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Abstract. We study the complexity of a noninterior path-following
method for the linear complementarity problem. The method is based on
the Chen–Harker–Kanzow–Smale smoothing function. It is assumed that
the matrix M is either a P-matrix or symmetric and positive definite.
When M is a P-matrix, it is shown that the algorithm finds a solution
satisfying the conditions MxAyCqG0 and ��min{x, y}��S⁄( in at most

O ((2Cβ)(1C(1�l (M )))2 log((1C(1�2)β)µ0)�())

Newton iterations; here, β and µ0 depend on the initial point, l (M )
depends on M, and (H0. When M is symmetric and positive definite,
the complexity bound is

O ((2Cβ)C2 log((1C(1�2)β)µ0)�(),

where

CG1C(1n�(min{λ min(M ), 1�λ max(M )}),

and λ min(M ), λ max(M ) are the smallest and largest eigenvalues of M.
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1. Introduction

We consider a path-following algorithm for solving the following linear
complementarity problem:

(LCP(q, M)) find (x, y) ∈ �nB�n satisfying

MxAyCqG0, (1)

x¤0, y¤0, xTyG0, (2)

where M ∈ �nBn and q ∈ �n.

A number of noninterior path following algorithms have recently been
proposed that are globally convergent or globally linearly convergent and
possess rapid local convergence properties (Refs. 1–16). The complexity of
the algorithms has been studied in Xu and Burke (Ref. 17) and in Hotta,
Inaba, and Yoshise (Ref. 18). In Ref. 17, the authors established a poly-
nomial complexity bound for an interior-point method based on the Chen–
Harker–Kanzow–Smale smoothing function. In Ref. 18, the authors obtain
a complexity bound O ((γ̄ 6n�(6) log(γ̄ 2n�(2)) for monotone LCP, where γ̄ is
a number which depends on the problem and the initial point. The goal of
this paper is to obtain complexity bounds for a noninterior path-following
algorithm when the underlying matrix is a P-matrix. In this case, our com-
plexity bound is

O ((2Cβ)(1C(1�l (M )))2 log((1C2β)µ0�()),

where β and µ0 depend on initial point and l (M ) is a fundamental quantity
associated with the matrix M. A shortcoming of this bound is that it does
not reveal the dependence on the dimension of the problem. In order to
obtain a better understanding of this dependence, we consider also the very
special case when the matrix M is symmetric and positive definite. This
case corresponds precisely to the problem of minimizing a strongly convex
quadratic function over the positive orthant. Under this assumption, we
obtain the complexity bound

O ((2Cβ)C2 log((1C2β)µ0�()),

with

CG1C1n�min{λ min(M ), 1�λ max(M )},

where λ min(M ), λ max(M ) are the smallest and largest eigenvalues of M.
The path-following method considered in this paper is based on the

Chen–Harker–Kanzow–Smale smoothing technique (Refs. 5, 11, 19) and as
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such it relies on the function

φµ(a, b)GaCbA1(aAb)2C4µ2. (3)

This function is a member of the Chen–Mangasarian class of smoothing
functions for the problem LCP(q, M) (Ref. 20). It is easily verified that, for
µ¤0,

φµ(a, b)G0 if and only if 0⁄a, 0⁄b, abGµ2. (4)

The central idea is to apply the Newton method to solve the equation

Fφµ(x, y)G0

for decreasing values of µ, where

Fφµ(x, y)_�MxAyCq

Φµ(x, y) � , (5)

with

Φµ(x, y)_�
φµ(x1 , y1)

···
φµ(xn , yn)

� . (6)

The pattern of proof for the Chen–Harker–Kanzow–Smale smoothing func-
tion should extend to the smoothed Fischer–Burmeister function,

ψµ(a, b)GaCbA1a2Cb2C2µ2, (7a)

with

Ψµ(x, y)G�
ψµ(x1 , y1)

···
ψµ(xn , yn)

� . (7b)

The plan of this paper is as follows. In Section 2, we establish a global
error bound for the Chen–Harker–Kanzow–Smale smoothing function and
the smoothed Fischer–Burmeister function in terms of a certain natural
residual. This bound is useful in designing the stopping criterion for non-
interior path-following methods. We propose a noninterior path-following
method in Section 3 and prove its global linear convergence in Section 4. A
complexity bound is established for P-matrices in Section 5 and for sym-
metric positive-definite matrices in Section 6.
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2. Global Error Bound

In the following lemma, we bound the quantity �min{a, b}� by a linear
function of µ and �φµ(a, b) �. This bound justifies the stopping criterion used
in our noninterior path-following methods.

Lemma 2.1. For any a, b ∈ � and µ¤0, we have

�min{a, b}�⁄µC(1�2) �φµ(a, b) �. (8)

Proof. Since

�2 min{a, b}Aφµ(a, b) �

G�aCbA1(aAb)2A[aCbA1(aAb)2C4µ2]�

G1(aAb)2C4µ2A1(aAb)2

⁄1(aAb)2C2µA1(aAb)2

G2µ,

the result follows. �

Corollary 2.1. For all µ¤0 and (x, y) ∈ �nB�n, we have

��min{x, y}��S⁄µC(1�2) ��Φµ(x, y) ��S , (9)

where the mapping min{x, y} is given componentwise by

(min{x, y})iGmin{xi , yi}, for iG1, 2, . . . , n.

Similar bounds can be established for the Fischer–Burmeister function.

Lemma 2.2. For any a, b ∈ � and µ¤0, we have

�min{a, b}�⁄µC2�ψµ(a, b) �. (10)

Proof. Without loss of generality, we assume that b¤ a. Then,

min{a, b}Ga.

We can further assume that a ≠0, since in this case (10) trivially holds.
In case aCbH0, we have bH�a�H0 and

�ψµ(a, b) �G�aCbA1a2Cb2C2µ2�

G� (aCb)2Aa2Ab2A2µ2��(aCbC1a2Cb2C2µ2)
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G2�abAµ2��(aCbC1a2Cb2C2µ2)

G2�aA(µ2�b) ��[(a�b)C1C1(a�b)2C1C2(µ�b)2]

¤2�aA(µ2�b) ��[2C12C2(µ�b)2].

So,

2�a�A2(µ2�b)⁄2�aA(µ2�b) �

⁄ [2C12C2(µ�b)2]�ψµ(a, b) �,

and

�a�⁄ (µ2�b)C(1�2) [2C12C2(µ�b)2]�ψµ(a, b) �

⁄ (µ2��a�)C(1�2) [2C12C2(µ�a)2]�ψµ(a, b) �. (11)

We claim that

�min{a, b}�G�a�⁄µC2�ψµ(a, b) �. (12)

Indeed, if (µ�a)2⁄1, then (12) follows from (11); and if (µ�a)2¤1, then

�min{a, b}�G�a�⁄µ.

In case aCb⁄0, we have a⁄A�b� and

�ψµ(a, b) �G�aCbA1a2Cb2C2µ2�

G1a2Cb2C2µ2A(aCb)

¤1a2Cb2C2µ2

¤ �a�.

So,

�min{a, b}�G�a�⁄ �ψµ(a, b) �. (13)

The inequality (10) then follows from (12)–(13). �

Corollary 2.2. For all µ¤0 and (x, y) ∈ �nB�n, we have

��min{x, y}��S⁄µC2��Ψµ(x, y) ��S . (14)

Remark 2.1. In the noninterior path-following algorithm to be studied
in Section 3, a sequence of iterates {(xk, yk, µk)} is generated with

ykGMxkCq, µk→0, ��Φµk(x
k, yk) ��S→0.
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Therefore, by Corollary 2.1, the algorithm reduces the residual
��min{xk, MxkCq}��S to zero.

Remark 2.2. It is well-known that ��min{x, MxCq}��S is a global
error bound for LCP(q, M) when M is an R0-matrix (Refs. 21–22). In par-
ticular, this is the case when M is a P-matrix (Ref. 23) or a positive-definite
matrix. This implies that there exists a constant c, independent of µ, such
that

min
(x*, y*) ∈ S

�� (x, y)A(x*, y*) ��S⁄c [µC(1�2) ��Φµ(x, y) ��S ],

min
(x*, y*) ∈ S

�� (x, y)A(x*, y*) ��S⁄c [µC2��Ψµ(x, y) ��S ],

where S(q, M) is the solution set to LCP(q, M); that is,

S(q, M )G{(x, y): MxAyCqG0, xTyG0, x¤0, y¤0}.

Remark 2.3. When µG0, a similar result was established by Tseng
(Ref. 24) for the function ψµ . In addition, an Associate Editor has observed
that a similar bound can be obtained for the Chen–Mangasarian class (Ref.
20) using results from Refs. 11 and 14.

3. Noninterior Path-Following Algorithm

For βH0 and µH0, we define a slice of the neighborhood by

N (β, µ)G{(x, y): MxAyCqG0, ��Φµ(x, y) ��S⁄βµ}, (15)

and take as our neighborhood of the central path the union of all slices
over µH0, i.e.,

N (β)G*
µH0

N (β, µ).

Algorithm 3.1.

Step 0. Initialization. Let µ0H0, βH0, and (x0, y0) ∈ �2n be given, so

that (x0, y0) ∈ N (β, µ0), and choose σ i ∈ (0, 1] and α i ∈ (0, 1)
for iG1, 2.

Step 1. Computation of the Newton Direction. Let (∆xk, ∆yk) solve
the equation

Fφµk
(xk, yk)C∇ Fφµk

(xk, yk)T�∆x
∆y�G0. (16)
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Step 2. Backtracking Line Search. If Φµk(x
k, yk)G0, set (xkC1,

ykC1)G(xk, yk); otherwise, let λ k be the maximum of the
values 1, α 1 , α 2

1 , . . . , such that

��Φµk(x
kCλ k∆xk, ykCλ k∆yk) ��S

⁄ (1Aσ1λ k) ��Φµk(x
k, yk) ��S ; (17)

set

(xkC1, ykC1)G(xkCλ k∆xk, ykCλ k∆yk).

Step 3. Update the Continuation Parameter. Let γ k be the maxi-
mum of the values 1, α 2 , α 2

2 , . . . , such that

��Φ(1Aσ2γk)µk(x
kC1, ykC1) ��S⁄β(1Aσ2γ k)µk ; (18)

set µkC1G(1Aσ2γ k)µk , k_kC1, and return to Step 1.

Remark 3.1. The complexity bound that we obtain in Section 4
depends on both β and µ0. From the initialization step, we see that these
values depend indirectly on M and q. Therefore, understanding the com-
plexity bound requires some understanding of this relationship. In general,
the values of β and µ0 are inversely related. For example, consider the initial
point (x0, y0)G(0, q). In this case,

��Φµ(x0, y0) ��SGmax{1q2
i C4µ2

0Aqi �iG1, . . . , n}

⁄2(��q��SCµ0).

Therefore, the conditions in the initialization step are satisfied if

��q��S⁄ (β�2A1) µ0 . (19)

Thus, for example, if we take βG4, then we should set µ0G��q��S , while if
βG2(��q��SC1), then we can take µ0G1. In general, we should set

βG2(µ−1
0 ��q��SC1).

We now show that the algorithm is well-defined. For this, we make use
of the following lemmas.

Lemma 3.1. See Ref. 12, Lemma 1.2. For any a, b ∈ �n and µH0, one
has

��∇ 2φµ(a, b) ��⁄2�µ.
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Lemma 3.2. See Ref. 1. For any µ1¤0, µ2¤0, and a, b ∈ �, we have

�φµ1(a, b)Aφµ2(a, b) �⁄2�µ1Aµ2 �.

Lemma 3.3. Let 0⁄λ⁄1, and let (∆x, ∆y) be the solution to the
equation

Fφµ(x, y)C∇ Fφµ(x, y)T�∆x
∆y�G0.

Then,

��Φµ(xCλ ∆x, yCλ ∆y) ��S

⁄ (1Aλ ) ��Φµ(x, y) ��SC(2λ 2�µ) �� (∆x, ∆y) ��2S .

Proof. By the Taylor expansion, we have that, for i ∈ {1, . . . , n},

φµ(xiCλ ∆xi , yiCλ ∆yi)

Gφµ(xi , yi)Cλ (∇ φµ(xi , yi))
T�∆xi

∆yi
�

C(λ 2�2)(∆xi , ∆yi)∇ 2φµ(x̄i , ȳi) �∆xi

∆yi
�

G(1Aλ )φµ(xi , yi)C(λ 2�2)(∆xi , ∆yi)∇ 2φµ(x̄i , ȳi) �∆xi

∆yi
� ,

where

x̄iGxiCλ̄ ∆xi , ȳiGyiCλ̄ ∆yi , 0⁄ λ̄ ⁄1.

Using Lemma 3.1, we have

�φµ(xiCλ ∆xi , yiCλ ∆yi) �

⁄ (1Aλ ) �φµ(xi , yi) �C(λ 2�2)�(∆xi , ∆yi)∇ 2φµ(x̄i , ȳi) �∆xi

∆yi
��

⁄ (1Aλ ) �φµ(xi , yi) �C(λ 2�2) �� (∆xi , ∆yi) �� · ��∇ 2φµ(x̄i , ȳi) �� ��∆xi

∆yi
��

⁄ (1Aλ ) �φµ(xi , yi) �C(λ 2�µ) �� (∆xi , ∆yi) ��2

⁄ (1Aλ ) �φµ(xi , yi) �C(λ 2�µ) �� (∆xi , ∆yi) ��2S ,

giving the result. �
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To show that the algorithm is well-defined and implementable, we
make use of the following assumptions:

(A1) M is a P0-matrix.
(A2) Given βH0 and µ0H0, there exists a KH0 such that, for all

µ∈ (0, µ0] and x̄, ȳ ∈ N (β, µ), we have

��∇ Fφµ(x̄, ȳ)−1��S⁄K. (20)

Assumption (A2) is thoroughly discussed in Ref. 2, where it is also used
as one of the basic assumptions in the convergence analysis. As explained
in Ref. 2, this assumption is closely related to the uniqueness of the solution
to LCP(q, M). In our discussion of complexity, we make use of the following
equivalent representation for Assumption (A2).

Lemma 3.4. Let βH0 and µ0H0 be given. Then, Assumption (A2) is
satisfied if and only if there exists a CH0 such that, for all µ∈ (0, µ0 ] and x̄,
ȳ ∈ N (β, µ), and for any z ∈ �n, every solution to the equation

∇ Fφµ(x̄, ȳ)�uû�G�0z� (21)

must satisfy the bound

��uû��S⁄C ��z��S . (22)

Remark 3.2. In the next section, we assume that the matrix M is a P-
matrix and derive an estimate of the constant C appearing in this lemma.
This constant forms the basis for our complexity analysis.

Proof of Lemma 3.4. By setting CGK, we obtain the forward impli-
cation. For the reverse implication, note that Eq. (21) implies that

ûGMu and (∂xΦµ(x̄, ȳ)C∂yΦµ(x̄, ȳ)M )uGz.

Therefore, the inequality (22) implies that every solution to the equation

(∂xΦµ(x̄, ȳ)C∂yΦµ(x̄, ȳ)M )uGz

must satisfy

��u��S⁄C ��z��S ,
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or equivalently,

�� (∂xΦµ(x̄, ȳ)C∂yΦµ(x̄, ȳ)M )−1��S⁄C,

for all µ∈ (0, µ0] and (x̄, ȳ) ∈ N (β, µ). Therefore, for all µ∈ (0, µ0] and (x̄,
ȳ) ∈ N (β, µ), every solution of the equation

∇ Fφµ(x̄, ȳ)�ūû̄�G�w̄z̄�
satisfies

��ū��S⁄C (��z̄��SC2��w̄��S),

since

��∂yΦµ(x̄, ȳ) ��S⁄2.

In turn, this implies

��û̄��S⁄ ��M��S ��ū��SC��w̄��S

⁄C ��M��S ��z̄��SC(2C ��M��SC1) ��w̄��S .

Therefore,

�ūû̄ �S⁄2[2C max{��M��S , 1}C1]�w̄z̄ �S ,

for all µ∈ (0, µ0 ] and (x̄, ȳ) ∈ N (β, µ), or equivalently Assumption (A2)
holds with

KG2[2C max{��M��S , 1}C1]. �

We now show that the algorithm is well-defined and implementable.

Theorem 3.1. Let βH0, and let (xk, yk) ∈ N (β, µk) for some µkH0.
Suppose that Assumptions (A1) and (A2) hold, and let the constant C be
as given in Lemma 3.4.

(i) See Ref. 11. The Jacobian ∇ Fφµk
(xk, yk) is nonsingular. Hence, the

Newton direction in Step 1 of the algorithm exists [see (16)] and
is unique.

(ii) If Φµk(x
k, yk) ≠0, then λ k¤ λ̄ , where

λ̄ Gα 1 λ̃ , λ̃ Gmin{1, (1Aσ1)�2βC2}. (23)
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Hence, the backtracking procedure for evaluating λ k in Step 2 is
finitely terminating.

(iii) γ k¤ γ̄ , where

γ̄ Gmin{1, σ−1
2 α 2 γ̃}, γ̃ Gσ1 λ̄ β�(2Cβ). (24)

Hence, the backtracking procedure for evaluating γ k in Step 3 is
finitely terminating.

Proof.

(i) See Kanzow (Ref. 11).
(ii) Let (∆xk, ∆yk) be chosen so as to satisfy the Newton Eq. (16). It

follows from Lemma 3.3 and Assumption (A2) that

��Φµk(x
kCλ ∆xk, ykCλ ∆yk) ��S

⁄ (1Aλ ) ��Φµk(x
k, yk) ��SC(2λ 2�µk) �� (∆xk, ∆yk) ��2S

⁄ (1Aλ ) ��Φµk(x
k, yk) ��SC(2λ 2�µk)C

2��Φµk(x
k, yk) ��2S

⁄ (1Aλ ) ��Φµk(x
k, yk) ��SC(2�µk)λ 2C2βµk ��Φµk(x

k, yk) ��S

G(1Aλ ) ��Φµk(x
k, yk) ��SC2λ 2C2β ��Φµk(x

k, yk) ��S

⁄ (1Aσ1λ ) ��Φµk(x
k, yk) ��S , for all λ ∈ [0, λ̃ ].

Therefore, λ k¤ λ̄ with λ̄ Gα 1 λ̄ .
(iii) We consider two cases.

If ��Φµk(x
k, yk) ��SG0, then

xkC1Gxk and ykC1Gyk.

Thus, by Lemma 3.2,

��Φ(1Aγ )µk(x
kC1, ykC1) ��S�(1Aγ )µk

G��Φ(1Aγ )µk(x
k, yk) ��S�(1Aγ )µk

⁄ [��Φµk(x
k, yk) ��SC2γ µk ]�(1Aγ )µk

G2γ µk�(1Aγ )µk

⁄β, for all γ ∈ [0, γ̃ ].
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If ��Φµk(x
k, yk) ��S≠0, then by part (ii) and Lemma 3.2, we have

��Φ(1Aγ )µk(x
kC1, ykC1) ��S�(1Aγ )µk

⁄ [��Φµk(x
kC1, ykC1) ��SC2γ µk ]�(1Aγ )µk

⁄ [(1Aσ1 λ̄ ) ��Φµk(x
k, yk) ��SC2γ µk ]�(1Aγ )µk

⁄ [(1Aσ1 λ̄ )βµkC2γ µk ]�(1Aγ )µk

G[(1Aσ1 λ̄ )βC2γ ]�(1Aγ )

⁄β, for all γ ∈ [0, γ̃ ].

Therefore,

γ k¤ γ̄ , with γ̄ Gmin{1, σ−1
2 α 2 γ̃}. �

We now state and prove the global linear convergence result for the
algorithm described in the preceding section.

Theorem 3.2. Suppose that M is a P0-matrix, Assumption (A2) holds,
and the constant C is as given by Lemma 3.4. Let (xk, yk, µk) be the sequence
generated by the algorithm of the preceding section. Then:

(i) For kG0, 1, . . . ,

MxkAykCqG0, (25)

(xk, yk) ∈ N (β, µk), (26)

(1Aσ2γ kA1) · · · (1Aσ2γ 0)µ0Gµk . (27)

(ii) For all k¤0, we have

γ k¤ γ̄ _min{1, σ−1
2 α 2σ1 λ̄ β(2Cβ)−1}, (28)

where

λ̄ Gα 1min{1, (1Aσ1)�2βC2}.

Therefore, µk converges to 0 at a global linear rate.
(iii) The sequence {(xk, yk)} is bounded and converges to a solution

of LCP(q, M).
(iv) Take CH1, let (H0, and choose σ2 ∈ (0, 1] close enough to 1 to

ensure that

γ̄ G(1�2)σ−1
2 α 2σ1α 1(1Aσ1) (2Cβ)−1C−2.

Then, the algorithm locates a solution in the set

{(x, y): MxAyCqG0, ��min{x, y}��S⁄(}
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in

O ((2Cβ)C2 log ( −1(1C(1�2)β)µ0) (29)

steps.

Proof.

(i) We establish (25)–(27) by induction on k. Clearly, these relations
hold for kG0. Now, assume that they hold for some kH0. By Theorem 3.1,
the algorithm is well defined and so (26)–(27) hold with k replaced by
kC1. Since (16) is satisfied for all k, with

Mx0Ay0CqG0,

we have that

MxkAykCqG0, for all k,

and so, in particular, it is true when k replaced by kC1. Hence, by induc-
tion, (25)–(27) hold for all k.

(ii) This follows from Theorem 3.1.
(iii) By Assumption (A2) and part (ii), we have

�� (xkC1, ykC1)A(xk, yk) ��S

Gλ k �� (∆xk, ∆yk) ��S

⁄C ��Φµk(x
k, yk) ��S

⁄Cβµk

⁄Cβ(1Aσ2 γ̄ )k.

Therefore, {(xk, yk)} is a Cauchy sequence, which is bounded and converges
to a point (x*, y*). It follows from (xk, yk) ∈ N (β, µk) that (x*, y*) ∈ S.

(iv) It follows from Corollary 2.1 and parts (i) and (ii) that

��min{xk, MxkCq}��S

G��min{xk, yk}��S

⁄µkC(1�2) ��Φµk(x
k, yk) ��S

⁄ [1C(1�2)β] µk

G[1C(1�2)β] (1Aσ2γ kA1)· · ·(1Aσ2γ 0) µ0

⁄ [1C(1�2)β] (1Aσ2 γ̄ )kµ0

G[1C(1�2)β] µ0 [1Aδ(2Cβ)−1C−2]k,
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where

δGα 1α 2σ1(1Aσ1)�2.

To ensure that

[1C(1�2)β] µ0 [1Aδ(2Cβ)−1C−2]k⁄(,

it suffices to have

k log[1Aδ(2Cβ)−1C−2]

⁄k(Aδ) C−2(2Cβ)−1

⁄ log[({[1C(1�2)β] µ0}
−1].

Therefore,

kHδ−1(2Cβ)C2 log{( −1[1C(1�2)β] µ0},

completing the proof. �

Part (iv) of Theorem 3.2 shows that, if we can bound the constant C
by a function of M, then we can obtain a complexity bound in terms of the
problem data M, q, β, and µ0.

4. Complexity Bound

We begin by showing how the constant C in Lemma 3.4 of Section 3
can be bounded by a fundamental quantity associated with P-matrices. This
bound is the key to our complexity analysis.

It is well known that a matrix M ∈ �nBn is a P-matrix if and only if, for
every x ∈ �n and x ≠0,

max
1⁄ i⁄n

xi (Mx)iH0.

Using this fact, Mathias and Pang (Ref. 23) introduce the quantity

l0(M )_ min
��x��SG1

max
1⁄ i⁄n

xi (Mx)i , (30)

for P-matrices. They show how this quantity can be used to derive error
bounds for the linear complementarity problem. It is easy to see that
l0(M ) is well defined, finite, and positive. Moreover, for any x ∈ �n,

l0(M ) ��x��2S⁄ max
1⁄ i⁄n

xi (Mx)i . (31)
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We have the following bounds for l0(M).

Lemma 4.1. Given M ∈ �nBn, define

M̃G(1�2)(MCMT)

to be the symmetric part of M and

λ min(M̃)Gmin{λ �λ is an eigenvalue of M̃}

to be the smallest eigenvalue of M̃. Then,

n−1λ min(M̃)⁄ l0(M )⁄ ��M��S . (32)

Proof. For the upper bound we have

l0(M )G min
��x��SG1

max
iG1, . . . , n

xi (Mx)i

⁄ min
��x��SG1

��x��S ��Mx��S

⁄ min
��x��SG1

��x��2S ��M��S

G��M��S .

For the lower bound, we first observe that, when λ min(M̃)⁄0, the result is
trivially true. Therefore, we can assume that M is positive definite, i.e.,

λ min(M̃)H0.

In this case, we have

l0(M )G min
��x��SG1

max
iG1, . . . , n

xi (Mx)i

¤ min
��x��SG1

n−1xTMx

¤ n−1 min
��x��SG1

(xT���x��2)M(x���x��2)

Gn−1 min
��x��2G1

xTMx

Gn−1 min
��x��2G1

xTM̃x

Gn−1λ min(M̃),

where the first inequality follows since the maximum is always larger than
the average, the second inequality follows since

��x��2¤ ��x��SG1,
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and the second to last equality follows since

xTMxGxTM̃x. �

We also make use of principal pivotal transformations. Let α be a
subset of {1, . . . , n} and set ᾱ G{1, . . . , n}\α . By means of a principal
rearrangement, we may assume that Mαα is a leading principal submatrix
of M. The principal pivotal transform of M with respect to the index set α
is the matrix

P α (M )G�M
−1
αα −M−1

αα Mαᾱ

Mᾱ αM−1
αα M�Mαα

� , (33)

where

M�Mαα GMᾱ ᾱAMᾱ αM−1
αα Mαᾱ (34)

is the Schur complement of Mαα in M. The following two properties of the
principal pivotal transform P α (M ) can be found in Cottle, Pang, and Stone
(Ref. 25).

Lemma 4.2. See Ref. 25, Section 2.3. Let α be a subset of
{1, . . . , n}. Suppose that the principal submatrix Mαα is nonsingular and

�yα

yᾱ
�G�Mαα Mαᾱ

Mᾱ α Mᾱ ᾱ
��xα

xᾱ
�. (35)

Then,

�xα

yᾱ
�GP α (M )�yα

xᾱ
�. (36)

Lemma 4.3. See Ref. 25, Theorem 4.1.3. Let α be any subset of
{1, . . . , n}. If M is a P-matrix, then so is P α (M ).

Define

l (M )_min{l0(P α (M )) �α ⊆ {1, . . . , n}}. (37)

Since there are only finitely many principal pivotal transformations of M,
we have l (M )H0 and

l (M ) ��x��2S⁄ max
1⁄ i⁄n

xi (Pα (M )x)i , for all x ∈ �n and α ⊆ {1, . . . , n}. (38)

In addition, Lemma 4.1 gives the lower bound

l (M )¤n−1 min{λ min(P̃ α (M̃)) �α ⊆ {1, . . . , n}}. (39)
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The quantity l (M ) can be used to obtain an upper bound for the value of
C in Lemma 3.4.

Lemma 4.4. Let βH0, µH0, and x̄, ȳ ∈ N (β, µ) be given. If z ∈ �n,
then the system

∇ Fφµ(x̄, ȳ)�uû�G�0z� (40)

has a unique solution [ ū
û̄ ], and this solution satisfies

��uû��S⁄ [1Cl (M )−1]��z��S .

Proof. Let βH0, µH0, x̄, ȳ ∈ N (β, µ), and z ∈ �n be given. By Part (i)
of Theorem 3.1, the system (40) has a unique solution [ ū

û̄ ]. Set

D1Gdiag[1A(x̄iAȳi)�1(x̄iAȳi)
2C4µ2],

D2Gdiag[1C(x̄iAȳi)�1(x̄iAȳi)
2C4µ2].

Then,

∇ Fφµ(x̄, ȳ)G�M −I

D1 D2
�.

Let

αG{i�x̄iAȳi⁄0},

and let

ûG�(û̄)α

(ū)ᾱ
� , û̂G�(ū)α

(û̄)ᾱ
� , (41)

x̂G�ȳα

x̄ᾱ
� , ŷG� x̄α

ȳᾱ
�. (42)

By Lemma 4.2,

P α (M ) ûAû̂G0, (43)

D̂1 ûCD̂2 û̂Gz, (44)

where

D̂1Gdiag[1A(x̂iAŷi)�1(x̂iAŷi)
2C4µ2],

D̂2Gdiag[1C(x̂iAŷi)�1(x̂iAŷi)
2C4µ2].
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Here, it is important to note that

1C(x̂iAŷi)�1(x̂iAŷi)
2C4µ2¤1, for iG1, . . . , n. (45)

By (43),

û̂GP α (M )û.

Substituting this expression for û̂ into (44) yields

D̂1 ûCD̂2P α (M )ûGz.

Multiplying both sides of this equation by D̂−1
2 gives us

D̂−1
2 D̂1 ûCP α (M ) ûGD̂−1

2 z. (46)

Therefore,

l (M ) ��û��2S⁄ max
1⁄ i⁄n

(û)i [P α (M )û]i

⁄ max
1⁄ i⁄n

(û)i [D̂
−1
2 D̂1 ûCP α (M )û]i

⁄ max
1⁄ i⁄n

� (û)i � max
1⁄ i⁄n

� (D̂−1
2 z)i �

G��û��S ��D̂−1
2 z��S

⁄ ��û��S ��D̂−1
2 ��S ��z��S

⁄ ��û��S ��z��S ,

and so

��û��S⁄ l (M )−1��z��S . (47)

Also, by (44) and (47), we have

��û̂��SG��D̂−1
2 zAD̂−1

2 D̂1 û��S

⁄ ��D̂−1
2 ��S ��z��SC��D̂−1

2 ��S ��D̂1 ��S ��û��S

⁄ ��z��SC��û��S

⁄ [1Cl (M )−1]��z��S . (48)

Combining (47)–(48), we obtain

�� (ū, û̄) ��G�� (û, û̂) ��S⁄ [1Cl (M )−1]��z��S . �

By Lemma 4.4, one may take CG[1Cl (M )−1] in Lemma 3.4 whenever
M is a P-matrix. For simplicity, we assume that σ2G1 in the algorithm.
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Making this substitution in part (iv) of Theorem 3.2 yields the following
complexity bound.

Theorem 4.1. Assume that M is a P-matrix. Given (H0, the algorithm
of Section 3 finds a solution in the set

{(x, y): MxAyCqG0, ��min{x, y}��S⁄(}

via

O ((2Cβ)[1Cl (M )−1]2 log{( −1[1C(1�2)β]µ0}) (49)

steps, where l (M ) is defined in (37).

By making use of the relation (19) for the initial point (x0, y0)G(0, q),
we convert this complexity bound into a bound involving M and q alone.

Corollary 4.1. Let the assumptions of Theorem 4.1 hold. In addition,
assume that

(x0, y0)G(0, q), µ0G��q��S≠0, βG4.

Then, the complexity bound (49) in Theorem 4.1 becomes

O ([1Cl (M )−1]2 log(( −1��q��S)). (50)

5. Symmetric Positive-Definite Case

A drawback to the complexity bound given in Theorem 4.1 is that it
does not reveal the dependence on the dimension n. Since the constant
l (M ) depends on all of the principal pivot transforms of M, it is possible
that this constant grows rapidly with the dimension of M. In order to gain
some insight into the relationship between dimension and complexity, we
consider a very special instance of LCP(q, M). Our goal here is not necessar-
ily to improve on the bound given in Theorem 4.1, but rather to understand
how the constant C in part (iv) of Theorem 3.2 may grow as a function of
the dimension of the problem. For this, we assume that the matrix M is
symmetric and positive definite. Under this assumption, LCP(q, M) is equiv-
alent to the problem of minimizing a strongly convex quadratic function
subject to nonnegativity constraints.

The strategy in this section is to obtain a lower bound on the quantity
λ min(P̃ α (M̃)) appearing in (39) that is independent of α . This in turn yields
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a complexity bound that is independent of the principal pivot transforms of
M.

Let λ 1(M ), λ 2(M ), . . . , λ n (M ) denote the eigenvalues of M. We adopt
the convention that

λ min(M )Gλ n (M )⁄ · · ·⁄λ 2(M )⁄λ 1(M )Gλ max(M ).

In our analysis, we make use of the Cauchy interlacing theorem for real
symmetric matrices and a recent interlacing theorem due to Smith (Ref. 26)
for the Schur complement of a real symmetric matrix. Both results are stated
below for the reader convenience.

Theorem 5.1. See Ref. 26. Cauchy Interlacing Theorem. Let M be an
nBn symmetric matrix and have the partitioned form

MG�Mαα Mαᾱ

Mᾱ α Mᾱ ᾱ
� , (51)

where Mαα ∈ �rBr. Then,

λ iCnAr(M )⁄λ i (Mαα )⁄λ i (M ), for iG1, 2, . . . , r. (52)

Theorem 5.2. See Ref. 26. Let M be an nBn symmetric positive-semi-
definite matrix and have the partitioned form

MG�Mαα Mαᾱ

Mᾱ α Mᾱ ᾱ
� , (53)

where Mαα ∈ �rBr. Then,

λ iCr (M )⁄λ i (M�Mαα )⁄λ i (M ), for iG1, 2, . . . , nAr. (54)

Note that, when M is symmetric and α is any subset of {1, . . . , n}, the
principal pivotal transform P α (M ) is skew symmetric and

P̃ α (M̃)_ (1�2)[P α (M )CP α (M )T]

G�M
−1
αα 0

0 Mᾱ ᾱAMᾱ αM−1
αα Mαᾱ

� (55)

is symmetric. It is easy to see that, if M is symmetric positive definite, then
so is P̃ α (M̃). Using Theorems 5.1 and 5.2, we establish a lower bound for
λ min(P̃ α (M̃)) that is independent of α .

Theorem 5.3. Let M be a symmetric positive-definite matrix. Then,

λ min(P̃ α (M̃))¤min{λ min(M ), 1�λ max(M )}, (56)
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for any α ⊆ {1, . . . , n}.

Proof. It follows from (55) that

λ min(P̃ α (M̃))Gmin{λ min(M
−1
αα ), λ min(M�Mαα )}.

By Theorem 5.1, we have

λ min(M
−1
αα )¤1�λ max(M ),

and by Theorem 5.2, we have

λ min(M�Mαα )¤λ min(M ).

Therefore,

λ min(P̃ α (M̃))¤min{λ min(M ), 1�λ max(M )}. �

By combining Theorems 4.1 and 5.3 with relation (39), we obtain
immediately a complexity bound of

O ((2Cβ)K2 log{( −1[1C(1�2)β]µ0}), (57)

where

KG1Cn(min{λ min(M ), 1�λ max(M )})−1.

However, this bound can be improved significantly by using Theorem 5.3
to directly approximate the constant C appearing in Lemma 3.4.

Lemma 5.1. Let βH0, µH0, and x̄, ȳ ∈ N (β, µ) be given. If z ∈ �n,
then the system

∇ Fφµ(x̄, ȳ)�uû�G�0z� (58)

has a unique solution [ ū
û̄ ] and this solution satisfies

��uû��S⁄ (1C1n [min{λ min(M ), 1�λ max(M )}]−1) ��z��S .

Proof. The notation used here is the same as that used in Lemma 4.4.
From Eq. (46), we have

D̂−1
2 D̂1 ûCP α (M ) ûGD̂−1

2 z. (59)
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Therefore,

min{λ min(M ), 1�λ max(M )}��û��22

⁄λ min(P̃ α (M̃)) ��û��22

⁄ ûT
P̃ α (M̃)û

GûT
P̃ α (M̃)û

⁄ ûT(D̂−1
2 D̂1CP α (M )) û

⁄ �ûTD̂−1
2 z�

⁄ ��û��2 ��D̂−1
2 z��2

⁄1n��û��2 ��D̂−1
2 z��S

⁄1n��û��2 ��D̂−1
2 ��S ��z��S

⁄1n��û��2 ��z��S ,

and so,

��û��S⁄ ��û��2⁄1n (min{λ min(M ), 1�λ max(M )})−1��z��S .

The remainder of the proof follows the pattern given for Lemma 4.4. �

As in Theorem 4.1, this bound yields the following complexity result.

Theorem 5.4. Assume that M is a symmetric positive-definite matrix.
Given (H0, the algorithm of Section 3 finds a solution in the set

{(x, y): MxAyCqG0, ��min{x, y}��S⁄(}

via

O ((2Cβ)C2 log{( −1[1C(1�2)β]µ0}) (60)

steps, where

CG1C1n(min{λ min(M ), 1�λ max(M )})−1,

and λ min(M ) and λ max(M ) are the smallest and largest eigenvalues of M.

Although the relation (39) implies immediately that the complexity
bound given by (57) is not as sharp as that appearing in Theorem 4.1, the
complexity bounds in Theorems 5.4 and 4.1 are not easily compared. Under-
standing the relationship between these complexity bounds remains an open
question.
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