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A NEW PROXIMAL POINT ITERATION
THAT CONVERGES WEAKLY BUT NOT IN NORM

H. H. BAUSCHKE, J. V. BURKE, F. R. DEUTSCH, H. S. HUNDAL,
AND J. D. VANDERWERFF

(Communicated by Jonathan M. Borwein)

Abstract. In 1991, Güler constructed a proximal point iteration that con-
verges weakly but not in norm. By building on a recent result of Hundal, we
present a new, considerably simpler, example of this type.

1. Introduction

Throughout, X denotes a real Hilbert space with inner product 〈·, ·〉 and induced
norm ‖ · ‖. Let ϕ : X → ]−∞, +∞] be a convex, lower semicontinuous, and
proper function. The Proximal Point Algorithm, first introduced by Martinet [11]
in 1970 (see also [15]), is a now-classical method for solving the convex minimization
problem

(1.1) min
x∈X

ϕ(x)

iteratively: given a starting point x0 and parameter sequence (γn)n∈N of strictly
positive reals, a sequence is generated by

(1.2) (∀n ∈ N = {0, 1, 2, . . . , }) xn+1 = arg min
x∈X

[
ϕ(x) +

1
2γn

‖x − xn‖2
]
.

Brézis and Lions [7] proved that if ϕ has minimizers and
∑

n∈N
γn = +∞, then

the sequence (xn)n∈N generated by (1.2) converges weakly to a solution of (1.1).
The question whether the convergence of such a sequence is always in norm was
answered in the negative by Güler [9]. His counterexample is quite complicated
and relies on several deeper results about nonlinear contraction semigroups. (See
[4] and [17] for recent modifications of the Proximal Point Algorithm that produce
norm convergent sequences.)

The aim of this paper is to provide a new, conceptually simple, proximal point
iteration that converges weakly but not in norm.
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1830 H. H. BAUSCHKE, ET AL.

The paper is organized as follows. In Section 2, we establish the basic conver-
gence theory of the Support Point Algorithm for finding points in a closed convex
set supported by a functional. The convergence results resemble those known for
the Proximal Point Algorithm, and this is not a coincidence: in fact, in Section 3 it
is shown that the Support Point Algorithm is a special case of the Proximal Point
Algorithm. Hundal’s recent example [10] of an alternating projections iteration that
converges weakly but not in norm is discussed in Section 4. In the final Section 5,
we show that Hundal’s example can be viewed as an instance of the Support Point
Algorithm. Altogether, we have obtained a sequence generated by the Proximal
Point Algorithm that is weakly convergent, but not in norm.

We employ standard notation and terminology from Convex Analysis; see, e.g.,
[14] or [16]. Specifically, I stands for the identity operator, and given a closed
convex set C, ιC denotes the indicator function of a set C in X (ιC(x) = 0, if
x ∈ C; ιC(x) = +∞, otherwise); and NC is the normal cone map ∂ιC (NC(x) =
{x∗ ∈ X : sup〈x∗, C − x〉 = 0}, if x ∈ C; NC(x) = Ø, otherwise).

2. Convergence theory of the Support Point Algorithm

This section deals with the Support Point Algorithm, which is an iterative
method for finding support points. It was analyzed by Bauschke and Vander-
werff in 1996 [1, Section 6.3.2]. The Support Point Algorithm will later be ex-
hibited as an incarnation of the Proximal Point Algorithm. Thus, its convergence
properties could be deduced from known results on the convergence of the Proximal
Point Algorithm; however, to make the paper more self-contained and because the
proofs for the Support Point Algorithm are short and instructive, we include the
details.

Definition 2.1 (support points). Suppose C is a closed convex nonempty set in
X and f ∈ X � {0}. Then the set of support points of C with respect to f [14] is

supp(f, C) =
{
x ∈ C : 〈f, x〉 = sup〈f, C〉} = arg max

x∈C
f(x),

where f(x) = 〈f, x〉.
We will introduce an iterative method for finding support points, which employs

the projector onto C.

Definition 2.2 (projector and distance). Suppose C is a closed convex nonempty
set in X . Then for every x ∈ X , there exists a unique point PCx ∈ C nearest to x:
‖PCx−x‖ = minc∈C ‖c−x‖. The induced nearest point map PC : X → C is called
the projector onto C, and the function d(·, C) : X → R : x �→ ‖x − PCx‖ measures
the distance to the set C.

The following two results are well known.

Proposition 2.3 (basic properties). Suppose C is a closed convex nonempty set
in X. Then:

(i) (∀x ∈ X) PCx is characterized by PCx ∈ C and sup〈C−PCx, x−PCx〉 = 0.
(ii) PC is firmly nonexpansive, i.e.,

(∀x ∈ X)(∀y ∈ X) ‖PCx − PCy‖2 + ‖(I − PC)x − (I − PC)y‖2 ≤ ‖x − y‖2.

(iii) PC = (I + NC)−1.
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Proof. (i): [8, Section 4.1]. (ii): [8, Section 5.5]. (iii): Pick x ∈ X and let y = PCx.
By (i), y ∈ C and sup〈C − y, x− y〉 = 0. Hence x− y ∈ NC(y) ⇔ x ∈ (I + NC)(y)
⇔ y ∈ (I + NC)−1(x). �

Proposition 2.4 (support points and the projector). Suppose C is a closed convex
nonempty set in X, f ∈ X such that ‖f‖ = 1, and x ∈ X. Then:

(i) The following are equivalent:
(a) x ∈ supp(f, C);
(b) f ∈ NC(x);
(c) (∀α > 0) PC(x + αf) = x;
(d) (∃α > 0) PC(x + αf) = x.

(ii) (∀α > 0)(∀c ∈ C)

‖PC(x+αf)−c‖2 ≤ ‖x−c‖2−‖x−PC(x+αf)‖2+2α〈f, x−c〉+2α〈f, PC (x+αf)−x〉.
Proof. (See also [1, Proposition 6.3.1 and Proposition 6.3.2].) (i): Fix α > 0.
Then x ∈ supp(f, C) ⇔ x ∈ C and 〈f, x〉 = sup〈f, C〉 ⇔ x ∈ C and 〈αf, x〉 =
sup〈αf, C〉 ⇔ x ∈ C and sup〈C − x, (x + αf) − x〉 = 0 ⇔ x = PC(x + αf) (by
Proposition 2.3.(i)) ⇔ x = (I+NC)−1(x+αf) (by Proposition 2.3.(iii)) ⇔ x+αf ∈
(I + NC)(x) = x + NC(x) ⇔ αf ∈ NC(x) ⇔ f ∈ NC(x). The equivalences follow.
(ii): By Proposition 2.3.(ii) (applied to c and x + αf), we have ‖c − (x + αf)‖2 ≥
‖c− PC(x + αf)‖2 + ‖(x + αf) − PC(x + αf)‖2. Thus, using ‖f‖ = 1,

‖c − PC(x + αf)‖2 ≤ ‖c − (x + αf)‖2 − ‖(x + αf) − PC(x + αf)‖2

= ‖(x − c) + αf‖2 − ‖(x − PC(x + αf)) + αf‖2

= ‖x − c‖2 + α2 + 2〈x − c, αf〉 − ‖x − PC(x + αf)‖2

− α2 − 2〈x − PC(x + αf), αf〉.
The proof is complete. �

Theorem 2.5 (Support Point Algorithm). Suppose C is a closed convex set in
X and f ∈ X such that ‖f‖ = 1. Let (αn)n∈N be a sequence of strictly positive
parameters, fix a starting point x0 ∈ C, and generate a sequence (xn)n∈N by

(∀n ∈ N) xn+1 = PC(xn + αnf).

We refer to this iterative method as the Support Point Algorithm with respect to
f and C, with starting point x0 and parameter sequence (αn)n∈N.

(i) If
∑

n∈N
αn < +∞, then (xn)n∈N converges in norm to some point in C.

(ii) If
∑

n∈N
αn = +∞, then the following dichotomy holds.

Either supp(f, C) = Ø and (xn)n∈N converges weakly to some point in
supp(f, C), or supp(f, C) = Ø and ‖xn‖ → +∞.

Proof. Observe that the sequence (xn)n∈N lies entirely in C.
(i): Fix n ∈ N. By Proposition 2.3.(ii), ‖xn+1−xn‖ = ‖PC(xn+αnf)−PCxn‖ ≤

‖(xn + αnf) − xn‖ = αn; consequently,
∑

n∈N
‖xn+1 − xn‖ ≤ ∑

n∈N
αn < +∞.

Hence (xn)n∈N is a Cauchy sequence, and it must therefore converge to some point
in C.

(ii): (See also [1, Theorem 6.3.3].) For brevity, set S = supp(f, C).
Claim 1:

(
f(xn)

)
n∈N

is increasing.
Indeed, by Proposition 2.3.(i), 0 ≥ 〈xn − xn+1, (xn + αnf) − xn+1〉 =

‖xn − xn+1‖2 + αnf(xn − xn+1).
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Claim 2: limn f(xn) = sup f(C) ∈ ]−∞, +∞].
By Claim 1, the limit of

(
f(xn)

)
n∈N

exists in ]−∞, +∞]. It suffices to show that
for every c ∈ C and all ε > 0, eventually f(xn) > f(c) − ε. Suppose this were not
the case. Then there exist c ∈ C and ε > 0 such that (∀n ∈ N) f(xn) ≤ f(c) − ε.
By Proposition 2.4.(ii),

‖xn+1 − c‖2 ≤ ‖xn − c‖2 − ‖xn − xn+1‖2 + 2αn(−ε) + 2αn〈f, xn+1 − xn〉
≤ ‖xn − c‖2 + 2αn

(〈f, xn+1 − xn〉 − ε
)
.

Now as
(
f(xn)

)
n∈N

converges to a finite limit, eventually 〈f, xn+1 − xn〉 ≤ ε/2.
Thus there exists n̄ ∈ N such that (∀n ≥ n̄) ‖xn+1 − c‖2 −‖xn − c‖2 ≤ 2αn(−ε/2).
This implies −‖xn̄−c‖2 ≤ −ε

∑
n≥n̄ αn = −∞, which is absurd. Claim 2 is verified.

Claim 3: If S = Ø, then ‖xn‖ → +∞.
Assume the opposite. Then some subsequence of (xn)n∈N is bounded and, in

view of Claim 2, its weak cluster points would lie in S, which is absurd. Claim 3
thus holds.

Claim 4: If S = Ø, then (xn)n∈N converges weakly to some point in S.
It is readily verified that S is a closed convex set; moreover, if α > 0, then

Proposition 2.4.(i) shows that s ∈ S if and only if s = PC(s + αf). Using Proposi-
tion 2.3.(ii), we deduce

(∀s ∈ S)(∀n ∈ N) ‖xn+1 − s‖ = ‖PC(xn + αnf) − PC(s + αnf)‖
≤ ‖(xn + αnf) − (s + αnf)‖
= ‖xn − s‖.

Consequently, (xn)n∈N is Fejér monotone with respect to S. On the other hand,
Claim 2 shows that all weak cluster points of (xn)n∈N must lie in S. Altogether,
by [2, Theorem 2.16], the sequence (xn)n∈N converges weakly to some point in S.

In view of Claim 3 and Claim 4, the entire theorem is proven. �

3. Support Point Algorithm as a Proximal Point Algorithm

Assume that ϕ : X → ]−∞, +∞] is a convex, lower semicontinuous, proper
function. Recall that (see (1.2)), given a sequence of strictly positive parameters
(γn)n∈N and a starting point x0, the inductive update rule of the Proximal Point
Algorithm for minimizing ϕ is

(3.1) (∀n ∈ N) xn+1 = arg min
x∈X

[
ϕ(x) +

1
2γn

‖x − xn‖2
]
.

The point xn+1 appearing in the update rule (3.1) is uniquely determined: using the
sum rule [16, Theorem 28.2], we have 0 ∈ ∂

(
ϕ+ 1

2γn
‖·− xn‖2

)
(xn+1) = ∂ϕ(xn+1)+

(xn+1 − xn)/γn; equivalently,

(3.2) xn ∈ (I + γn∂ϕ)(xn+1)

or

(3.3) xn+1 = (I + γn∂ϕ)−1(xn).

A classical result due to Minty [12] states that the operator (I +γn∂ϕ)−1 appearing
in (3.3), which is also known as the proximal mapping [13] or as the resolvent of
the maximal monotone operator ∂ϕ, is single-valued (in fact, firmly nonexpansive)
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and everywhere defined. Thus the update rule (3.1) uniquely determines the next
iterate.

We now show that the Support Point Algorithm is a special case of the Proximal
Point Algorithm.

Theorem 3.1. Suppose C is a closed convex nonempty set in X and f ∈ X
such that ‖f‖ = 1. Then the Support Point Algorithm with respect to f and C (see
Theorem 2.5) is precisely the Proximal Point Algorithm for minimizing −f+ιC (see
Section 1) if both methods employ the same starting point and the same parameter
sequence.

Proof. Fix a common starting point x0 and a common parameter sequence (αn)n∈N.
Set ϕ = −f + ιC . The sum rule for subdifferentials [16, Theorem 28.2] implies
∂ϕ = −f + NC . The (implicit) update rule for the Proximal Point Algorithm (3.2)
thus becomes xn ∈ (I +αn∂ϕ)(xn+1) = xn+1−αnf +αnNC(xn+1) = xn+1−αnf +
NC(xn+1) ⇔ xn + αnf ∈ (I + NC)(xn+1) ⇔ xn+1 = (I + NC)−1(xn + αnf) =
PC(xn + αnf) (using Proposition 2.3.(iii)), which is precisely the update rule for
the Support Point Algorithm. �

4. Description of Hundal’s alternating projections example

Let H and K be two closed convex sets in X with H∩K = Ø. Given an arbitrary
starting point y0 ∈ X , the Method of Alternating Projections aims to find a point
in H ∩ K iteratively through the sequence (yn)n∈N generated by

(4.1) (∀n ∈ N) yn+1 = PKPHyn.

This algorithm goes back at least to 1933 when von Neumann demonstrated that
yn → PH∩Ky0 provided that H and K are two subspaces ; see [8, Chapter 9] for
further information. In 1965, Bregman [6] proved that, in general, the sequence
(yn)n∈N converges weakly to some point in H ∩K. Since then, the obvious question
was whether the convergence is actually strong. Hundal recently answered this
question in the negative [10]:

Example 4.1 (Hundal). [10] Suppose X = �2. Then there exist two closed convex
sets H , K in X , a point f ∈ X , and a point y0 ∈ K such that the following holds:

(i) ‖f‖ = 1;
(ii) H is a hyperplane, represented as H = {f}⊥;
(iii) K is a cone and sup〈f, K〉 = 0;
(iv) H ∩ K = {0};
(v) the sequence (yn)n∈N =

(
(PKPH)ny0

)
n∈N

converges weakly to 0, but not
in norm.

Hundal’s ingenious construction, while lengthy and quite technical, is entirely
elementary in the sense that it does not rely upon deeper results from other areas.
The normal vector f of the hyperplane H is simply the negative of the first standard
unit vector; however, the cone K is more complicated. (For instance, in view of [3,
Theorem 5.3], K fails to be a lattice cone.)

5. New proximal point iteration that does not converge in norm

Theorem 5.1. Let H, K, f , and (yn)n∈N be as in Example 4.1. Then (yn)n∈N is
generated by the Support Point Algorithm with respect to f and K, with starting
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point y0 and strictly positive parameter sequence (αn)n∈N =
(|〈f, yn〉|

)
n∈N

. More-
over, (αn)n∈N is decreasing,

∑
n∈N

αn = +∞, and
∑

n∈N
α2

n < +∞. In particular,
the sequence (yn)n∈N is an iteration of the Proximal Point Algorithm that converges
weakly, but not in norm.

Proof. Write S = supp(f, K).
Claim 1: S = {0}.
On the one hand, by Example 4.1.(iii), 0 ∈ S. On the other hand, pick x ∈ S.

Then 〈f, x〉 = 〈f, 0〉 = 0. Hence x ∈ {f}⊥ = H , and thus x ∈ S∩H ⊆ K∩H = {0}
(Example 4.1.(iv)). Altogether, S = {0}.

Claim 2: (∀n ∈ N) αn = ‖yn − PHyn‖ > 0 and PHyn = yn + αnf .
In view of Example 4.1.(iv)&(v), (yn)n∈N lies in K�H = K�{0}, and (PHyn)n∈N

belongs to H�K = H�{0}. Fix n ∈ N. The well-known formula for the projection
onto a hyperplane [8, Section 6.17] now yields yn = PHyn = yn − 〈f, yn〉f = yn +
|〈f, yn〉|f and 0 < ‖yn −PHyn‖ = |〈f, yn〉| = αn (recall ‖f‖ = 1 by Example 4.1.(i)
and 〈f, yn〉 < 0 by Example 4.1.(iii)&(iv)).

Claim 3: The sequence (yn) is generated by the Support Point Algorithm with
respect to f and K, with starting point y0 and parameter sequence (αn)n∈N.

In view of Claim 2, the update rule becomes (∀n ∈ N) yn+1 = PKPHyn =
PK(yn + αnf). Since each αn is strictly positive (Claim 2), this claim is verified as
well.

Claim 4: (αn)n∈N is decreasing.
Fix n ∈ N. Using Claim 2, the definition of the sequence (yn)n∈N and the fact

that it belongs to K (Example 4.1), and the definition of the distance function (Def-
inition 2.2), we obtain αn = ‖yn − PHyn‖ ≥ d(PHyn, K) = ‖PKPHyn − PHyn‖ =
‖yn+1 − PHyn‖ ≥ d(yn+1, H) = ‖yn+1 − PHyn+1‖ = αn+1, as desired.

Claim 5:
∑

n∈N
αn = +∞.

If
∑

n∈N
αn < +∞, then (yn)n∈N would converge in norm (Claim 3 and Theo-

rem 2.5.(i)), which contradicts Example 4.1.(v).
Claim 6:

∑
n∈N

α2
n < +∞.

Fix n ∈ N. Then Proposition 2.3.(ii), H ∩ K = {0} (Example 4.1.(iv)), and
Claim 2 yield

‖yn‖2 =‖yn − 0‖2 ≥ ‖PHyn − PH0‖2 + ‖yn − PHyn‖2

=‖PHyn − 0‖2 + α2
n ≥ ‖PKPHyn − PK0‖2 + α2

n = ‖yn+1‖2 + α2
n.

Hence ‖yn‖2 − ‖yn+1‖2 ≥ α2
n, and thus ‖y0‖2 ≥ ∑

n∈N
α2

n.
Claim 7: (yn)n∈N is a proximal point iteration that converges weakly, but not in

norm.
This is clear from Claim 3 and Theorem 3.1.
The entire theorem is proven. �

Remark 5.2. For another iteration of the proximal point algorithm that converges
weakly but not in norm, also based on Hundal’s alternating projections example,
we refer the reader to [5].
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