hilbert space, in which case
the dual of P, is itself. However, we will need to consider a whole family of duality
pairings, or inner products, on P,,. To describe this family of inner products, recall
that for each Ay € C, the polynomials

(21) e(j,)\[))? .] 20717"'7’”’7

form a basis for P,. Hence, for each \g € C, we can define a real inner product on

P,, associated with the representation in this basis. Given p = Y =1 @j€(n—j.xo) and

q= Z 1bj€(n—j ), define the inner product
<' ) .>(7L,>\0) : Pn X Pn — R
by

(2.2) (D, @) (o) = Re Y a5b;.
§=0

Thus, in the case n = 0, we recover the real inner product on C. Note that this family
of inner products behaves continuously in p, ¢, and Ag in the sense that the mapping

(2.3) 0. A) = (P @)

is continuous on P,, x P, x C. To see this, note that the expansions of the polynomials
p and ¢ in the basis (2.1) are just their Taylor series expansions at Ag, hence,

(p, Q>(nA) Re Z ) )

where fU) denotes the jth derivative of the function f.

By setting Ag = 0 in (2.1), we obtain the standard basis for P,,. The inner product
(2.2) associated with the standard basis is simply written (-, ).

The spaces S, defined in (1.34) also play a key role in our analysis; therefore, we
need an inner product on these spaces as well. We use the inner product

m
(2.4) ((ug, 1y ..oy tm), (Vo, V15 . oy U E (us ,vs) (na—1) 7
s=0
for every (uo,u1,...,un) and (vo,v1,...,Vy) in Sp, where we define ng = 1 in this

expression and hereafter.
Spaces paired in duality give rise to the notion of the adjoint of a linear transfor-
mation. Suppose (X, X*) and (Y,Y™) are spaces paired in duality, with the duality
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pairing between X and X*, and Y and Y™* given by (-,-)y and (-,),, respectively.
If A is a linear transformation mapping X to Y, then the adjoint of A, denoted A*,
is the linear transformation mapping Y* to X™* defined by the condition that

(A*y,z)y = (y,Az)y forallz € X andy e Y™

The dual variational objects studied in this section are the cone of regular normals
and the set of regular subgradients. The cone of regular normal vectors to the epigraph
of a at a point (p, i) € epi(a), denoted Nepi(q)(p, 1), is given by

((z,m),(q,7) = (P, 1)) < o(ll(q,7) — (p, W)
{(z’n) ‘ V(q,7) € epi(a) }

where ((z,1),(q, 7)) = n7 + (z,¢q) (note that epi(a) C P, X R so that n and 7 are
real). The cone of regular normals is defined to be the empty set at points not in the
epigraph of a. The set of regular subgradients of a at p € doma = M,, is given by

da(p) = {z |alq) > a(p) + (z,q —p) +o(lg —p|) Vg € P }.

If p # M, we define da(p) to be the empty set. By [RW98, Theorem 8.9], we have
the following relationship between the cone of regular normals and the set of regular
subgradients:

(2.5) da(p) = {z

(Zv 71) € ]/\\fepi (a) (pa a(p)) } .

In addition, [RW98, Proposition 6.5] tells us that the cone of regular normals is the
polar of the tangent cone at points (p,a(p)) € epi (a):

~

(26> Nepi (a) (paa(pD = Tepi (a)(p7a<p))o ’

where

Tepi (a) (pa a(p))o = {(275) ’ <<Z7§) ’ (ha w)> <0 V(h,w) € Tepi (a)(pva(p)) } :

We take a moment to observe two important consequences of the equivalence (2.6).
These observations are based on the relations (1.4) and (1.5). By (1.4), we have that
the vector (e(,,0),0) is orthogonal to every vector in Tep; (4)(p, a(p)), regardless of the
choice of the polynomial p € M,,. Therefore, by (2.6),

(2.7) {(ﬁe(nyo),O) | e (C} - Ncpi (@) (p,a(p)) for every p € M,,.

In addition, (1.5) and (2.6) imply that
(28) {(ﬁe(n,O)a 0) |5 € (C} = J/\}epi (a) (pa /1’)7 whenever B> a’(p)

We now proceed to derive an expression for Nepi(a) (p,a(p)) using (2.6) and The-

orem 1.6. We then use the relation (2.5) to determine da(p).
THEOREM 2.1. Let p € M,, have factorization (1.33) and let Z(p) be as defined

in (1.38). Then (z,n) is an element of the normal cone Np;(q)(p, a(p)) if and only if

(2.9) n<o0
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and the vector u € S, defined by u = VF,(0)*z and given the representation

n;
(2.10) uj =Y e, -1, forji=1,...,m
=1

satisfies

u; =0 forj¢I(p) and j#0,
Repji <0 and Impjn =0 for j € Z(p),
Repjo <0 forjeZI(p), and

Y mmp =0

JEZ(p)

Proof. Let (h,w) € Topi (a)(p, a(p)). By Theorem 1.6, we know that there exists
0, w1, Wa,...,Wy) € Sp such that h = VE,(0)(0, w1, ws,...,wy,), where for j =
2,...,m each w; has the representation (1.42) with the coefficients 3;, satisfying

(
L
(1.43)—(1.46) for j € Z(p), and, for j ¢ Z(p),

(2.15) Bjs, s=1,2,...,n;, are unrestricted.

Now let (z,7) € P, x R and set u = (ug, w1, ..., uUm) = VF,(0)*z, where each u;,
j=1,...,mis given the representation (2.10). Then, from definition (2.4), we have

<(Z,77) ) (hvw» =nw + <Z ’ h>
=nw + (z, VF,(0)(0, w1, wa, ..., Wy))
=nw + (VFp(0)"z, (0, wi, w, ..., wn)),
(

:le+ (u07u17"'7um)7(07w17w27"'aw7n)>p
=nw+ Z <uJ 7wj>(7Lj—1,)\j)
j=1
m N
(2.16) =nw+ ZZ Re i1 01

j=11=1

Hence, by (2.6), (z,7) € ]Vepi (a)(p, a(p)) if and only if

m Ny

(2.17) mw+ Y Y Refijf <0

j=11=1

for all choices of w and B, j=1,...,m, I =1,...,n;, satisfying (1.43)—(1.46) for
each j € Z(p).

We first show that any (z,7) € P, x R for which the associated vector u =
(uo, 1, ..., Um) = VF,(0)*z, where each u;, j = 1,...,m, has representation (2.10)
and for which n and pj;, j=1,...,m, I =1,...,n;, satisfy (2.9) and (2.11)-(2.14) is
necessarily an element of the normal cone J\A/'epi (a)(p,a(p)). For this purpose, suppose
that w and By, j=1,...,m, I =1,...,n; satisfy (1.43)—(1.46) for each j € Z(p) so
that the corresponding vector (h,w) is an element of the tangent cone Typ; (o) (p, a(p))-
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Then
<(z> 77) ) (hvw» = Nw + Z Z Re ﬁjlﬁjl

j=11=1

=nw+ > [ ReBji + RepjoRe B)o]
J€EZ(p)

—Re i1

<nw — Z njli1 (njj>

JEZ(p)

< nw — Z Njpj1w
JEZ(p)
= 07

where the first equality follows from (2.16), the second equality from (2.11), (2.12),
(1.45), and (1.46), the first inequality from (2.13) and (1.44), the second inequality
from (1.43), and the final equality from (2.14). Therefore, the set of (z,7) satisfying
(2.9)-(2.14) is contained in ]\Afepi (a) (P, a(p)).

We now show the reverse inclusion. Let (z,7) € Ncpi (a)(p,a(p)) and set u =
(w0, U1, ..., Um) = VF,(0)*z with each uj, j = 1,...,m given representation (2.10).
We show that (z,7) must satisfy the conditions (2.11)—(2.14) by requiring that the
inequality (2.17) holds for every (h,w) in the tangent cone Tep; (4)(p, a(p)). To this end,
let (h,w) be any element of the tangent cone Ty, (o) (p, a(p)) so that the corresponding
vectors wj, j = 1,...,m, satisfy (1.43)—(1.46) for each j € Z(p) and (2.15) for j ¢
Z(p). By setting w = 1 and all 3;; equal to zero in (2.17), we find that n < 0. By
(2.15), Bjs is free for j ¢ Z(p), s = 1,2,...,n,, so that (2.17) implies that (2.11)
holds. Since Im ;1 is free whenever j € Z(p), (2.17) implies that Imp;; = 0 for
all j € Z(p). In addition, (1.43) and (2.17) imply that Repu,o < 0 for all j € Z(p).
Therefore, (2.9), (2.11), the second half of (2.12) (i.e., the equality), and (2.13) have
been verified.

We now establish the first half of (2.12) (i.e., the inequality) and (2.14). By taking
Re Bj2 = 0 for j € Z(p), the expression (2.16) can be simplified to

(218) <(Zan)7(haw)> :UWJF Z Hi1 Reﬂjl-
JEZ(p)
By combining this with (2.17), we must have
(219) Z /le Reﬁjl S —nw
JEZ(p)

for all choices of w and Re 1, j € Z(p), satisfying (1.43). Observe that (1.43) holds
if and only if

(2.20) w > max M.
JEZ(p) n;

Since —n > 0, we can multiply this inequality through by —n to obtain the inequality

—Refn
2.21 —nw > —p max —9—,
( ) = TIJ'GI(P) ng
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Since the right-hand side of this inequality yields the smallest possible value of the
product —nw, we find that (1.43) and (2.19) hold if and only if

(2.22) Z i1 Re i1 < (—n) max —Refin

, V@1 €C, je€I(p).
JET() JER) M

Consider two cases: =0 and n < 0. If n = 0, then (2.22) implies that p;; =0
for all j € Z(p) so that (2.12) and (2.14) are satisfied. On the other hand, if n < 0,

define fi; = %,ujl and §; = M for j € Z(p). Substituting into (2.22), we obtain

(2.23) Z fij3; < max B; VB €R.

ieT(r) JEZ(p)

But this holds if and only if fi; > 0 for j € Z(p) and ZjGI(p) fij = 1, or equivalently,
(2.12) and (2.14) hold. 0

Theorem 2.1 and (2.5) immediately yield the following representation for the set
of regular subgradients.

THEOREM 2.2. Let p € M, have factorization (1.33). Then z € da(p) if and
only if the vector of polynomials

VF,(0)"z = (ug,u1, ..., Unm) € Sp,

with
nj

Uj :Zlujle(nj—l,)\j)v j:1727"'7ma

s such that

wj =0 forj ¢ I(p) and j #0,
Repji <0 and Impji =0 for j € Z(p),
Rejpja <0 forj€Z(p), and

Z i1 = —1.

JEZ(p)

A more concise representation for the set of regular subgradients is possible. First
note that if p = e(,,x,), then, for (ho, h1) € Sp = C x Py, 1,

VF,(0)(ho, h1) = hoe(n,ng) + P1

and

(2.24) VE,(0) Z bje(nfj,)\o) = | b, Z bje(nfj,)\o) ,
=0 j=1

since

<Z bj€(n—jxo) > P0€(n,ng) T h1> < bo,zb €(n—jxo)) ho,h1)> .
=0

(n,20) P
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In this case VF,(0)* = VFE,(0)~!. Hence, by Theorem 2.2, we have the following
formula for the set of regular subgradients of a at e(, )

A = Z;'L:O H5€(n—j,x0)>
(2.25) da(e(n,ng)) = § 2 | where u; € C, j=0,1,...,n,
p1 ==L, and Re(u2) <0

In the general case a similar formula can be obtained with the aid of the recession
cone of the set da(e(,,,)):

X z=3 Hi€(n—j. o)
(2.26) da(em )™ = 2| where u; €C, j=0,1,...,n,
w1 =0, and Re(u2) <0

Define éa(e(m)\o))‘fo as the projection of 3@(6(%)\0))0" onto Pp_1:
. ) 2= 3051 Mi(n—j.xa)»
da(e(n,ny))> = 2| where u; €C, j=1,...,n,
w1 =0, and Re(u2) <0
Then, given a polynomial p € M,, having prime factorization (1.33), the set of regular
subgradients of a at p has the form

(2.27) da(p) = VF,(0)™ [conv {v; | j € Z(p)} + K],
where v1,...,v, € S, are given by
1
V1 = _nil(()’ e(nlfl,)\l)a 07 ey 0)7
1
V2 = _7(0707 e(ng—l,)\g)vov L] 70)7
N2
1
Um = 7@(07 07 cee 707 6(nm—1,km))a

and K is the convex cone in S, given by

K=Cx éa(e(nh)\l))o'o X oo X 8@(6(717”,1’,\7"))00
Observe that this implies the recession cone of 5‘a(p) is given by
(2.28) da(p)™ = VF,(0)""K.

3. Subdifferential regularity. The set of normal vectors to epi(a) at a point
(p, 1) € epi(a) is given by

3H{(pk, )} C epi(a), {(zr,wi)} C P xR
with (zk,wk) S Nepi (a) (pk»/ffk) Vk,
such that
(pkvlf(‘k) - (pa /J) and (Zkawk:) - (Zaw)

(3'1) Nepi(a)(pa N) = (Z?w)
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By convention Nep () (p, t) = 0 if (p, 1) & epi(a). The abscissa mapping a is said to
be subdifferentially regular at a point (p, ) € epi(a) (equivalently, epi(a) is Clarke
regular at (p, p)) if

~

(32) Nepi (a) (p7 M) = Nepi (a) (pa /J')

[RW9S8, Definition 7.25]. The goal of this section is to show that the set epi(a) is
everywhere subdifferentially regular.

Some simplification in definition (3.1) is possible due to the continuity of a on its
domain M,,. Recall from (2.8) that

~

Nepi (a) (s 11) = {(Be(1,0):0) | € C}  whenever 11 > a(p).

Since this subspace is constant on the set {(p, 1) | > a(p) }, we find that

~

Nepi (a) (p, /1*) = Nepi (a) (p7 M) whenever > a(p)'

Therefore, to establish that a is everywhere subdifferentially regular we need only
establish the equivalence (3.2) at the points (p, a(p)) for p € M,,. In addition, from
(2.7), we have {(ﬂe(n’o),O) |8 € (C} C Nepi (a)(p, ) for all (p, i) € epi(a). Hence, it
is always the case that

~

Nepi (a) (pa 77) - Nepi (a)(pv N’) whenever a(p) < <.

Therefore, the representation for the normal cone at the points (p, a(p)) for p € M,
can be refined to

ﬂ{pk} C Mn, {(zk,wk)} cP, xR

. _ with (zk,wk) S Nepi (a) (pk‘va(pk)) vk,
(33) Nepl (a) (p7 a‘(p)) - (Z’ C()) SuCh that

pr — p and (2, w) — (2, w)

However, even with this simplification, we are confronted with a significant tech-
nical hurdle. Recall from Theorem 2.1 that the regular normals are characterized
through the adjoint operator VF,(0)*. Therefore, we now need to compute limits
of these operators along sequences p, — p. But these adjoints are defined as linear
transformations from P,, to S,, and are based on the inner products (-, -) py,- HOW can
we interpret limits of the adjoints VF,, (0)* when the spaces Sp, and their associated
inner products (-, ) p, may not even be commensurate? The answer again lies with
the local factorization lemma, Lemma 1.4.

Suppose that the polynomial p € M, has prime factorization (1.33) and let
{px} be a sequence of monic polynomials converging to p. Lemma 1.4 says that, by
trimming off finitely many elements of the sequence if necessary, we may assume with
no loss of generality that each of the polynomials py has a factorization of the form

m

j=1
where the roots of the polynomials qr;, 7 = 1,...,m, are pairwise disjoint and
Qkj — €(n;,n,) for each j = 1,...,m. Moreover, since there are only finitely many

partitions of n, we may assume with no loss in generality (by extracting a subsequence
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if necessary) that there exist positive integers ¢;, j =1,...,m, and n;s, j =1,...,m,
s=1,...,¢;, with Zijzl njs = n;, such that, for each k =1,2,...,

£
(35) qk] = H 6(7'/357)%3'3)7
s=1
where the complex numbers Apjs, 5 =1,...,m, s =1,...,{; are distinct and satisfy
Akjs — Aj for s =1,...,¢;. Hence, for each k = 1,2, ..., we have
m
(3.6) Sp, =Cx | X (Pnjl,l X e X Pn,-ej%) ,
j=1
m £
(37) Fpk_(vo,vu,...,vwl, ,’Uml,‘..,vmgm) = (1+U0)H (6(njs7)\kj3) +Ujs),
j=1s=1
and

m 45
(S.S)VFpk (0)(h0, hll, ey hlgl, L. ,hml, ey hmgm) = horro + Z Tkj Z fkjshjs s
j=1 s=1

where
£
rko =P and T, = H H €(nja A eja)s jo=1,...,m,
Jj#Jjo s=1
and
ZJO
fkjoSo = H €(njgs Mkigs)s jo=1,....m, sop=1,... ,fj .
e
Let us write S = Sp,.» since Sp, is fixed for all £ =1,2,.... Note that as k& — oo, we
have 74; — r;, where 7; is defined in (1.37), for j = 0,1,...,m, and s — €(@n,. A,
where nj, = nj —njs, for j =1,...,m, s =1,...,¢;. Hence, VF,, (0) — ¥, where

the linear transformation ¥ : § — P, is given by
m £;
(39) \If(h()7 hlla ey hul, e ,hml, ey hmlm) = ho?"o —|— Z?"j Ze(ﬁjS,Aj)hjs
j=1 s=1

Observe that the representation of VF,(0) given in (1.36) and (1.37) enables us to
write the operator ¥ as the composition

(3.10) U =VE,0)oE,
where the linear operator = : S — Sp is given by

E(h07 hlla ey hl@ra'rhmlv ey hmﬁm)

Zl e’nl
(311) = <h07 Z e(ﬁ1s7>\1)h157 R Z e(nmsv)\m)hms> :

s=1 s=1
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Theorem 2.1 gives us access to the regular normals through the adjoint operators
VF,(0)*. Thus, in order to understand the normal cone, which consists of the limits of
the regular normals, we need to come to an understanding of the limit of the adjoints
VF, (0)*. This limit is an adjoint of the operator ¥. However, what this means
needs clarification since each of the adjoints VF,, (0)* arises from a different duality
pairing. We need to determine the correct duality pairing for the definition of the
adjoint ¥* so that it is the limit of the operators VF,, (0)*.

The duality pairing that we seek is obtained from our earlier observation (2.3)
that the mapping (p,q, \) — <p,q>(n7>\) is continuous. This continuity implies that

the pointwise limit of the inner products (-,-) exists as k — oo. Indeed, for each

Pk
u = (’U/O;ullw"vul@l) auléma---aumém)

and

v = (’U()vvllw"avlflv uvlfma'”vvmfm)

in §, we have

(w,v),, — (u,v),
where

m Z]

(3.12) (u,v) = (ug,vo) + Z Z (ujs 7”.7S>(7zjs—1,>\j) .

j=1s=1

Therefore, if we define U* to be the adjoint of ¥ with respect to the duality pairings

(Pn, () and (S, (-,-) ), then
(3.13) VE,, (0)" — ¥*

Our next task is to derive a representation for the operator W*. Using the rep-
resentation for ¥ given in (3.10), this reduces to deriving a representation for the
adjoint of the operator =. For this, the following lemma provides the key.

LEMMA 3.1. Let Ao € C and let 6 = (n1,na,...,ny) be a partition of n. Define
Ds to be the product space

Ds = Piny—1) X Ping—1) X =+ X Pny—1)s

endowed with the inner product

((ur, ..oy um), (v1, . w”m)>(5,xo) = Z (uj =Uj>(nj—1,xo) :
j=1
Forj=1,2,...,m, define n; = n—n; and consider the linear transformation ®s »,) :
Ds — Pn_1 given by
m
Dsng) (s hn) = Y ey by -
j=1

Then the adjoint of ® (s x,) with respect to the duality pairings

(Pr—1, (-, '>(n,1,>\0)) and (Ds, (-, '>(§’)\0))
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is given by

ni

Nm
5 A0) Z b €(n—3.0) | = ije(nl—j7>\o)’ Tt § :bje(”m—ijO)
j=1 j=1

Proof. Define Js = {j |n; > s} for s = 1,2,...,n. Note that J, may be empty
for some values of s. For example, if m > 2, then J, = 0. Let (hq,...,h,) € Ds,
where each h; € P, 1 has representation

hj = aj1€(n;—1,5) T @j2€(n; —2.00) T+ + Ajin; -
Given q € P,,_1 with
q="bie(n_1,5) t+ "+ bn,
we have

<q 5 (I)(ﬁ,)\o)(hh B h’m)>(n,1,A0)

= < (b1em-1.50) F -+ bn) 5 | €n-1.70) Z aj1

Jj€J1

temozng) | D a2 |+t [ D g >
(TL*l,A())

JEJ2 JE€EIn

= Re 51 Zajl +---—|—l_)n Zajn

JjE JE€EJIn

ni Nm
Zb (lls-i-Zb as2s + "+stams‘|

s=1
<<Zben1 8,A0) ibenms)\o)>

(Z A15€(ny—s,M0)> i Ams€(n,, —s, )\0)> >
(8,20)
Nm
<<Zb €1 —s.20)1 Zb e(,Lm_sA())) ,(hl,...,hm)> .
(6,20)

Since this relation holds for all possible choices of ¢ € P,_1 and (hy,...,hm) € Ds,
we have established the result. 0

By using the notation developed in Lemma 3.1, we can rewrite the operator
Z:8 — S, defined in (3.11), as

(3.14) E= (1, %500 s am)

where 6; = (n;1,n;2,...,n;,) is a partition of n; for each j = 1,2,...,m. Hence,
from (3.10), we have

Re

(3.15) U* = E* 0 VE,(0)",
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where Z* : 5§, — S can be written as

(3.16) B = (I@&I,Al),---,<I>E‘5,,,“Am>) :

An explicit representation for the operator =Z* can be obtained by applying Lemma

3.1 to each of the operators ®(s, »,) for j =1,2,...,m.

We now prove the main result of this section.

THEOREM 3.2. The abscissa mapping a is everywhere subdifferentially regular.
Equivalently, epi(a) is Clarke reqular.

Proof. Let p € P, have factorization (1.33). Let (z,w) € Nepi(a)(p,a(p)) so
that there exist sequences {p;} C M,, and {(zx,wr)} C P, x R such that p, — p,
(2, wr) — (z,w), and (zg,wy) € ﬁepi(a)(pk,a(pk)) for k =1,2,.... We need to show
that (Z7w) € Nepi (a) (p7 a’(p))

The discussion preceding this theorem shows that we may assume with no loss of
generality that (3.4)—(3.16) hold for the sequence {pi}. Hence, we make free use of
these facts and their associated notations. R

Let Z(pr) = {(j,s) la(pr) = Re ;s }. Since (zr,wr) € Nepi(a)(Pr,a(pr)) for
k=1,2,..., Theorem 2.1 states that w; < 0 and there exists

U = (uk0>uk11a-~-7uk1€1a ,Ukm17~-~»ukm@,,L) €S
with
njs k=1,2,...,
Ukjs = Z Mkjste(njsft,)\kjs), .] = la 27 cee, My,
t=1 311,2, .,Ej,
such that
(3.17) up = VFy, (0)" 2,
(318) Ukjs = 0 for (]78) gj-(pk:)a
(3.19) Re tijs1 < 0 and Im g =0 for (j,s) € Z(pr),
(3.20) Re pkjs2 <0 for (j,8) € Z(px), and
(3.21) > ystirjs = Wi

(4,5)€Z(pr)

Due to the finiteness of the index sets, we may assume with no loss of generality
that Z(py) =7 for all k = 1,2,.... Define

f:{j ’(j,s)foorsomes:l,...,éj}.

By the continuity of the roots of the monic polynomials (as a multivalued mapping),
we have Z C Z(p), where Z(p) is defined in (1.38).
Using (3.13), let

(3.22) u="¥z= klirgo VE, (0)z, = klirr;o ug
and write

U= (UQy ULy e ey ULlyy - vy Umly - s Ume,, ) €S
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where

Nijs
(323) Ujs = Zﬂjste(njs—t,)\j)a

t=1

with pigjee — pyse for j = 1,...,m, s = 1,...,¢;, t = 1,...,n;5. By (3.22) and

(3.17)—(3.21), we have

(3.24) ujs =0 for (j,8) &7,
(3.25) Rejijs1 <0 and Tmy g =0 for (j,5) € Z,
(3.26) Rejijs2 <0 for (j,s) € Z, and
(327) Z Njstjs1 = W.
(§,s)€T
Set
(3.28) (wo, w1,...,wn) = VF,(0)"z,
with
(3.29) w; =Y bjs€n;—sn,)  forj=1,...,m.
s=1

By (3.15), (3.16), (3.22), and (3.28), we have
(ujlauj25-'-auj€j):q)?éh)\j)wj forj=1,...,m.

Consequently, by Lemma 3.1 and (3.23),

Ujs = Z‘,U/jste(njsft#)\j) = Z bjte(n;.—t,2,)
t=1 t=1
forj=1,...,m, s=1,...,¢;, or equivalently,
(3.30) Kist = bjy forj=1,...,m, s=1,....4;, t=1,...,njs.
Combining this with (3.24) and the definitions (3.23) and (3.29), we find
(3.31) wj =0 forj¢Z,
and combining (3.30) with (3.25) and (3.26) yields

(3.32) Rebj; <0 and Tmbj; =0 for j € Z and
(3.33) Rebj, <0 forjeZ.

Finally, by combining (3.30) with (3.27), we find

(334) Z njsbjl = Ww.

(4,s)€T
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Note that the equivalence (3.30) implies that for every j € Z for which bj; # 0 it
must be the case that p,s1 # 0 for s = 1,2,...¢; and so {(j1), (2),...,(j¥¢;)} C T.
Therefore, by (3.27) and (3.34),

]
W = Z njsbjl = Zijffljs = ijlnj.

(4,s)€T jez s=1 jei

Consequently, by (3.28), (3.29), (3.31), (3.32), (3.33), the inclusion Z C Z(p), and
Theorem 2.1, we find that (z,w) € ]chi (a)(p, a(p)), which establishes the result. d

Just as the set of normal vectors is defined to be the set of limits of regular
normal vectors, the set of subgradients is defined to be the set of limits of regular
subgradients:

I{pr} C dom (a) and {gx} C Pn,
(3.35) da(p) = { q | such that q, € da(pp)Vk =1,2,..., 7,
pr — pand gx — ¢
with da(p) = 0 if p ¢ doma = M,,. The set of horizon subgradients, denoted 9 a(p),
is defined similarly, however, instead of g — ¢ one has txqr — ¢ for some sequence of
positive real numbers {t;} converging to zero. By convention, we have 9*a(p) = {0}
if p ¢ doma. As in the case of regular subgradients, there is a relationship between

these subgradients and the normal cone at a polynomial p € M,, [RW98, Theorem
8.9]:

8@(])) = {q ’ (Qa _1) € Nepi (a) (paa(p))}

and

8000’(]7) = {q ‘ (Q7O) € Nepi (a) (pa a(p)) } .
Using these relationships, Theorem 3.2 and [RW98, Corollary 8.11] imply that

(3.36) da(p) = da(p) and 9¥a(p) = da(p)™®

whenever p € M,, (see (2.27) and (2.28)).

The subdifferential regularity of the abscissa mapping implies that it possesses a
rich subdifferential calculus. For example, the following chain rule holds.

THEOREM 3.3 (see [RW98, Theorem 10.6]). Let X be a finite dimensional Fu-
clidean space, and suppose G : X — P, is continuously differentiable in the real
sense. Consider the composite mapping g = ao G. If x € X is such that G(z) € M,
and the only polynomial ¢ € 0% a(G(z)) with VG(x)*q =0 is ¢ = 0, then

9g(x) = VG(x)"da(G(z)), 90%g(z) = VG(2)" 0% a(G(2)),
and
dg(z)(d) = da(G(x))(VG(2)d).

To illustrate these results, we apply Theorem 3.3 to the example studied in [BLO].
Let X be C™ with the standard real inner product, and consider the composition of
the abscissa function with the affine mapping G : C™ — P, given by

G(.’L’) = (1 + 1’0)6(7170) =+ (L‘le(nfl’o) — ij,w(n,jm.
j=2
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In [BLO, Theorem 2.1], it is shown that x = 0 is a strict global minimizer of the
function g = a o G. Since G is affine, we have

n
VG(0)d = doe(mo) + dle(nq,o) — Z dj_le(n,j,o),

Jj=2

and

n

VG(O)* Zyje(n—j,o) = (y07y1 — Y2, Y3, -, _yn)«
=0

The representation for 0*a(e(,,0)) given by (3.36) and (2.26) shows that the only
q € 0%a(em,0)) with VG(0)*qg = 0 is ¢ = 0. Therefore, Theorem 3.3 and the relations
(3.36) and (2.25) show that

09(0) = 09(0) = { (0.3~ sz 20 ) [ Resy 20

Finally, observe that since the origin is in the interior of ég(())7 we have, directly from
the definition of regular subgradients, that x = 0 is a sharp minimizer of g in the
sense that there exist € > 0 and x > 0 such that

g(x) > g(0) + & ||z]| whenever ||z]| < e.

Further consequences of these results are explored in [BLO].
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