IMA Journal of Numerical Analysis (2003)23, 359-375

Robust stability and a criss-cross algorithm for
pseudospectra

J. V. BURKEY}
Department of Mathematics, University of Washington, Seattle, WA 98195, USA

A. S. LEwIs]
Department of Mathematics, Smon Fraser University, Burnaby, BC V5A 15, Canada

AND

M. L. OVERTONS

Courant Institute of Mathematical Sciences, New York University, New York, NY
10012, USA

[Received on 22 October 2002; revised on 23 December 2002]

A dynamical systemt = Ax is robustly stable when all eigenvalues of complex matrices
within a given distance of the square mat#itie in the left half-plane. The ‘pseudospectral
abscissa’, which is the largest real part of such an eigenvalue, measures the robust stability
of A. We present an algorithm for computing the pseudospectral abscissa, prove global and
local quadratic convergence, and discuss numerical implementation. As with analogous
methods for calculatingl oo norms, our algorithm depends on computing the eigenvalues

of associated Hamiltonian matrices.
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1. Introduction

The spectrum of a square matrix provides crucial information about the asymptotic
behaviour of associated dynamical systems. Consider arfikgeh real or complex matrix

A, and denote thepectral abscissa of A (the largest of the real parts of the eigenvalues) by
a. Then trajectorieg(t) in R" or C" satisfyingz = Az converge to the origin faster than

&bt (for given realg < 0) if and only ifa < B. In other words, the spectral abscissa of a
matrix measures the asymptotic rate of decay of associated trajectories.

Unfortunately however, the spectrum alone may be misleading as an indicator of
dynamic properties associated with Even whena < 0 and so the corresponding
dynamical system is asymptotically stable, if complex matrices cloféh@ve eigenvalues
with positive real parts, the trajectoriegt) may exhibit large transient peaks before
converging to the origin, and may be unstable under small nonlinearities or forcing terms
in the dynamical system. By examining the eigenvalues of all complex matrices in given
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360 J. V. BURKE ETAL.

neighbourhoods of (the so-calledpseudospectra), we obtain a more robust indication
of stability. For a recent survey on pseudospectra, including a discussion of some of these
issues, see Trefethen (1999) and the references therein. The ‘pseudospectral gateway’ web-
site (Pseudospectral Gateway, 2003, http://web.comlab.ox.ac.uk/projects/pseudospectra/)
is a good general source.

Motivated by this pseudospectral philosophy, our aim in this paper is to compute the
pseudospectral abscissa of A, namely

a. = maxRe : A an eigenvalue oK and|| X — A|| < €},

where the real constamt > 0 is fixed & the outset, and - | denotes the usual matrix
operator or 2-norm. In other words, we wish to maximize the real part of a point in the
e-pseudospectrum .

Clearly, the pseudospectral absciagdas negative exactly when all matrices within a
distancee of A are stable (that is, have all eigenvalues in the open left half-plane), or in
other words, when thdistanceto instability of Ais larger thare. This distance, introduced
in Van Loan (1985), is also commonly called tbamplex stability radius (Hinrichsen &
Pritchard, 1986): computing it is a special case of calculatinglthenorm of a transfer
matrix. Specifically, theH, norm of the functionH(s) = (sl — A)~! is defined as
Hlleo = sup,er IH(w)|l, and this quantity is just the reciprocal of the distance to
instability (see for example Boyet al., 1989). In our notation,

1
<0 & ||H|wo < o

The interest of the distance to instability and tHg, norm in robust control has
encouraged broad study of algorithms for computing these quantities. The basic bisection
method for the distance to instability appeared in Byers (1988) (see also Hinrichsen &
Motscha, 1988), and was generalized tolthg norm in Boydet al. (1989). Quadratically
convergent versions soon followed (Boyd & Balakrishnan, 1990; Bruinsma & Steinbuch,
1990), and research on faster methods continues—see for exampleeGain{i998), He
& Watson (1998).

Although a very simple relationship links the pseudospectral abscissa on the one hand
with the complex stability radius on the other, using this relationship to convert an effective
algorithm for the latter into one for the former does not seem immediate. A basic bisection
method for the pseudospectral abscissa, akin to that of Byers (1988), appears iretBurke
al. (2003).

In this paper we present a globally and locally quadratically convergent algorithm for
computing the pseudospectral abscissa, motivated by the algorithms referenced above for
the complex stability radius artd., norm. Like them, the new algorithm depends heavily
on computing eigenvalues of Hamiltonian matrices. Unlike those algorithms, however,
the new method relies on a ‘criss-cross’ procedure to explore the possibly complicated
two-dimensional geometry of the pseudospectrum. Extensive numerical tests suggest the
algorithm is fast, accurate and reliable, and should prove a helpful tool in robust stability
analysis.
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2. Cross-sections of the pseudospectrum

We begin with some notation. As before, we consider a fireloy-n matrix A, and a
fixed reale > 0. The €-)pseudospectrum oA is then just the set of eigenvalues of
complex matrices whose 2-norm distance frédns no more thare. However, while this
is a conceptually simple approach to the pseudospectrum, an equivalent definition is more
helpful computationally.

Let us define a functioh : R> — R by

h(x, y) = omin(A— (X + |y)|) — €,

whereonmi, denotes the smallest singular value and i is the imaginary unit. We can then
define the €-)pseudospectrum ok equivalently as the set

{(x,y) e R :h(x,y) < 0)
(see for example Trefethen, 1999). Analogously, we definstthet pseudospectrum as
{(x,y) € R*: h(x, y) < 0}.
With this notation, the pseudospectral abscissA &f given by
ae = max(x : (X, y) € R% h(x,y) <O0}.

The algorithm we present relies heavily on a step we caediical search: for a fixed
real x, we look for real zeros of the functioh(x, -). For this purpose, the following easy
and well-known result (going back to Byers, 1988) is fundamental for us, both theoretically
and computationally.

LEMMA 2.1 (Hamiltonian eigenvalues) For real numbersndy, the number > 0O is
a singular value of the matriA — (x + iy)l if and only if iy is an eigenvalue of the
Hamiltonian matrix

Xl — A* €l i| 2.1)

H(X)Z[ —l A=xI

This holds in particular ih(x, y) = 0.

Consider a fixed red. It follows immediately from this lemma that the functibgx, -)
can have at mostrereal zeros. To find them all, we compute all the imaginary eigenvalues
{iyj} of H(x), discarding any for whiclrmin(A — (X +iyj)1) < €. The resultingy; } are
all the desired zeros ¢f(x, -).

We distinguish two types of zeros of the continuous real functjomn—> h(x, y):
crossing zeros, where the function changes sign, and-crossing zeros, where it does
not. Notice thath(x, y) > 0 wheneveny]| is sufficiently large. So if we write out a non-
decreasing list of the zeros, writing non-crossing zeros twice, then the list will be even in
length, say Bh(x), and we can write it as

[1(x) < ur(X) <l2(X) < U2(X) < -+ - < Umo (X). (2.2)
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If one of the inequalities holds with equality, any immediately neighbouring inequality is
strict. We havénh(x, y) < Ofor y in the set

m(Xx)
(I (X), uj(x))
=1

I

(which we can think of as a vertical ‘cross-section’ of the strict pseudospectrum), and
h(x, y) > Ofor yin the set

m(x)—1

(=00, 1100 U [ Wj00,1j4100) U (U, 00).
j=1

The following result is useful for distinguishing crossing and non-crossing zeros.
Recall that a singular value of ann-by-n matrix B is simpleif o2 is a simple eigenvalue
of B*B. If o > 0, this is equivalent te- being a simple eigenvalue of the Hermitian matrix

& o)

We remark that, generically, we expect the matfixxo have the property thak — zI has

all simple singular values for all complex To see this, we argue as follows. Denote the
real vector space af-by-n Hermitian matrices byi". This vector space has dimensioh
The subseH g of matrices with a multiple eigenvalue has dimensidn- 3 (aresult going
back to von Neumann & Wigner, 1929). Hence for a generic matrtke two-dimensional
manifold

{(A—zl)*(A—2zl):ze C} c H"

will not intersectH{, and soA — zI has all simple singular values for all complex

In the case when the matriR is real, the argument needs slightly more care. In
this case, the relevant space consists ofrth®y-n real symmetric matrices, which has
dimensionn(n + 1)/2. The subset of those matrices having a multiple eigenvalue equal
to €2 has dimensiom(n + 1)/2 — 3, and hence again will typically miss the two-
dimensional manifold above. Thus for a generic real mafixat every complexz
satisfyingomin(A — zl) = ¢ this smallest singular value is simple.

Of course, there are non-generic examples of matédgeeal and complex, for which
a multiple omin(A — zl) occurs for some. In particular, this occurs wheA is normal
(AA* = A*A). In this case, the pseudospectrum is simply the union of discs with
radiuse and so, as long a8 has at least two distinct eigenvalues, the boundary of the
pseudospectrum must be non-smooth for sufficiently largeith the non-smoothness
occurring at pointg for which omin(A — zl) is multiple.

LEMMA 2.4 (crossing versus non-crossing zeros) Given real numbarg yp, suppose
that iyp is an eigenvalue of the Hamiltonian matrbk(x), and that the singular value
omin(A — (X + iyp)l) is simple and equals. Thenyy is a crossing zero of the function
h(x, -) if and only if the eigenvalueypy has odd algebraic multiplicity.
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Proof. If the eigenvalueyy has algebraic multiplicityn, then the functionp : R — C
defined by

— A* —iyl el ]

. I
p(y)=det(H(x>—|yl)=det[ S A—xl —iyl

satisfies

p(y) ~ B(y — yo)™ for y close toyo,

for some non-zer@ e C. But by multiplying the firsih rows of the above determinant by
—1 and then interchanging them with the corresponding senaod/s, we obtain

_ —el A—(X+iy)l
P(Y) = det[ (A= (X+iyl)* —el ]
n

= D[ Jloj (A= x+iy)) = elloj (A= (x+iy)1) +e]

=1

whereoj (-) denote the singular values, listed by multiplicity. In particyas real-valued,
and so changes sign g if and only if the multiplicitym is odd.

On the other hand, for all reglclose toyp, each factor in the above product is strictly
positive, except the single factor

omin(A— (X +1iy)l) —e = h(x, y).

Hence for sucty, the signs ofp(y) andh(x, y) are related by a factor ¢f~1)", and the
result now follows. O

In addition to the vertical search, our algorithm also relies dwrézontal search: for
fixed realy, we look for the largest real zero of the functitu-, y). For this purpose, the
following result, quite analogous to Lemma 2.1 (Hamiltonian eigenvalues), is fundamental.

LEMMA 2.5 (horizontal search) For real numberandy, the numbeg > 0 is asingular
value of the matrixA — (x + iy)| if and only if ix is an eigenvalue of the Hamiltonian

matrix
~ o [iAT—yl el
H(y)—[ —el iAtyl ]

This holds in particular ih(x, y) = 0. Furthermorex is the largest real zero of(., y) if
and only if ix is the imaginary eigenvalue &f (y) with largest imaginary part.

Proof. The singular values of the matri — (x +iy)| are the same as those of
iI(A—X+iyhH) =iA—(—-y+ix)I.

Now applying Lemma 2.1 (Hamiltonian eigenvalues) withx, andy replaced by A, —vy,
andx respectively proves the first statement. The second is an immediate consequence.
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To prove the last statement, we first make a subsidiary clainx’ifsian imaginary
eigenvalue of the matri¥ (y), then the functiorh(-, y) has a real zero greater than or
equal tox’. To see this, observe thatis a singular value of the matri& — (x’ +iy)l, so

€ 2 O'min(A - (X/ + Iy)l) = h(X/a y) + 67

and hencén(x’, y) < 0. Since the functiox € R — h(x, y) is continuous, and positive
for large values ok, it must have a real zero > X'.

Returning to the last statement, supprs$ethe largest real zero bf-, y). Then k is an
imaginary eigenvalue of the matrbt(y). Furthermore, for any other imaginary eigenvalue
ix’, the claim we proved above shows the existence of a realxes x’ for h(-, y). But
by assumptionx > x”, so x must be the imaginary eigenvalue with largest imaginary
part.

Conversely, suppose’iis the imaginary eigenvalue of the matmq((y) with largest
imaginary part. Again using our claim, the functibq, y) has areal zera > x’. But then
ix is an imaginary eigenvalue &f (y), so by assumption we must in fact haxe= x’. We
have therefore shown that is a real zero oh(-, y). Finally, if x” is any other real zero,
then X’ is an imaginary eigenvalue ¢f (y), so by assumptionx” < x, which concludes
the proof. O

To analyse our algorithm we need the following technical result. It states that any
vertical line of points with first coordinate strictly between the spectral abscissa and the
pseudospectral abscissa must intersect the strict pseudospectrum.

THEOREM 2.6 (non-degenerate components) For any seal the interval(«, a¢), there
exists a realy such thah(x, y) < 0.

Proof. Using Burkeet al. (2003, Theorems 4.5 and 5.1), there exists a continuous path in
the complex plan€ from an eigenvalue oA to an endpoint with real patt., and with

the exception of this endpoint, the path lies entirely in the strict pseudospectrum (using the
natural identification oR? andC). Clearly the vertical line of points with first component

X must intersect this curve, and the result follows. O

3. Computing the pseudospectral abscissa

The simple method we describe in this section is motivated by an algorithm of Boyd &
Balakrishnan (1990). Consider the minimization problem

= Minomin(A — yil)
yeR

(a special case of the problem they consider). Their approach, in outline, is as follows.
Given a current estimatg > f, find all realy satisfyingomin(A — iyl) = u, using
Lemma 2.1 (Hamiltonian eigenvalues). Denote the solutiongi1b¥ yo» < --- < Yom,

listing non-crossing solutions twice, analogously to the list (2.2). Now update

Y2j—-1+ ¥2j ”)

n= mjinomin(A— >
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and iterate. Geometrically, this method amounts to considering intersection points of the
graph of the functiory — omin(A — yil) with various horizontal and vertical lines. The
iterates converge globally and locally quadraticallyit@Boyd & Balakrishnan, 1990).

Our algorithm for computing the pseudospectral abscissases a similar approach.
It depends on finding zeros of the functidm, -) (for fixed realx) andh(-, y) (for fixed
real y) as we described in the previous section, by computing the imaginary eigenvalues
of associated Hamiltonian matrices. Figures illustrating the behaviour of the algorithm on
two examples may be found in Section 6, where implementation issues are also discussed.

ALGORITHM 3.1 (criss-cross method)

1. Initializet X! = o andr = 1.
2. Vertical search: Find all zeros

L <u < <ul <<y

N

of the functionh(x", -), listing non-crossing zeros twice.
3. Horizontal searches: For eachj = 1,2, ..., m", define

r r
Ij+uj
2 b

r

Y| =

and find the largest zenq of the functionh(., yg).
4. Update: Define

X =maxxf:j=12...m}
increment by one, and return to Step 2.

Notice that, with the notation of the list (2.2), we havé = m(x"), IE =1j(x"), and
u’ = uj(x"). Notice also that ifk is any maximizing choice of the indek in Step 4
(Update) of therth iteration of the algorithm, then in Step 2 (Vertical search) of the next
iteration,y, must appear in the list of zeros of the functiopx' +1, ..

The vertical search is, as already noted, accomplished by computing the imaginary
eigenvalues oH (x") and discarding those that correspond to singular values large¢ than
This avoids unnecessary horizontal searches in the next step. On the other hand, there is no
need to check the correspondence between imaginary eigenvall:rb(sy;c)fand singular
values during horizontal searches; all we need is the imaginary eigenvalue with largest
imaginary part, by Lemma 2.5 (horizontal search).

THEOREM 3.2 (global convergence) The criss-cross method generates increasing iterates
x", with limit the pseudospectral abscisga

Proof. First observe that the new iteraté™! generated in Step 3 is a zerotuf, yjf) for

some indexj, and sox' 1 < «.. It follows by induction thak" < «. for allr.

At each iterationr, if I' = u} for eachj then the vertical line of points with
first componentx” misses the strict pseudospectrum entirely, so by Theorem 2.6 (non-
degenerate components) we dedxce- o, and we have nothing more to prove. If, on the
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366 J. V. BURKE ETAL.

other handlg < urj for somej, thenh(x", yjf) < 0, and sox"*1 > x". So we can assume
that the sequeng&") is strictly increasing, and bounded above strictlyay

Suppose, by way of contradiction, thet approaches a limik® < «.. Since the
numberam, are uniformly bounded (byrf), we can choose a subsequefisoa the natural
numbersN such thatm, equals some constant for all indicesr in S, and such that for
some cluster pointg®, us® andy;* (for j = 1,2,... . m) we have

r
J

o0

r
| P

[ = 15°, U - u°, andyj — y{° asr - o0in S.

For any real € [0, 1] we know
hx', ulj + (1 — wuf) <0,
so by continuity we deduce
h(x>, ul§° + (1 - wuf®) < 0.

Hence

h(x*,y) <0 Whenevell‘j’O <y« uj"’.

If Ij’o < uj’o for some index, thenlfo < yJg>o < uJ@, SO
I9° < yj < uf® foralllarger € S.

For such an index we deducén(x*°, yjf) < 0, so by the definition of the horizontal search

process we must have the contradictdm! > x®.
Thus we can assume

I7° =uf® foreachj =1,2,....m. (3.1)

But sincex < X*° < «a¢, Theorem 2.6 (non-degenerate components) implies the existence
of a realy® satisfyingh(x*°, y*°) < 0. By continuity, there exists > 0 such that

h(x, y) < 0 whenever|x — x*°| < § and|y — y*°| < §.
But then for all large we have
h(x",y) < 0 whenever|y — y*| < §,

so there must exist an indgxsuch tha’urj — IE > 28, contradicting (3.1). O

A bisection method for computing the pseudospectral abscissa was presented in Burke
et al. (2003). As we show below, the criss-cross method has the added merit of local
guadratic convergence.
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4. Theboundary of the pseudospectrum

To prove quadratic convergence, we need to study the boundary of the pseudospectrum
near a local maximizer for theseudospectral abscissa problem

ae = maxx : (x,y) € R%, h(x,y) <0}.

The following result is central to our analysis. It gives a local description of the
pseudospectrum, using a single real-analytic function.

THEOREM4.1 (simple singular values) For any poiliko, Yo) € R?, if the smallest
singular value of the matriA — (xg + iyo) ! is simple, then the functioh is real-analytic
near(Xo, Yo), with gradient

Vh(xo, Yo) = [-Re(u*v), Im (U*v)] (4.2

for any consistent pair of unit left and right singular vectors € C" corresponding to
the smallest singular value. Suppose furthermore hiigi, yo) = 0, and R&u*v) < 0.
Then there is a functiori : R — R, real-analytic near zero, such that

B Im (u*v)
Re(u*v)’

and the signs of the functiortsx, y) andx — xg + f(y — yp) coincide for all points
(X, y) € RZ close to(xg, Yo).

f(0) =0 f'0=

Proof. The matrix

S(p,q):[ 0 A—(p+igl }

A" — (p—ig)l 0

has a simple eigenvalugnn(A — (Xo + iyo)|) when the parametdip, q) € C? equals
(X0, Yo)- SinceS(p, q) depends linearly otp, q), this eigenvalue.(p, q) is a holomorphic
function of (p, q) (see Kato, 1982). Furthermore, for reahndy we have

X, Y) = omin(A— (X +iy)1) = h(X,y) + €.

Hence the functiom is real-analytic neafxo, Yo)-
The unit (left and right) eigenvector of the Hermitian mat8g, yo) corresponding
to the eigenvaluémin(A — (Xo +iyo)l) is

=34

Now standard perturbation theory (Kato, 1982) shows that the partial derivatives of the
functionsa : C2 — C andh : R2 — R at(xo, yo) are

* 0 -1 *
)\p(X07 yO) = hX(X07 YO)ZU) |: —I 0 ]w = _Re(u U)

Lq(Xo0, Yo) = hy(Xo, Yo) :w*[ i? _(;I }w = Im(u*v)

as required.
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Now, since by assumption the partial derivativg(xo, Yo) is non-zero, the equation
A(p,q) = € definesp(q) as a holomorphic function af near the poinixo, yo) € C?
(see Dienes, 1957, for example). On the other hand, $ipee, Yyo) is non-zero, we could
equally well apply the classical implicit function theorem to the real equdtigny) = 0O,
to definex(y) as a real function of near the pointxg, yo) € R2. The two functionsp(y)
andx(y) must coincide for reay, so the function we obtain is real-analytic.

Thus there is a functioffi : R — R, real-analytic near zero, such thit0) = 0 and

hxo— f(y—yo),y) =0

for all realy close toyp. The formula forf’(0) follows easily by the chain rule.
Finally, notice that

hx(xo — f(y —Yo).y) > 0

for all real y close toyp, Snce the left-hand side is continuousynand strictly positive
wheny = yg. Hence we deduce

hix,y) >0 & Xx>xo— f(y—vyo)
holds for all pointx, y) € R? close to(xo, Yo). O

To paraphrase, under the assumptions of the theorem the pseudospectrum is defined
near the pointxo, yo) by the real-analytic inequality

X — X0 < —f(y— o), (4.2)

and locally the functiorh is zero exactly at pointéx, y) where this holds with equality.
(Clearly, with identical assumptions except that(Rev) > 0, the same result holds, except
that now the functioni(x, y) andx — xo + f (y — Yyo) have opposite signs.)

We now introduce the idea of a regular point for a matrix. Regular points are ‘non-
degenerate’ in the sense of Burdteal. (2003). However, unlike hon-degenerate points, a
regular point must correspond to a simple smallest singular value.

DEFINITION 4.4 (regularity) We call a poinéxo, yo) € R? regular for the matrixA if the
matrix A — (xo + iyp)| has a simple smallest singular value with corresponding unit left
and right singular vectons, v € C" satisfyingu*v # 0.

If the point(xo, Yo) is regular, we see by Theorem 4.1 (smallest singular values) that the
functionh is real-analytic aroungxg, yo), with non-zero gradient. Our main interest is in
maximizers for the pseudospectral abscissa problem: when a local maximizer is a regular
point, the local structure of the pseudospectrum is easy to describe, as the following result
shows.

COROLLARY 4.5 (local maximizers) Suppose that the poiixb, yo) € R? is a local
maximizer of the pseudospectral abscissa problem, and is regular. Then there is a function
f : R — R, real-analytic around zero, such that

f(0)=0, {0 =0,..., f%* V0 =0, {0 >0 wherekeN, (4.3

and such that the signs of the functidn, y) andx — xo + f (y — yo) coincide for all
points(x, y) € R? close to(xo, Yo).
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Proof. By Theorem 4.1 (simple singular values), the functiois real-analytic around
(X0, Yo). If a vectord € R2 satisfied - Vh(xg, Vo) < 0then by the chain rule, for all small
realt > 0 we have

h((Xo, Yo) + td) = h(xo, Yo) + t(d - Vh(xo, yo)) + O(t?) < 0

so the point(Xg, Yo) + td lies in the strict pseudospectrum. Sinee), yo) is a local
maximizer, we deduced; < 0. It follows easily thatVh(xg, Yo) is a positive multiple
of the vector(1, 0).

Now by (4.1), for unit left and right singular vectotsand v corresponding to the
smallest singular value, weknow u*v is real and negative. Hence Theorem 4.1 shows the
existence of the real-analytic functioh satisfying f (0) = 0 = f’(0) such that, near the
point (Xg, Yo), the pseudospectrum is defined by inequality (4.2). But now we know that
the origin is a local maximizer for the problem

max{s:s< —f(), s,t eR},

and property (4.3) now follows by considering the Taylor expansion of the fundtion
around zero. O

5. Quadratic convergence

Our technique for proving quadratic convergence is based on an analogous idea in Boyd &
Balakrishnan (1990). The key tool is the following result.

LeEmmA 5.1 (bisection) Consider a functioh : R — R that is real-analytic around zero
and satisfies property (4.3). Construct a positive real sequenrcieratively by choosing

an initial small positivayg and then, for each index= 0, 1, 2, ... ., defining
a+a
vry1=f ( 2 ),

where( and i are the two small solutions of the equatiéu) = v;. Then there exists
a constantM such that 0< vry1 < Mv,2 for all r, so0 the sequencév;) decreases
quadratically to zero.

Proof. For small realu we have the Taylor expansion
f(u) = pu + O+

for some reals > 0. For some smalf > 0 we know that the functionf is strictly
decreasing of—4é, 0] and strictly increasing of0, §]. Hencef has inverse functionp :

[0, f(—8)] — [-6,0] andq : [0, f(8)] — [0, §]. These functions have Puiseux series
expansions (Dienes, 1957, p. 246), so a simple calculation shows

p(v) = —p~ Y2 112K L o l/k
qv) = B~ Y2V L ok
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for smallv > 0. Since

a+0a ur) +gv
= p(ur) . q(vr) _ O(vrl/k),
we deducey 41 = O((vt/*)%) = O(v?), asrequired. O

By applying this result at each global maximum in the pseudospectral abscissa
problem, we obtain a quadratic convergence result for the criss-cross method, assuming
regularity (see Definition 4.4).

THEOREM5.2 (quadratic convergence) If each global maximizer in the pseudospectral
abscissa problem is regular, then the criss-cross method produces ixérttasincrease
to the pseudospectral abscisgawith locally quadratic rate.

Proof. Theorem 3.2 (global convergence) shows tkiatincreases tax.. Suppose the
global maximizers ar@x., yj) (for j = 1,2, ..., m). By Corollary 4.5 (local maximizers),
near the pointe., yj) the pseudospectrum can be defined by a single inequality of the form

X—ae < —=fj(y—-yj,

where each functiorfj : R — R is real-analytic around zero and satisfies property (4.3).
We now apply Lemma 5.1 (bisection) to each of these functibpsWe deduce the
existence of constantsl, Mo, ... , My, such that

o — X1 < Mj (ate — Xr)2
for each index and for all large . The result now follows. O

Remarkably, quadratic convergence for the algorithm of Boyd & Balakrishnan (1990)
needs no regularity assumption. Analogously, we conjecture that the criss-cross method
always converges quadratically even without the regularity assumption of the above result.

6. Numerical implementation

We have implemented the criss-cross method ismag and tested it extensively. The key
computational step is finding the eigenvalues of the Hamiltonian matrces (which is

real if A is) andH (y) (which is complex even ifA is real). Hamiltonian matrices have
eigenvalues that are symmetric with respect to the imaginary axis, so all non-imaginary
eigenvalues occur in pairs and the number of imaginary eigenvalues is always even (since
the order of the matrix is even). We use real and complex implementations (Benner
al., 1999, 2000) of Van Loan’s square-reduced algorithm (Van Loan, 1984), which takes
advantage of Hamiltonian structure and delivers eigenvalues that are exactly symmetric
with respect to the imaginary axis. As noted in Byers’ original paper (Byers, 1988), this
property is important if one wishes to be able to reliably determine whether a Hamiltonian
matrix has an imaginary eigenvalue. To be more specific, suppose that for a given iteration
r, the zeros{lg, urj} are all crossing zeros (so are distinct), and furthermore that their
numerical values are well separated. Suppose also that for each zero, the corresponding
imaginary eigenvalue of the Hamiltonian mattik(x") is simple. Then the specialized
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Hamiltonian eigenvalue solver delivers the imaginary eigenvalues with real parts exactly
equal to zero, uncontaminated by rounding errors, since small Hamiltonian perturbations
to H(x") cannot move a simple imaginary eigenvalue off the imaginary axis.

However, this observation does not hold in the limit as the algorithm converges. Let
(ae, §) denote a maximizer of the real part over the pseudospectrum. Clgasly non-
crossing zero oh(ae, -), and consequently the imaginary eigenval§ieof H(«.) has
multiplicity two (or possibly higher in non-generic cases). Forxall< «a, there is a pair
of crossing zeros, sdy, u", with u" —I" — 0 asr — oo. As the algorithm converges,
it becomes progressively more difficult to detect numerically whether the Hamiltonian
matrix has two distinct but close imaginary eigenvalues, a double imaginary eigenvalue, or,
because of rounding errors, a pair of distinct but close nonimaginary eigenvalues with the
same imaginary part; all these scenarios are consistent with the Hamiltonian structure. In
our implementation, we simply terminate the algorithm as soosither the eigensolver
fails to return an exactly imaginary eigenvalue in the vertical search of Step the
horizontal search of Step 3 returdst! < x". The occurrence of either event indicates that
the accuracy limits inherent in floating point arithmetic have been reached. Furthermore,
one of these eventsust occur eventually in floating point arithmetic, and, because of
the quadratic convergence, typically occurs within 3 to 5 iterations. We have not found it
necessary to use tolerances for either test.

A crucial advantage of the specialized Hamiltonian eigensolvers is that the property
that the number of imaginary eigenvalues is even holds in the presence of rounding errors.
This is essential for the criss-cross algorithm, because any loss of parity in the pair structure
displayed in (2.2) may cause the algorithm to fail. The vertical search in the ideal algorithm
without rounding discards imaginary eigenvalugsfor which omin(A — (x +iyj)1) < €.

In the presence of rounding, it is tempting to introduce a tolerance into this inequality, but
this can create trouble if there is more than one singular value clasdttts much more
reliable to check whethermin(A — (x +iyj)1) is the singular value oA — (x +iyj)l

that is closest te, discarding they; for which this is not the case. Discards must take
place in pairs, a property that is automatic if the matrix is real, since then the eigenvalues
are also symmetric with respect to the real axis. Clearly, when the matrix is real, it is not
necessary to carry out horizontal searches in both the lower and upper half-planes.

There is a further subtlety, which is well illustrated by an example of Demmel (1987),

-1 -5 -25 -125 -625

0 -1 -5 -25 -125

A= 0O 0 -1 -5 =25
0O O 0 -1 -5

0O O 0 0 -1

The matrixA has only one eigenvalue,1. The smooth curve in Fig. 1 shows the boundary

of the pseudospectrum &k for ¢ = 0-01, generated by the software package EigTool
(Wright, 2002). (The legend on the right indicates that }gg) = —2.) The plot allows us

to immediately estimate the value @f§.01(A) to low accuracy, but not to high accuracy,

since the computation depends on interpolatioshgf( A—(x+iy) ) on a two-dimensional

grid. Superimposed on this pseudospectral plot are line segments, crosses and plus signs
that clearly illustrate the vertical and horizontal searches in Steps 2 and 3 of the criss-
cross method to computgp.p1(A). In this example, the first vertical search finds two

Downl oaded from https://academ c. oup.conlinajnal/article-abstract/23/3/359/830469
by University of Washington user
on 14 November 2017



372 J. V. BURKE ETAL.

-2t 1

dim =5

-3
-6 -5 -4 -3 -2 -1 0 1

FiG. 1. Computing the pseudospectral abscissa for the Demmel example.

TABLE 1 Iterates for the Demmel example

rox m’ y; A

1 —1.000000000000000 1 -000000000000000 —

2 —0283307773738337 2 —1.151342702176112 -151342702176112
3 0110378777480711 2 -—-1.328011519739448 -328011519739448
4 0122855725365556 2 —1.327743418800731 -327743418800731
5 0122855754071588 2 —1.327743418079968 -327743418079968
6 0122855754072 281 O — —

crossing zeros, with, sinca is real,|? = —ul, soy! = 0 and hence the first horizontal

search takes place along the real axis. For many real matrices, the resulting(itéraje
would be optimal and the algorithm would correctly terminate, but in this example®)
is a stationary point, but not a maximizer, of the real part over the pseudospectrum.
Since A is real, 0 is a non-crossing zero bfx2, -), and 0 is a double eigenvalue of the
Hamiltonian matrixH (x2). In addition,h(x2, -) has two crossing zeros respectively at the
top and bottom of Fig. 1. Suppose rounding errors cause the eigensolver to return only two
imaginary eigenvalues, instead of the correct number of four, counting the zero eigenvalue
twice. We would then have, = —u}, and the algorithm would terminate witt? = x?2,
which is the wrong answer.

A safeguard to avoid this failure is easily enacted: in the update at Step 4 of iterafion
the algorithm, save thg value(s) (sayy,) corresponding to the maximum valuet! and
then check whether the list of zeros generated by the vertical search in Step 2 of iteration
r + lincludesyy. More specifically, since we cannot expect the agreement to be exact in
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[ ] —+
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dim =5
3 | | | i |
6 5 4 -3 2 1 0 1

FIG. 2. Computing the pseudospectral abscissa for the perturbed Demmel example.

the presence of rounding errors, we do the following: if the list of zeros at iteratio
is non-empty and
r T+l or+1 41 or+l

with 85“ = r(uGJrl - IE“), for somej € {1,... ,m 1} and a fixedr << 1, then break

the pair("*?, uG“) into two pairs(lj”l, yk) and (g, u?*l), substituting two horizontal

searches defined by the two new midpoints for the one that would otherwise take place
defined by the midpoint off{ **, u ). A reasonable choice faris 001, small enough

that the breaking of one pair into two will take place when it is needed, as in the Demmel
example, but large enough that the cost of an additional horizontal search will be incurred
only when necessary. In order to avoid an unnecessary additional horizontal search just
before termination, the safeguard just described may be invoked only if the quéﬁﬁty

1"+ is not very small. Table 1 shows the iterates for the Demmel example to 16 decimal
digits, the limit of the standard IEEE double-precision floating-point format.

For a second example, we introduce a complex perturbation to the Demmel example,
changing the 5, 1 entry from 0 te@1i, so that the pseudospectrum is no longer symmetric
with respect to the real axis. Figure 2 shows the pseudospectrum=£d-01, along with
the perturbed eigenvalues (shown as heavy dots) and the iterates of the criss-cross method.
The numerical values of the iterates are given in Table 2.

We have also tested the criss-cross method on much larger matrices. The computational
time is dominated, of course, by the cost of computing the eigenvalud$xofandH (y).
Typically, there are only a small number of eigenvalue computations, because the algorithm
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TABLE 2 Iterates for the perturbed Demmel example

r x m oy A

1 —0-442437235099235 1 —-0126565274824285 —

2 —0-276899490766 155 2 —1.276126382561665 -110482209299681
3 0124 058778702449 1 426 173510815744 —

4 0130272463584 219 1 425424 774480370 —

5 0130272723577035 O — —

converges so rapidly. This number is further reduced if only the first few digits of the
pseudospectral abscissa are required.

An analogous algorithm to compute the pseudospectral radius has recently been
developed by Emre Mengi. The AtLAB code implementing our algorithm is freely
awailable at http://www.cs.nyu.edu/faculty/overton/software/ and has been incorporated as
afeature of EigTool (Wright, 2002), along with codes to compute the pseudospectral radius
and related quantities.
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