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DIFFERENTIABILITY OF CONE-MONOTONE FUNCTIONS
ON SEPARABLE BANACH SPACE
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(Communicated by N. Tomczak-Jaegermann)

Abstract. Motivated by applications to (directionally) Lipschitz functions,
we provide a general result on the almost everywhere Gâteaux differentiabil-
ity of real-valued functions on separable Banach spaces, when the function is
monotone with respect to an ordering induced by a convex cone with non-
empty interior. This seemingly arduous restriction is useful, since it covers the
case of directionally Lipschitz functions, and necessary. We show by way of
example that most results fail more generally.

1. Introduction

Directionally Lipschitz functions play an important role in optimization theory
[7], and more recently in algorithm construction [5]. It is the purpose of this
paper to establish that the results about differentiability of these functions are
well approached by establishing results of differentiability of real-valued functions
f that are K-increasing: x ≥K y implies f(x) ≥ f(y).

We call f K-decreasing if −f is K-increasing, and we call f K-monotone if it
is either K-increasing or K-decreasing. Clearly, f is K-decreasing if and only if it
is −K-increasing. Furthermore, if f is K-increasing, then it remains S-increasing
for any convex cone S ⊂ K. In particular, if K has non-empty interior, we lose
no generality in assuming it is also closed, since it contains a closed cone with
non-empty interior.

Thus, we provide a general result on the almost everywhere Gâteaux differen-
tiability of real-valued functions on separable Banach spaces, when the function is
monotone with respect to an ordering induced by a convex cone with non-empty in-
terior (Theorem 6). This seemingly arduous restriction is useful, since it covers the
aforementioned case of directionally Lipschitz functions, and necessary; we show by
way of example that most results fail more generally.

Our paper is organized as follows. Section 2 provides preliminary results about
null sets and about monotone functions. Section 3 establishes our main differ-
entiability result. Section 4 establishes the application to directionally Lipschitz
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functions. This is almost immediate after we observe that each such function lo-
cally decomposes as a sum of a monotone function with respect to an appropriate
cone and a linear function (Proposition 8). In Section 5, an application to the
computation of “random subgradients” is presented. Finally, in Section 6 various
limiting examples are given.

2. Preliminaries on measure and on monotonicity

Throughout, we consider a separable Banach space Y , partially ordered by a
non-empty closed convex cone K ⊂ Y : x ≥K y if x − y ∈ K. We make the
analogous definition for ≤K . Where clear, we write ≤ for ≤K . We write [a, b]K for
the order interval {x : a ≤K x ≤K b}.

We begin by recapturing the situation in finite dimensions. Recall that a function
is Hadamard differentiable if it is Gâteaux differentiable uniformly on norm compact
sets of directions. In finite dimensions, this coincides with Fréchet differentiability.

Theorem 1 (Monotone functions in finite dimensions [6]). Suppose that f : Rn →
R satisfies f(x) ≤ f(y) whenever xi ≤ yi, i = 1, 2, ..., n. Then:

(a) f is measurable.
(b) If, for some d with di > 0 for i = 1, 2, ..., n, the function t 7→ f(x0 + td)

is lower semicontinuous at t = 0, then f is lower semicontinuous at x0.
Similarly for upper semicontinuity.

(c) f is almost everywhere continuous.
(d) If f is Gâteaux differentiable at x0, then it is Hadamard differentiable at

x0.
(e) Let f be the lower semicontinuous hull of f . Then f is continuous at x0

if and only if f is. Similarly, f is Gâteaux differentiable at x0 if and only
if f is, and if these functions are Gâteaux differentiable, their derivatives
agree.

(f) f is almost everywhere Hadamard differentiable.

Although no Haar measure exists on an infinite dimensional Banach space, var-
ious classes of null sets can be defined and exploited; see Benyamini and Linden-
strauss [1].

The Banach space version of (c) and (f) of Theorem 1, proved below in Theorem
6, requires such a notion of a null set in a Banach space. We proceed to make
the following definitions; for details on these, and other measure-related notions
we use in the paper, we refer the reader to Benyamini and Lindenstrauss [1] (see
also Borwein and Moors [3]). Indeed, while (a) of Theorem 1 is not especially well
phrased for infinite dimensions, all the parts remain true, appropriately interpreted.
We shall only prove in detail the parts central to our main task.

Let X be a separable Banach space. A probability measure µ on X is Gaussian
if for every x∗ ∈ X∗, the measure µx∗ on the real line, defined by µx∗(A) =
µ{y | 〈x∗, y〉 ∈ A}, has a Gaussian distribution. It is additionally called non-
degenerate if for every x∗ 6= 0 the distribution µx∗ is non-degenerate. A Borel
set C ⊂ X is called Gauss null if µ(C) = 0 for every non-degenerate Gaussian
measure on X . It is known that the set of points where a given Lipschitz function
f : X 7→ R is not Gâteaux (Hadamard) differentiable is Gauss null. This, in
fact, holds for functions with values in a space with the Radon-Nikodym property
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DIFFERENTIABILITY OF CONE-MONOTONE FUNCTIONS 1069

(Benyamini and Lindenstrauss [1], Theorem 6.42), while it fails completely for the
stronger notion of Fréchet differentiability.

A larger class is that of Haar null sets. These are Borel sets A such that there
is a Borel probability measure µ satisfying µ(A + x) = 0 for all x ∈ X . In finite
dimensions these coincide with Gaussian null sets (i.e., Lebesgue null sets).

Each of these classes is closed under countable unions. This and the following
weak forms of Fubini’s theorem is what gives “nullness” its utility.

Recall that a set is universally (Radon) measurable if it lies in the completion
of the Borel σ-algebra for each Borel probability measure on X . Similarly, we say
that the set is Gaussian measurable if it lies in the completion of the Borel algebra
for all Gaussian measures on X .

Theorem 2 (“Fubini”). (a) [3] Suppose that (H,+, τ1) is a completely metrizable
Abelian group and (T,+, τ2) is a locally compact Polish Abelian group. Then for
each universally Radon measurable subset E ⊆ H × T (the product group), the
following are equivalent:

(i) {t ∈ T : (h, t) ∈ E} is a Haar-null set, for the Haar measure on T , for
almost all h ∈ H;

(ii) The set E is a Haar-null set in the product group H × T .
(b) [1] (Prop. 6.29) Suppose that E is a Borel subset of a separable Banach

space X, and suppose that there is a finite dimensional subspace F of X such that
µF ((E + x) ∩ F ) = 0 for all x ∈ X. Then E is Haar null. (Here µF is (equivalent
to) Lebesgue measure on F.)

The most immediate application of part (a) is to the case where T and H are
Banach spaces and T is finite dimensional.

While our results and definitions can be adjusted to extended real-valued func-
tions, for clarity we consider only finite-valued functions on an open set A in X .
Since the results are largely local in nature, this presents no real inconvenience.
The upper and lower Dini-derivatives of f : X 7→ R at x are given by

f+(x; v) := lim sup
t↓0

f(x+ tv)− f(x)
t

and f−(x; v) := lim inf
t↓0

f(x+ tv)− f(x)
t

.

We write f
′
(x, v) for the common limit when it exists.

We note that both f−(x; v) and f+(x; v) are K-increasing in v whenever f
is K-increasing. More significantly, we have the following two results, generalizing
Theorem 1 (b) and (e) respectively. Parts (c), (d) and (f) are established in Theorem
6.

The analogue of (a), given in Corollary 7, is a little more subtle since even on
R3 a cone-monotone function need not be universally measurable. Consider the
convex cone K generated by {(x, y, 1): x2 + y2 < 1 or (x, y) ∈ A}, where A is
any non-measurable (Lebesgue) subset of the unit circle, S, and let 1 − χ−K be
the K-monotone function which is zero for x ∈ −K and one otherwise. Let λS
be normalized Lebesgue measure on S. Then, consideration of the Borel measure
defined by µ(C) = λS(S ∩ C) shows that K is not µ-measurable and so is not
universally measurable [3].

Proposition 3. Let X be a normed space containing a convex cone K with non-
empty interior. Suppose that f is K-monotone on A, and that for some direction
d ∈ int K the function t 7→ f(x0 + td) is lower (resp. upper) semicontinuous at
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t = 0; then f is lower (resp. upper) semicontinuous at x0. In particular, f is
continuous at x0 whenever t 7→ f(x0 + td) is.

Proof. For d ∈ int K, the order interval N := [−d, d]K is a symmetric neighbour-
hood of zero. We observe that for u ∈ N and |t| < ε, we have f(x0 − εd) ≤
f(x0 + tu) ≤ f(x0 + εd), and the result follows easily. �

Proposition 4. Let X be a normed space containing a convex cone K with non-
empty interior. Suppose f is K-monotone. Let

f(x) := sup
δ>0

inf
z∈Bδ(x)

f(z)

denote the lower semicontinuous hull of f . (i) Then f is continuous at x0 if and
only if f is. (ii) Similarly, f is Gâteaux differentiable at x0 if and only f is, and if
these functions are Gâteaux differentiable, their derivatives agree.

Proof. Without loss, we may assume K is closed and we note that f is then also
K-monotone. Fix x and d ∈ int K. Let g denote the function t 7→ f(x+ td). Since
N := [−d, d]K is a neighbourhood of zero, it follows that f(x+ td) = g(t) for all t.
By Theorem 1 (e), g is continuous at 0 iff g is. In combination with Proposition 3
we have established (i).

To prove (ii), take any two directions in X , say h and k, and consider two
directions c and d in intK such that span{c, d} = F := span{h, k}. Let g denote
the function (s, r) 7→ f(x + sc + rd). Much the same argument as above shows
f(x+sc+ rd) = g(s, r) for all (s, r). We now see that f ′(x; ·) exists and is linear on
the subspace F if and only if g′(0; ·) exists and is linear, and the parallel statement
holds for f and g. Now the two-dimensional version of Theorem 1 (e) along with
Proposition 3, applied to g, shows that f and f restricted to the arbitrary two-
dimensional subspace F have the same linear gradients, so we are done. �

3. Main result

Unlike differentiability results for convex functions, where Baire category is very
useful, results about monotone functions seem intrinsically to be of a measure
theoretic nature. The following theorem may be viewed as an extension to separable
Banach space of the Lebesgue monotone differentiability theorem; see [9]. This was
extended to monotone functions on R2 by Saks [8] and first explicitly stated for
Rn in [6], although as we shall see this is really immediate from Saks’s result. A
preparatory lemma is useful.

Lemma 5. Suppose that K is a cone with non-empty interior in a normed space
X and that Y is a dense subspace of X. For each u ∈ X, there are sequences
wk, zk ∈ Y such that

(1) wk ≤K u ≤K zk and wk → u, zk → u.

Proof. Let yk ∈ Y converge to u. Since Y is a dense subspace, there is e ∈ Y ∩int K.
Then −tke ≤K u − yk ≤K tke for a sequences of real numbers tk → 0, as [−e, e]K
is a zero-neighbourhood. Then zk := yk + tke, wk := yk − tke are as desired. �

Let us introduce temporary notation, for d ∈ X :

f
′

Q(x, d) = lim
0←q∈Q

f(x+ qd)− f(x)
q

,
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DIFFERENTIABILITY OF CONE-MONOTONE FUNCTIONS 1071

when this limit exists. We also observe that when f is lower semicontinuous
−f ′Q(x,−d) = f

′

Q(x, d) = f+(x, d), while if also f is continuous, or K-increasing
with d ∈ K, then f

′

Q(x, d) = f
′
(x, d), and {x : f

′
(x, d) exists} is a Borel set since

when f is Borel measurable {
x : f

′

Q(x, d) exists
}

(2)

=
⋂
n∈N

⋃
m∈N

{
x :

f(x+ rd)− f(x)
r

<
f(x+ sd)− f(x)

s
+

1
n
, ∀r, s ∈ Q, |r|, |s| < 1

m

}
.

Theorem 6. Let Y be a separable Banach space and let K ⊂ Y be a convex cone
with non-empty interior. Suppose f : Y 7→ R is K-monotone. Then f is continuous
and (Hadamard) differentiable except at the points of a Haar (and indeed Gaussian)
null set.

Proof. Without loss of generality, suppose f is K-increasing. We begin by assuming
f is lower semicontinuous. One argument uses [6], but we proceed directly. We
prove the result in the Haar case. The Gaussian version appears in [4].

Let S be a countable dense subset of int K that is Q-convex (i.e., closed under
sums and positive rational multiples). For h, k ∈ S define

(3) D(h, k) := {x : f ′Q(x, v) exists and is linear for v ∈ spanQ{h, k} }.
i) We assert that D(h, k) is a Borel set, much as in (2), because f is lower

semicontinuous. (We may assume h and k are independent.) A monotonicity
argument now shows equation (3) also holds with spanQ replaced by spanR = span.
In fact, we can deduce

D(h, k) = {x : f ′(x, v) exists and is linear for v ∈ span{h, k} }
once we show f+(x, u) = f−(x, u) for each x ∈ D(h, k) and u ∈ span {h, k}. From
the above, we need only consider the case that u = h− αk, α > 0 (the case α < 0
is similar). Consider β ∈ Q, α < β. Now suppose rn ↓ 0 satisfies

f−(x, u) = lim
f(x+ rnu)− f(x)

rn

and select rationals qn ↓ 0 with rn(h − αk) ≥K qn(h − βk), and qn/rn → 1. It
follows that

f−(x, u) = lim inf
n

f(x+ rnu)− f(x)
rn

≥ lim inf
n

f(x+ qn(h− βk))− f(x)
qn

= f
′

Q(x, h− βk) = f
′

Q(x, u) + (α− β)f
′

Q(x, k)

= f+(x, u) + (α− β)f
′

Q(x, k).

Since 0 < α < β is arbitrary, we are done.
ii) We now show the complement of D(h, k) is Haar null. This follows from

Theorem 2 (b) and the two-dimensional version of Theorem 1. Thus,

D :=
⋂

k,h∈S
D(h, k)

has a null complement. It remains to show that f is Hadamard differentiable
at points of D. By Proposition 4 we can then drop the assumption that f is
semicontinuous.
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iii) First, we observe that for x ∈ D, λ := v 7→ f+(x, v) determines a linear
functional on any dense subspace, Z containing S, of countable Hamel dimension.
To see this, we write Z :=

⋃
n Zn for some increasing sequence Zn of subspaces of

dimension n. Now λ ∈ K+ is necessarily linear on any finite dimensional subspace
of Z because this holds on all two-dimensional subspaces (3), since S was supposed
Q-convex.

Next we observe that λ is continuous on Z. We fix e ∈ Z ∩ int K and write

λ(y) = f
′

Q(x, y) ≤ f+(x, e) <∞
for all y in the zero neighbourhood [−e, e]K ∩ Z. Hence, λ is bounded above on a
neighbourhood of the origin and necessarily is continuous.

iv) It follows that λ extends to a continuous linear function on Y , which we still
denote by λ . It remains to show that λ is indeed the Gâteaux derivative of f at
x. To show this we fix x ∈ Y and then appeal to Lemma 5. For wk and zk as
guaranteed by (1) we may write

f+(x, u) ≤ f+(x, zk) = λ(zk)→ λ(u),
f−(x, u) ≥ f−(x,wk) = λ(wk)→ λ(u),

and in combination these show

f+(x, u) ≤ λ(u) ≤ f−(x, u).

Thus, the Gâteaux derivative indeed exists as claimed.
v) In particular, for d interior to K and for x in D, t 7→ f(x+ td) is continuous

at 0. Then, Proposition 3 establishes that f is indeed continuous at each x ∈ D.
vi) Finally, we confirm that (with no semicontinuity or separability assumption),

since K has non-empty interior, λ is also the Hadamard derivative of f at x. This
relies on the fact that for ε > 0, if dn → d and tn → 0, then

f(x+ tn(d+ εe))− f(x)
tn

≥ f(x+ tn dn)− f(x)
tn

≥ f(x+ tn(d− εe))− f(x)
tn

for n large and e ∈ int K. Now we observe that

lim inf
n

f(x+ tn dn)− f(x)
tn

≥ λ(d− εe),

lim sup
n

f(x+ tn dn)− f(x)
tn

≤ λ(d+ εe),

and let ε go to zero. �

We complete the section by establishing the Banach space version of Theorem 1
(a).

Corollary 7. Let Y be a separable Banach space and let K ⊂ Y be a convex cone
with non-empty interior. Suppose f : λ→ R is K-monotone. Then f is Gaussian
measurable.

Proof. Fix r ∈ R and write L := {x : f(x) < r} and let N denote a Gaussian
null Borel set such that {x : f(x) < f(x)} ⊂ N , as exists by Theorem 6. Let
M := {x : f(x) < r, x 6∈ N}. Then M is Borel and

M ⊂ L ⊂M ∪N,
where N is null for all Gaussian measures. �
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We are now ready for our applications.

4. Applications to directionally Lipschitz functions

We call a locally lower semicontinuous function f : A → R fully directionally
Lipschitz at x in direction u if there is ε > 0 such that for ‖h−u‖ ≤ ε, ‖z−x‖ ≤ ε,
and 0 < t ≤ ε one has

(4)
f(z + th)− f(z)

t
< M,

for some finite number M . Recall that f is directionally Lipschitz if inequality (4)
holds under the additional assumption |f(z) − f(x)| ≤ ε. Thus continuous direc-
tionally Lipschitz functions are fully directionally Lipschitz. Notice, in particular,
that every (globally) Lipschitz function is (globally) fully directionally Lipschitz in
all directions. It is now an easy matter to establish:

Proposition 8. A locally lower semicontinuous function f on A is fully direction-
ally Lipschitz if (and only if) it is locally representable as

f = g + l

where g is monotone with respect to a convex cone with interior (and bounded base),
and l is linear. Moreover, if the function is globally (fully directionally) Lipschitz
on A, then such a decomposition holds globally.

Proof. Suppose f is fully directionally Lipschitz at x in direction u, so inequality
(4) holds. We can assume ‖u‖ = 1, and ε < 1/4. Choose a norm-one continuous
linear functional φ such that φ(u) > 1− ε. Denote the closed unit ball in X by B.
Then all y ∈ u+ εB satisfy φ(y) > 1− 2ε and ‖y‖ ≤ 1 + ε, and hence φ(y) > ε‖y‖.
The closed cone K generated by u+ εB is convex, and we see that φ(k) ≥ ε‖k‖ for
all k ∈ K.

Now suppose ‖z−x‖ ≤ ε and k ∈ R+(u+ εB) ⊂ K with ‖k‖ ≤ ε/2. Then k = th
for some t ∈ R+ and h ∈ u+ εB, so ‖h‖ ≥ 1− ε, and hence

t =
‖k‖
‖h‖ ≤

ε

2(1− ε) < ε.

By our fully directionally Lipschitz assumption, we deduce

f(z + k)− f(z) = f(z + th)− f(z)

< Mt ≤ Mφ(th)
ε‖h‖ ≤ Mφ(k)

ε(1− ε) <
2M
ε
φ(k).

Lower semicontinuity now implies

f(z + k)− f(z) ≤ 2M
ε
φ(k)

whenever ‖z − x‖ ≤ ε and k ∈ K with ‖k‖ ≤ ε/2. If we now define the continuous
linear functional l := 2ε−1Mφ, then the function g = f − l is locally K-decreasing.

The converse is immediate, and the global analogue follows by much the same
argument. �

Notice that the above result fails for the real function

f(x) =
{

0 if x ≤ 0,
1−
√
x if x > 0,

which is directionally Lipschitz but not fully directionally Lipschitz.
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Corollary 9. Every fully directionally Lipschitz function f on a separable Banach
space is almost everywhere Hadamard differentiable.

Proof. Since separable Banach spaces are Lindelöf spaces, it suffices to show that
the function is locally differentiable a.e. Now this is a direct application of Propo-
sition 8 and Theorem 6. �

We thus recapture the Banach space version of Rademacher’s result that locally
Lipschitz functions on Rn are differentiable a.e. (see [1]). A first consequence is that
the boundary of a convex set C with non-empty interior must be Gaussian null,
since the metric distance function, given by dC(x) := infx∈C ‖x − c‖, is Lipschitz
and non-differentiable at any boundary point of C.

We also note that part vi) of the proof of Theorem 6 actually establishes that
Gâteaux and Hadamard differentiability coincide for functions monotone with re-
spect to a cone with non-empty interior in Banach space, and also for fully direc-
tionally Lipschitz functions.

5. Random subgradients

Our interest in the differentiability of directionally Lipschitz functions arises
partly from recent work on stochastic approximations to the Clarke subdifferential.
We sketch the ideas below.

A fundamental observation due to Clarke, using the almost everywhere differ-
entiability of every Lipschitz function f on Rn, was that Clarke subgradients are
precisely the limits of convex combinations of gradients at nearby points. This
property is often the most convenient way to compute the Clarke subdifferential
∂Cf(x̄). Since, as we have seen, fully directionally Lipschitz functions share the
property of almost everywhere differentiability, we can ask whether the same idea
extends to this case. The following result gives an affirmative answer. It can be
viewed as legitimating the sampling of random (sub-)gradients.

Theorem 10 (Gradient-based approximation). Suppose that, near the point x̄ ∈
Rn, the continuous function f : Rn → R is directionally Lipschitz and absolutely
continuous on lines. If Q is a full-measure subset of a neighbourhood of x̄ consisting
of points where f is differentiable, then

∂Cf(x̄) =
⋂
δ>0

cl conv∇f(Q ∩ (x̄+ δB)).

Proof. The proof relies on Theorem 6 via Corollary 9, and is given in full in [5]. �

The example f(x) :=
√

(‖x‖ − 1)+ (for any unit vector x̄) shows that this result
may fail for functions that are not directionally Lipschitz.

Consider, then, a continuous function f : Rn → R that is directionally Lipschitz
around a point x̄. We can try to approximate ∂Cf(x̄) as follows. We choose a small
“sampling radius” δ > 0, and a random sequence of independent points x1, x2, . . .,
uniformly distributed on the ball x̄ + δB. We then construct a corresponding
increasing sequence of closed convex random sets

Ck = conv{∇f(xi) : i = 1, 2, . . . , k} (k = 1, 2, . . .).

The result above suggests that these sets may approximate ∂Cf(x̄) well. From a
variety of corroborative results along these lines, we illustrate with one.
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Theorem 11 (False positives). If the continuous function f : Rn → R is direction-
ally Lipschitz around the point x̄ and 0 6∈ ∂Cf(x̄), then for any sufficiently small
sampling radius we have

lim
k→∞

dist(0, Ck) > 0 almost surely.

This technique of approximation is useful for functions whose gradients are easy
to compute when they exist, but whose Clarke subdifferentials may be less tractable.
A good example is the spectral abscissa of a square matrix (the largest of the real
parts of the eigenvalues).

6. Limiting examples and conclusion

Examples 12. Theorem 6 and Corollary 9 fail completely outside of separable
space, when the cone has empty interior or when the directionally Lipschitz func-
tions are supposed merely Hölder continuous. This is discussed in detail in [2].
Indeed:

(1) No useful information is possible if K −K 6= X .
(2) Even continuous convex functions in non-separable spaces may be nowhere

Gâteaux differentiable, and in non-reflexive spaces may be nowhere Fréchet
differentiable.

(3) In every non-reflexive space there is a non-null (generating) cone K and a
K-monotone, quasi-convex, lsc function which is not a.e. Haar continuous
on lines, and hence is not a.e. Gâteaux differentiable. The simplest example
is the indicator function 1− χ−c+0 which is zero for non-positive sequences
in c0 and is 1 elsewhere.

(4) Perhaps the most striking open question is: Does there exist a real-valued
coordinatewise monotone continuous function on `2(N) with no points of
Gâteaux differentiability? By comparison, in `2, let J be the order interval
[−1/2n, 0]. By 6.24 in [1] this not Gaussian null. (It contains co(−en/2n.)
Let f(x) :=

√
‖x+‖2. Then for x ∈ J and h := (2−n/2) , tn := 21−n/2,

f(x+ tnh)− f(x)
tn

≥
√
xn + thn
tn

≥ 1
2

and so f is nowhere differentiable in direction h on J .

Rademacher’s theorem remains valid when the range of the function is a Banach
space with the RNP. It is not clear what is true for cone-monotone operators.

We conclude by commenting that as in [6] one can extend the results to an
extended real-valued function, say g, if one appropriately defines differentiability at
±∞. This is quite easily obtained by composing g with a function such as arctan.
Relatedly, one may exploit the fact that max(f, 0) and min(f, 0) are K-monotone
when f is.
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