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Abstract. The notion of weak sharp minima is an important tool in the analysis of the perturbation behavior
of certain classes of optimization problems as well as in the convergence analysis of algorithms designed to
solve these problems. It has been studied extensively by several authors. This paper is the second of a series
on this subject where the basic results on weak sharp minima in Part I are applied to a number of important
problems in convex programming. In Part II we study applications to the linear regularity and bounded linear
regularity of a finite collection of convex sets as well as global error bounds in convex programming. We
obtain both new results and reproduce several existing results from a fresh perspective.

Key words. weak sharp minima – local weak sharp minima – boundedly weak sharp minima – recession
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1. Introduction

We continue our study of weak sharp minima focusing on applications to linear regu-
larity [4, 5, 26] and global error bounds for convex inclusions [2, 10, 12, 18, 20–22, 24,
23, 25, 28, 30, 40, 39]. The history and motivation for the study of weak sharp minima
is reviewed in Part I of this work where we also established much of the theoretical
foundations in the infinite dimensional setting. Weak sharp minima were first studied
by Polyak in [29] as a set-valued extension to the notion of a sharp minima. Ferris [15]
introduced the name weak sharp minima and developed a number of basic properties.
Part I builds on [9] by extending the results to infinite dimension and by making a number
of refinements that broaden the range of applications. We use the new tools developed
in Part I to examine the relationship between weak sharp minima, linear regularity, and
global error bounds. This is done by equating the linear regularity property or the exis-
tence of a global error bound with the existence of a set of weak sharp minima for an
underlying convex function, and then apply the results of Part I. In this way results on
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linear regularity and global error bounds are reduced to properties of the subdifferential
of an appropriately chosen convex function. For some very recent work on weak sharp
minima closely related to work in Part I, we direct the reader to the very nice paper by
Zălinescu [37].

Connections to the linear regularity are examined in Section 3. Our study is moti-
vated by the recent paper of Bauschke, Borwein, and Li [5], and are also related to
further refinements appearing recently in [26, 40]. We recover many of the basic facts
about linear regularity from corresponding facts about weak sharp minima, and obtain
a number of new sufficient conditions for linear and bounded linear regularity in the
infinite dimensional setting. A new concept for finite collections of cones called additive
regularity is introduced and used to obtain conditions for establishing the strong CHIP
property and Jameson’s property (G).

In Section 4, we focus on error bounds for nondifferentiable systems of convex
inequalities. Here we are motivated by the recent paper by Lewis and Pang [22]. These
results are also related to recent work appearing in [40] and [39]. We recover the results
of Lewis and Pang on the characterization of the existence of global error bounds and
obtain several new characterizations as well. Following Bauschke, Bowein, and Li [5],
we further investigate the link between the existence of a global error bound and the lin-
ear regularity of the underlying level sets. In particular, we improve Bauschke, Bowein,
and Li’s result [5, Theorem 8] establishing the linear regularity of underlying level sets
under the weak Slater condition and the Auslender-Crouzeix [2] asymptotic constraint
qualification.

In Section 2 we recall two key results from Part I that form the foundation for our
investigations.

2. Basic results and notation

Let X be a normed linear space, and consider the nonempty closed convex sets S̃ ⊂
S ⊂ X and the lower semi-continuous convex function f : X �→ IR = IR ∪ {+∞}.
We assume that S ∩ dom (f ) �= ∅ where dom (f ) = { x ∈ X | f (x) < ∞} . The set
S̃ ⊂ X is said to be a set of weak sharp minima for the function f over the set S with
modulus α > 0 if

f (x̄)+ αdist (x | S̃) ≤ f (x) for all x̄ ∈ S̃ and x ∈ S, (1)

where dist (x | S̃) = inf
x̄∈S̃ ‖x − x̄‖ , and ‖·‖ is the norm onX. Since S∩dom (f ) �= ∅

we have S̃ = arg minSf ⊂ dom (f ), where

arg minSf =
{
x ∈ S

∣∣∣∣ f (x) = min
y∈S

f (y)

}
.

In Part I we provide several different characterizations of weak sharp minima. Of
these, we focus on only one for the applications studied in this paper. We state this
characterization using standard notation. An explanation of this notation is given at the
end of this section.
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Theorem 1. [8, Theorem 2.3] Let f, S, and S̃ be as in (1), and assume that the addition
formula

∂(f + ψS)(x) = cl∗ (∂f (x)+NS (x)), (2)

holds for all x ∈ S̃. Let α > 0. Then the set S̃ is a set of weak sharp minima for the
function f over the set S ⊂ X with modulus α if and only if the normal cone inclusion

αIB◦ ∩N
S̃ (x) ⊂ cl∗ (∂f (x)+NS (x)) (3)

holds for all x ∈ S̃.

Remark 1. The significance of the weak calculus formula (2) is illustrated in Part I by
example.

It is shown in Part I that the normal cone inclusion (3) can be decomposed into two
independent conditions. These conditions play a pivotal role in connecting the notion of
weak sharp minima to a number of related ideas in the literature.

Lemma 1. [8, Lemma 3.1] Let the basic assumptions of Theorem 1 hold. Given x ∈ S̃,
we have

αIB◦ ∩N
S̃ (x) ⊂ cl∗ (∂f (x)+NS (x)) (4)

if and only if

cone (cl∗ (∂f (x)+NS (x))) = N
S̃ (x) and (5)

αIB◦ ∩ [cone (cl∗ (∂f (x)+NS (x)))
] ⊂ cl∗ (∂f (x)+NS (x)) .

In addition, if the set ∂f (x)+NS (x) is weak∗ closed, then

cone (cl∗ (∂f (x)+NS (x))) = cone (∂f (x))+NS (x) .

The notation that we employ is consistent with that used in Part I, and is for the
most part the same as that in [1, 32, 33]. A partial list is provided below for the reader’s
convenience.

Denote the dual space ofX byX∗. WhenX is endowed with the weak topology and
X∗ with the weak∗ topology then the spacesX andX∗ are said to be paired in duality by
the continuous bi-linear form 〈x∗, x〉 = x∗(x) defined onX∗ ×X [33]. Denote the norm
on X∗ by ‖ · ‖◦: ‖z‖◦ = supx∈IB〈z, x〉, where IB = { x ∈ X | ‖x‖ ≤ 1 } is the unit ball
in X. We will use the notation IB for the unit ball of whatever space we are discussing.
If there is a possibility of confusion, we will write IBZ for the unit ball in the normed
linear space Z. Given a set C in eitherX orX∗, the set cl (C) is the closure of this set in
the norm topology, and given a set E in X∗, the set cl∗ (E) is the closure in the weak∗
topology.

For a nonempty subsetC of any normed linear space Y , denote the indicator function
of C and the support function of C by ψC(·) and ψ∗

C
(·), respectively. Thus, in particu-

lar, ‖z‖o = ψ∗
IB(z). The barrier and recession cones of a convex set C are bar (C) =

dom
(
ψ∗
C
(·)) and C∞ = { d | x + td ∈ C ∀ x ∈ C, t > 0 }, respectively. The norm-

topology interior of C is int (C), and the boundary of C is bdry (C) = cl (C) \int (C).
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When Y is finite dimensional, ri (C) is the interior of C relative to the smallest affine
set containing C. The cone generated by C is cone (C) = ∪λ≥0{λC}.

For a closed convex set C in X, an extreme point of C is any point in the con-
vex set that cannot be represented as the convex combination of two other points in
C. Define the projection of a point x ∈ X onto the set C, denoted P(x | C), as
the set of all points in C that are closest to x as measured by the norm ‖·‖: P(x |
C) = { y ∈ C | ‖x − y‖ = dist (x | C) } . For nonempty sets C ⊂ X and E ⊂ X∗, the
polar of C and E are given by the sets C◦ = {x∗ ∈ X∗ | 〈x∗, x〉 ≤ 1 ∀x ∈ C},
E◦ = {x ∈ X | 〈x∗, x〉 ≤ 1 ∀x∗ ∈ E}, respectively. Thus, in particular, IB◦ ⊂ X∗
is the unit ball associated with the dual norm ‖·‖o. If either C or E is a subspace,
we also write C◦ = C⊥ and E◦ = E⊥. For a nonempty closed convex set C in X,
and x ∈ C, define the tangent cone to C at x by TC (x) = cl

(⋃
t>0

C−x
t

)
. The nor-

mal cone to C at x is given by NC (x) = TC (x)
◦ . It is easy to see that NC (x) =

{x∗ ∈ X∗|〈x∗, y − x〉 ≤ 0, for any y ∈ C} .

3. Linear regularity

Linear regularity has been extensively studied in [4, 5], where its importance for the
study of algorithms is examined. We discuss this notion for two reasons. First, it is an
example that illustrates the power of Theorem 1 in an important application and second,
there is a close connection between linear regularity and the important concepts of metric
regularity and error bounds for convex inequalities.

Definition 1. Let {Ci | i = 1, . . . , N } be a collection of nonempty closed convex sub-
sets of the normed linear space X and suppose that the convex set C = ⋂N

i=1 Ci is
nonempty. The collection {Ci | i = 1, . . . , N } is said to be linearly regular if there
exists α > 0 such that

αdist (y | C) ≤ max
i=1,...,N

dist (y | Ci) (6)

for all y ∈ X. The collection {Ci | i = 1, . . . , N } is said to be boundedly linearly reg-
ular if, for every bounded subset D ⊂ X, there exists α > 0 such that (6) holds for all
y ∈ D.

Let ‖·‖ be a norm on IRN that is monotone with respect to the cone IRN+ , i.e. if
u, v ∈ IRN satisfy 0 ≤ ui ≤ vi, i = 1, 2, . . . , N , then ‖u‖ ≤ ‖v‖. For example, the lp
norms are monotone with respect to IRN+ . Define ρ : X �→ IR by

ρ(x) = ‖F(x)‖ , (7)

where F : X �→ IRN has component functions Fi(x) = dist (y | Ci), and the norm is
monotone. Using the convexity of each of the functions Fi and the monotonicity of the
norm, it is straightforward to show that ρ is convex. We are interested in conditions that
characterize when the set C is a set of weak sharp minima for the function ρ. Observe
that if ‖·‖ = ‖·‖∞, then C is a set of weak sharp minima for the function ρ if and only
if the collection {Ci | i = 1, . . . , N } is linearly regular. Indeed, if ‖·‖a and ‖·‖b are two
monotone norms on IRN with ρa and ρb corresponding to the function defined in (7) for
these norms, respectively, then, due to the equivalence of norms, we know that if C is a
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set of weak sharp minima for ρa , then it is a set of weak sharp minima for ρb as well.
That is, the collection {Ci | i = 1, . . . , N } is linearly regular if and only if C is a set of
weak sharp minima for the function ρ regardless of the choice of monotone norm.

Theorem 2. Let ρ : X �→ IR be as defined above. Then the collection of sets {Cii = 1,
. . . , N} is linearly regular if and only if there is an ᾱ > 0 such that

ᾱIB◦ ∩NC (x) ⊂ ∂ρ(x) ∀ x ∈ C, (8)

or equivalently, there is an α > 0 such that

αIB◦ ∩NC (x) ⊂
N∑
i=1

(IB◦ ∩NCi (x)) (9)

for all x ∈ C. In addition, the inclusion (9) is equivalent to the pair of conditions

NC (x) =
N∑
i=1

NCi (x) , and (10)

αIB◦ ∩
(

N∑
i=1

NCi (x)

)
⊂

N∑
i=1

(IB◦ ∩NCi (x)). (11)

Proof. We apply Theorem 1 to the function ρ defined in (7). First observe that the sets
S and S̃ in Theorem 1 are given by X and C, respectively, so that the hypotheses of
Theorem 1 are satisfied. Thus the inclusion (8) follows immediately from Theorem 1.

As has already been observed, the function ρ has the set C as a set of weak sharp
minima if and only if the function ρ1(x) = ‖F(x)‖1 = ∑N

i=1 dist (x | Ci) has C as
a set of weak sharp minima. Therefore, the condition (8) is equivalent to the condition
αIB◦ ∩ NC (x) ⊂ ∂ρ1(x). However, given x in C, we have from [8, Theorem A.1, Part
5] that ∂dist (x | Ci) = IB◦ ∩ NCi (x) for each i = 1, 2, . . . , N . Hence, from [14,
Proposition 5.6, page 26], ∂ρ1(x) = ∑N

i=1 ∂dist (x | Ci), whereby the equivalence of
(8) and (9) are established.

To obtain the equivalence of (9) with (10) and (11), we apply Lemma 1. This lemma
states that (9) is equivalent to the two statements

NC (x) = cone (
N∑
i=1

(IB◦ ∩NCi (x))),

N∑
i=1

(IB◦ ∩NCi (x)) ⊃ αIB◦ ∩ cone (
N∑
i=1

(IB◦ ∩NCi (x))).

The equivalence of (9) to the pair of conditions (10) and (11) follows immediately from
the simple identity cone (

∑N
i=1(IB

◦ ∩NCi (x))) = ∑N
i=1NCi (x) . ��

Remark 2. The equivalence of the linear regularity of {Ci | i = 1, . . . , N } and the con-
ditions (10) and (11) has been shown in [26, Theorem 4.2] in the Banach space setting.
In [26, Theorem 4.2] the focus is on �p norms, but, as the discussion preceeding the The-
orem shows, any monotone norm will do. In [40, Theorem 3.5] this result is generalized
to possibly infinite collections of sets, {Ci | i ∈ I } with I arbitrary.
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Theorem [8, Theorem 2.3] can be used to derive a number of other characterizations
of linear regularity, however, the characterizations given in Theorem 2 are particularly
significant due to their connection to the existing literature on this subject. Condition
(10) is known as the strong conical hull intersection property, or strong CHIP [19], while
condition (11) is known as Jameson’s property (G) for the conesNCi (x) , i = 1, . . . , N
[19]. Both of these conditions are extensively studied in the literature [5, 19, 39]. Condi-
tions assuring that strong CHIP (10) holds have long been known in the convex analysis
literature. We give the two most well-known in our next proposition. Further conditions
yielding the strong CHIP property can be found in Theorem 7 to follow.

Proposition 1. Let C, Ci, i = 1, . . . , N be as in Definition 1. Strong CHIP (10) holds
at every point of C under either of the following two conditions hold:

1. [33, Theorem 20] There is an i0 ∈ {1, . . . N} such that
(⋂

i=1, i �=i0 int (Ci)
)
∩Ci0 �=

∅.
2. [32, Corollary 23.8.1] The space X is finite dimensional and there is an integer

0 ≤ k0 ≤ N such that (
⋂k0
i=1 ri (Ci)) ∩ (

⋂N
i=k0+1 Ci) �= ∅ and Ci is polyhedral for

i = k0 + 1, . . . , N .

Simple conditions assuring that (11) holds can be derived from [8, Lemma 3.4, Part
2]. Two useful notions in this context are that of a base of a convex cone and pointed
cones [6, 16].

Definition 2. Let K be a non-empty cone in a topological vector space.

(i) The cone K is said to be pointed if K ∩ (−K) = {0}.
(ii) Further assume that K is convex. A convex set B ⊂ K is said to be a base for K if

0 �∈ cl (B) and cone (B) = K .

In finite dimensions, a nonempty closed convex coneK �= {0} is pointed if and only
if it has a bounded base [6, Page 60]. The following lemma helps us use these notions
to establish inclusion (11).

Lemma 2. Let Ki ⊂ X∗, i = 1, . . . , N be a collection of weak∗ closed convex cones
and set

K =
N∑
i=1

Ki , B = co
(
∪Ni=1(bdry (IB◦) ∩ Ki )

)
, and R =

N∑
i=1

(IB◦ ∩ Ki ).

If 0 /∈ cl∗ (B), then B ⊂ R, B is a base for K, and K is pointed. Conversely, if K �= {0}
is pointed, and X∗ is finite dimensional, then B is a base for K.

Proof. Since the set R = ∑N
i=1(IB

◦ ∩ Ki ) is a finite sum of weak∗ compact sets, it
is weak∗ closed [3, page 25] and bounded, and hence weak∗ compact by Alaoglu’s
Theorem [13, Page 13]. In addition, this set is convex since it is the finite sum of con-
vex sets. Hence cl∗ (B) ⊂ R since bdry (IB◦) ∩ Ki ⊂ R for i = 1, . . . , N , and R
is weak∗ closed and convex. Therefore, cone (B) ⊂ cone (R) ⊂ K. We claim that
K ⊂ cone (B) which completes the proof that B is a base for K. Indeed, given x∗ ∈ K,
there exists x∗

i ∈ Ki , i = 1, . . . , N such that x∗ = x∗
1 + · · · + x∗

n . If x∗ = 0, then
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x∗ ∈ cone (B), so we may assume that at least one x∗
i �= 0. Set I = {

i
∣∣ x∗
i �= 0

}
and define λ = ∑

i∈I
∥∥x∗
i

∥∥, wi = x∗
i /
∥∥x∗
i

∥∥, and µi = λ−1
∥∥x∗
i

∥∥ for i ∈ I . Then
x∗ = λ

∑
i∈I µiwi ∈ cone (B), so K ⊂ cone (B). If K is not pointed, then there is a

nonzero x∗ ∈ K ∩ (−K). So there exist positive λ1 and λ2 such that λ1x
∗ ∈ B and

−λ2x
∗ ∈ B, which implies 0 ∈ B by the convexity of B. The contradiction shows that

K is pointed.
Conversely, ifX∗ is finite dimensional, then the compactness of B follows from that

of the sets bdry (IB◦)∩Ki . HenceB is not a base if and only if 0 ∈ B, which is equivalent
to K is not pointed. ��
Proposition 2. Let C, Ci, i = 1, . . . , N be as in Definition 1 and let x ∈ C.

(i) IfD ⊆ C is such that each of the conesKi = cl∗
(⋃

x∈D NCi (x)
)
, i = 1, . . . , N,

is convex and 0 /∈ cl∗ (BD) where BD = co
(∪Ni=1(bdry (IB◦) ∩Ki)

)
, then BD is

a base for the coneK = ∑N
i=1Ki , for each x ∈ D the setBx =

(
∪Ni=1 (bdry (IB◦)

∩NCi (x))
)

is a base for the cone
∑N
i=1NCi (x), and the inclusion (11) holds for

all x ∈ D uniformly in α = infz∈cl∗(BD) ‖z‖ > 0.
(ii) If D ⊆ C is such that the cone cl∗

(⋃
x∈D NC (x)

)
is convex and has a weak∗

sequentially compact base B, then there is an α > 0 such that the inclusion (11)
holds for all x ∈ D uniformly in α.

(iii) If the cone (C∞)◦ has a weak∗ sequentially compact base B where C∞ denotes
the recession cone of C, then there is an α > 0 such that the inclusion (11) holds
for all x ∈ C.

(iv) If X is reflexive, then the hypothesis that the base B in Parts (ii) and (iii) is weak∗
sequentially compact can be replaced by the hypothesis that B is closed, and
bounded.

Proof. (i) The conesKi, i = 1, . . . , N and the set BD satisfy the hypotheses of Lemma
2, and so BD is a base for K and BD ⊂ RD = ∑N

i=1 IB◦ ∩ Ki. Now since the set RD
is bounded, so is the set BD . Hence the set cl∗ (BD) is weak∗ closed and bounded, and
so is a convex weak∗ compact set [13, Page 13]. Since 0 /∈ cl∗ (BD), the origin can be
properly separated from cl∗ (BD) and so infz∈cl∗(BD) ‖z‖ = α > 0. In particular, this
implies that for each x ∈ D we have

inf
z∈cl∗(Bx)

‖z‖ ≥ inf
z∈cl∗(BD)

‖z‖ = α > 0 .

Consequently, 0 /∈ cl∗ (Bx) for every x ∈ D. Thus, setting Ki = NCi (x) and B = Bx

in Lemma 2 tells us that Bx is a base for the cone
∑N
i=1NCi (x) with Bx ⊂ Rx =∑N

i=1(IB
◦ ∩NCi (x)) for every x ∈ D.

Finally, given x ∈ D, Lemma [8, Lemma 3.4, Part 2] applies to yield the inclusion

αIB◦ ∩ cone (co (0, Bx)) ⊂ co (0, Bx) ,

where cone (co (0, Bx)) = cone (Bx). Therefore,

αIB◦ ∩
(

N∑
i=1

NCi (x)

)
⊂ αIB◦ ∩ cone (Bx) ⊂ co (0, Bx) ⊂ Rx. (12)
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That is, (11) holds at x.
(ii) The weak∗ closedness of B implies that B is a closed set in the norm topology,

and so infb∈B ‖b‖ = ᾱ > 0. Lemma [8, Lemma 3.4, Part 2] yields

ᾱIB◦ ∩ (
N∑
i=1

NCi (x)) ⊂ co
(

0, B̂x
)
,

where B̂x = B ∩ (∑N
i=1NCi (x)). We claim that there is some β > 0 such that

B̂x ⊂
N∑
i=1

βIB◦ ∩NCi (x) ∀ x ∈ D. (13)

Note that the claim (13) implies that (11) holds uniformly in x over D with α = ᾱ/β.
Let us suppose that the claim (13) is not true. Then, with no loss in generality,

there would exist sequences {xn} ⊂ D, {z∗n} ⊂ B with z∗n ∈ B̂xn , {x∗
n} ⊂ X∗ with

x∗
n ∈ NC1 (xn) n = 1, 2, . . . , and {y∗

n} ⊂ X∗ with y∗
n ∈ ∑N

i=2NCi (xn) n = 1, 2, . . .
such that z∗n = x∗

n+y∗
n with

∥∥x∗
n

∥∥ ≥ n ∀ n = 1, 2, . . . . SinceB∩NC1 (xn) is a base
for NC1 (xn), there exists tn > 0 such that x∗

n/tn ∈ B for all n. The weak∗ sequential
compactness ofB implies thatB is bounded [36, Theorem 10, Page 125] and so tn → ∞.
Since B is weak∗ sequentially compact, we can assume with no loss in generality that
{x∗
n/tn} weak∗ converges to some x∗ ∈ B. Since B is bounded, we also know that z∗n/tn

converges strongly to zero.
Let u ∈ IB such that x∗(u) ≥ 3/4 ‖x∗‖. Then∥∥y∗

n

∥∥ /tn ≥ |y∗
n(u)|/tn = |z∗n(u)− x∗

n(u)|/tn
≥ |x∗(u)| − |x∗(u)− x∗

n(u)/tn| − ∥∥z∗n/tn∥∥
≥ 1

2

∥∥x∗∥∥ (14)

for all n sufficiently large. Since B ∩ (∑N
i=2NCi (xn)) is a base for

∑N
i=2NCi (xn) and

y∗
n/tn ∈ ∑N

i=2NCi (xn), there is some αn > 0 such that αny∗
n/tn ∈ B for each n. This

along with (14) yields αn ≤ 2M/ ‖x∗‖ for n sufficiently large, whereM = supb∈B ‖b‖.
Hence {αn} has a convergent subsequence. Without loss of generality, suppose that
αn → α̂ ≥ 0. Then, since

αn(z
∗
n/tn − x∗

n/tn) = αny
∗
n/tn ∈ B,

we have that −α̂x∗ ∈ B, and so 0 ∈ B by the convexity of B. This contradicts the fact
that B is a base, hence (13) must hold for some β > 0.

(iii) By inclusion (A.2) in Lemma A.1 of Appendix A,

cl∗
(⋃
x∈C

NC (x)

)
⊂ (C∞)◦,

with equality holding when X is reflexive. Since B is weak∗ sequentially compact and
the set cl∗

(⋃
x∈C NC (x)

)
is weak∗ closed, the set B̂ = B ∩ cl∗

(⋃
x∈C NC (x)

)
is nec-

essarily a weak∗ sequentially compact base for the cone cl∗
(⋃

x∈C NC (x)
)

that does
not contain the origin. Therefore, the result follows from Part (ii).
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(iv) By Alaoglu’s Theorem [13, Page 13] and the Eberlein-Smulian Theorem [13,
Page 18], every weak∗ closed and bounded subset of X∗ is weak∗ sequentially compact
whenever X is reflexive. ��

By combining the results in Theorem 2 and Proposition 2 one can obtain a number
of conditions that imply linear regularity. We provide a sample result of this type that is
particularly simple to state.

Theorem 3. Let C, Ci, i = 1, . . . , N be as in Definition 1, let x ∈ C, and assume that
X is reflexive. If strong CHIP (10) is satisfied at every point ofC and the cone (C∞)◦ has
a weak∗ closed and bounded base B, then the collection {Ci | i = 1, . . . , N } is linearly
regular.

Results for bounded linear regularity can similarly be obtained from the notion of
boundedly weak sharp minima.

Definition 3. [8, Definition 6.1] Let S ⊂ X and let f : X �→ IR where IR = IR∪{+∞}.
The set S̃ : = arg min { f (x) | x ∈ S } is said to a set of boundedly weak sharp minima
for f over the set S if for every r > 0 for which S̃ ∩ rIB �= ∅ there is an αr > 0 such that

f (x) ≥ f (x̄)+ αrdist (x | S̃) (15)

for all x ∈ S ∩ rIB, where x̄ is any element of S̃.

The collection {Ci | i = 1, . . . , N } is boundedly linearly regular if and only if C is
a set of bounded weak sharp minima for the function ρ, again, regardless of the choice
of monotone norm. Therefore, we can apply [8, Theorem 6.3] to characterize bounded
linear regularity.

Theorem 4. If the collection {Ci | i = 1, 2, . . . , N } is boundedly linearly regular, then
strong CHIP (10) holds at every point of C and for every r > 0 for which C ∩ rIB �= ∅
there is an αr > 0 such that

αr IB
◦ ∩

(
N∑
i=1

NCi (x)

)
⊂

N∑
i=1

[IB◦ ∩NCi (x)] ∀ x ∈ C ∩ rIB . (16)

If it is assumed thatX is either a Hilbert space or finite dimensional, then the converse is
also true, that is, (16) and strong CHIP onC implies bounded linear regularity. Finally, if
X is finite dimensional, then {Ci | i = 1, 2, . . . , N } is boundedly linearly regular if and
only if strong CHIP holds onC and for every x̄ ∈ C there exist ε > 0 andαx̄ > 0 such that

αx̄IB◦ ∩
(

N∑
i=1

NCi (x)

)
⊂

N∑
i=1

[IB◦ ∩NCi (x)] ∀ x ∈ C ∩ (x̄ + εIB) . (17)

Proof. Apply Theorem [8, Theorem 6.3] with S = X, S̃ = C, and f = ρ1, where ρ is
defined in (7) with the norm taken to be the 1–norm. As in the proof of Theorem 2, we
have ∂ρ1(x) = ∑N

i=1 ∂dist (x | Ci).
The final statement of the Theorem follows from [8, Corollary 5.3]. ��
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As was the case for linear regularity, Propositions 1 and 2 can be applied to obtain
sufficient conditions for bounded linear regularity. A sample result of this type is given
below that uses Parts 3 and 4 of Proposition 2.

Theorem 5. Suppose that X is either a Hilbert space or is finite dimensional and let
C, Ci i = 1, . . . , N be as in Definition 1. If strong CHIP (10) is satisfied at every point
of C and for every r > 0 for which C∩ rIB �= ∅ the set cl∗

(⋃
x∈C∩rIBNC (x)

)
is convex

and has a weakly closed and bounded base B, then the collection {Ci | i = 1, . . . , N }
is bounded linearly regular.

We now provide conditions under which bounded linear regularity implies linear
regularity. We omit the proof of this result since it is an immediate consequence of [8,
Theorem 6.5] and the elementary equivalence dom

(
ρ∗

1

) = ∑N
i=1[IB◦ ∩ bar (Ci)].

Theorem 6. Suppose that X is a reflexive Banach space. If C admits a decomposi-
tion of the form C = K + D, where K is a nonempty closed convex cone and D
is a nonempty closed bounded convex set, then the collection {Ci | i = 1, 2, . . . , N }
is linearly regular if and only if it is boundedly linear regular. In addition, if X is
assumed to be finite dimensional, then the decomposition C = K + D, holds if either

(a) 0 ∈ ri
(∑N

i=1[IB◦ ∩ bar (Ci)]
)

, or (b) C is polyhedral.

Remark 3. With some effort one can also establish Theorem 6 using the very recent
result [27, Theorem 3.1] by choosing an appropriate function F . However, with no extra
effort the result is an immediate consequence of the earlier result [8, Theorem 6.5].

Remark 4. The decomposition of a convex set into the sum of a bounded set and a cone
has a long history in convex analysis. References to some of this history can be found
in [8].

In finite dimensions, it is possible to establish the inclusion (11) or (16) under con-
ditions weaker than those employed in Proposition 2.

Definition 4. Let {Ki | i = 1, . . . , m } be a collection of closed cones in the normed
linear space X. We say that the collection {Ki | i = 1, . . . , m } is additively regular
if
∑m
i=1 zi = 0 with zi ∈ Ki for i = 1, . . . , m implies that zi ∈ Ki ∩ (−Ki) for

i = 1, . . . , m. The collection {Ki | i = 1, . . . , m } is said to be strongly additively regu-
lar if

∑m
i=1 zi = 0 with zi ∈ Ki for i = 1, . . . , m implies that zi = 0 for i = 1, . . . , m.

If
∑m
i=1Ki is pointed, then the collection of {Ki | i = 1, . . . , m } is additively reg-

ular. When X is a finite dimensional Hilbert space, we denote it by IRn. We now give a
dual characterization for additive regularity and consequences of this regularity property
when X = IRn. This result plays a crucial role in establishing the main result of this
section.

Lemma 3. Let {Ki | i = 1, . . . , m } be a collection of closed cones of IRn. Then the
following is true.

1. {Ki | i = 1, . . . , m } is additively regular if and only if ∩mi=1ri Ko
i �= ∅.
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2. Suppose the collection {Ki | i = 1, . . . , m } is additively regular, and that M is a
subspace. Then the collection {Ki ∩M | i = 1, . . . , m } is additively regular.

3. Let { Ii | i = 1, . . . , k } be a partition of the set {1, . . . , m}. DefineKIi = ∑
j∈Ii Kj .

Suppose that the collection {Ki | i = 1, . . . , m } is additively regular. Then for each
Ii , KIi is a closed cone, and

{
KIi | i = 1, . . . , k

}
is additively regular.

Proof. 1. Let L ⊂ ∏m
i=1 IRn = Rn×m be given by {x = (x1, . . . , xm) :

∑m
i=1 xi = 0},

where xi ∈ IRn for i = 1, . . . , m. Then the collection {Ki | i = 1, . . . , m } is additively
regular if and only if L ∩ ∏m

i=1Ki is a subspace, which in turn is equivalent to the
statement that L⊥ +∏m

i=1K
o
i is a subspace, where L⊥ = {x = (x1, . . . , xm) : x1 =

· · · = xm}. But L⊥ +∏m
i=1K

o
i is a cone. So L⊥ +∏m

i=1K
o
i is a subspace if and only if

0 ∈ ri
(
L⊥ +∏m

i=1K
o
i

)
. This means that L⊥ ∩ ri

(∏m
i=1K

o
i

) �= ∅, which is equivalent
to ∩mi=1ri

(
Ko
i

) �= ∅.
Part 2 is evident, so we now prove Part 3. For each Ii the collection

{
Kj | j ∈ Ii

}
is

additively regular, so the closedness ofKIi follows from [32, Corollary 9.1.3]. The addi-
tive regularity of the collection

{
KIi | i = 1, . . . , k

}
follows from the additive regularity

of the collection {Ki | i = 1, . . . , m }. ��
The main result of this section follows.

Theorem 7. Suppose thatX is a Hilbert space. Let {Ci | i = 1, . . . , N } be a collection
of closed convex subsets of X with C = ⋂N

i=1 Ci nonempty. For statements 1,2, and 3,
we assume that X = IRn.

1. Let x ∈ C. If the collection
{
NCi (x) | i = 1, . . . , N

}
is additively regular, then

strong CHIP (10) holds at x and (11) holds for some αx > 0.
2. Let r > 0 be such that C ∩ rIB �= ∅. If the collection

{
NCi (x) | i = 1, . . . , N

}
is

additively regular at every point x in C ∩ rIB, then the strong CHIP (10) holds at
every point x in C ∩ rIB, and there is an αr > 0 such that (16) holds. As a con-
sequence, if the collection

{
NCi (x) | i = 1, . . . , N

}
is additively regular at every

point of C, then the collection {Ci | i = 1, . . . , N } is boundedly linearly regular.
3. If ∩Ni=1ri (Ci) �= ∅, then the collection

{
NCi (x) | i = 1, . . . , N

}
is additively reg-

ular at every point of C.
4. If (∩N−1

i=1 int(Ci))∩CN �= ∅, then the collection
{
NCi (x) | i = 1, . . . , N

}
is strongly

additively regular at every point x of C.

Proof. The proofs of Parts 1 and 2 follow the same pattern relying on a standard com-
pactness argument. Therefore, we only provide the proof of Part 2.

2. We first show that strong CHIP (10) holds at every point of C ∩ rIB. Let x ∈
C ∩ rIB. By definition, TC (x) = cl (cone (C − x)) = cl

(
cone (∩Ni=1Ci − x)

) =
cl
(
cone (∩Ni=1(Ci − x))

)
. By Part 1 of Lemma 3, ∩Ni=1ri

(
TCi (x)

) �= ∅. It follows
from [32, Theorem 6.5], that

cl
(
∩Ni=1cone (Ci − x)

)
= ∩Ni=1cl (cone (Ci − x)) = ∩Ni=1TCi (x) .

So TC (x) = ∩Ni=1TCi (x). By taking polars and by Part 3 of Lemma 3, we have the

strong CHIP (10) at x: NC (x) = cl
(∑N

i=1NCi (x)
)

= ∑N
i=1NCi (x) .
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We next show that there is an αr such that (16) holds. We only do this forN = 2. The
general case follows easily by the principle of mathematical induction onN . For i = 1, 2,
letEi be a subspace orthogonal to the affine hull ofCi . ThenNCi (x)∩ (−NCi (x)) = Ei
for all x ∈ Ci . Set E = E1 ∩ E2. Then E ⊂ NCi (x) for i = 1, 2 and Ci ⊂ E⊥ + x for
i = 1, 2 and x ∈ C. It follows that (C1 + E) ∩ (C2 + E) = C + E, and NCi+E (x) =
NCi (x)∩E⊥ for i = 1, 2 and x ∈ C. Since {NC1 (x) ,NC2 (x)} is additively regular for
all x ∈ C ∩ rIB, by Part 2 of Lemma 3, {NC1+E (x) ,NC2+E (x)} is additively regular
for all x ∈ C ∩ rIB. This implies that, for each x ∈ C ∩ rIB,

(NC1 (x)+NC2 (x)) ∩ E⊥ = NC (x) ∩ E⊥ = NC+E (x) = N(C1+E)∩(C2+E) (x)
= NC1+E (x)+NC2+E (x)
= NC1 (x) ∩ E⊥ +NC2 (x) ∩ E⊥.

We now show that, for the collection {C1 + E,C2 + E}, there is a positive ᾱr

ᾱr IB
◦ ∩

(
2∑
i=1

NCi+E (x)

)
⊂

2∑
i=1

[IB◦ ∩NCi+E (x)] ∀ x ∈ C ∩ rIB . (18)

Assume the result is false. Then, there must exist sequences {xj } ⊂ C∩rIB, ᾱj ↘ 0,

and zji ∈ NCi
(
xj
) ∩ E⊥ with i = 1, 2,

∥∥∥zj1 + z
j
2

∥∥∥ = 1 and j = 1, 2, . . . , such that∑2
i=1 z

j
i /∈ ∑2

i=1

[
ᾱ−1
j IB◦ ∩NCi+E

(
xj
)]
. Consequently, ᾱ−1

j < max1≤i≤2{
∥∥∥zji
∥∥∥}.

Due to the compactness of the set C ∩ rIB and the finiteness of the index set {1, 2}, we
may assume with no loss in generality that there exist x̄ ∈ C ∩ rIB and z̄i ∈ NCi+E (x̄)
for i = 1, 2 with ‖z̄i‖ = 1 and i = 1, 2 such that xj → x̄ and zji /

∥∥∥zj1
∥∥∥ → z̄i �= 0.

But then z̄1 ∈ E1 ∩ E2 ∩ E⊥ = {0}. The contradiction shows that (18) holds for the
collection {C1 + E,C2 + E}.

For any x ∈ C ∩ rIB, and z ∈ IB◦ ∩NC (x), byNC (x) = NC1 (x)∩E⊥ +NC2 (x)∩
E⊥ + E, we have

z ∈ IB◦ ∩ (NC1 (x) ∩ E⊥ +NC2 (x) ∩ E⊥)+ IB◦ ∩ E

⊂
2∑
i=1

(βr IB
◦ ∩NCi+E (x))+ IB◦ ∩ E where βr = ᾱ−1

r

⊂
2∑
i=1

(βr + 1)IB◦ ∩ (NCi+E (x)+ E)

⊂
2∑
i=1

(βr + 1)IB◦ ∩NCi (x) .

Setting αr = (βr + 1)−1 establishes (16) for the collection {C1, C2}.
To see the final statement of Part 2, we observe that the first statement establishes

that for every r > 0 there is an αr > 0 such that (16) holds, and that the strong CHIP
(10) holds at every point of C. Therefore, we obtain the result from Theorem 4.
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3. For any point x ∈ C, we have

∩Ni=1ri
(
TCi (x)

) = ∩Ni=1ri (cone (Ci − x)) = ∩Ni=1cone (ri (Ci − x))

⊃ ∩Ni=1ri (Ci − x) = ∩Ni=1(ri (Ci)− x) �= ∅,
where the second equality follows from a remark after [32, Corollary 6.8.1]. By Part 1
of Lemma 3, the collection

{
NCi (x) | i = 1, . . . , N

}
is additively regular.

4. If the result were false, there would exist x̄ ∈ C such that z̄i ∈ NCi (x̄) , i =
1, . . . , N with

∑N
i=1 z̄

i = 0 but some z̄i0 �= 0. With no loss in generality, 1 ≤ i0 ≤ N−1
since if i0 = N the condition

∑N
i=1 z̄

i = 0 implies the existence of a j0 between 1
and N − 1 with z̄j0 �= 0. In addition, we may assume that

∥∥z̄i0∥∥ = 1. Set Ĉi0 =(⋂N−1
i=1
i �=i0

Ci

)
∩CN, and let x̂ ∈

(⋂N−1
i=1 int (Ci)

)
∩CN . By [33, Theorem 20] and the con-

dition
∑N
i=1 z̄

i = 0, we have −z̄i0 ∈ ∑N
i=1
i �=i0

NCi (x̄) = N
Ĉi0
(x̄) . Since x̂ ∈ int

(
Ci0
)
,

there exists δ > 0 such that x̂+ δz̄i0 ∈ int
(
Ci0
)
. By combining these facts we have that,

−z̄i0 ∈ N
Ĉi0
(x̄) with x̂− x̄ ∈ T

Ĉi0
(x̄) , and z̄i0 ∈ NCi0 (x̄) with x̂+ δz̄i0 − x̄ ∈

TCi0 (
x̄) . Therefore,

δ = δ

∥∥∥z̄i0∥∥∥2

2
=
〈
z̄i0 , δz̄i0

〉
≤
〈
z̄i0 , x̂ + δz̄i0 − x̄

〉
≤ 0.

This contradiction establishes the validity of the statement in Part 4. ��
Theorem 7 can be used to provide an alternative proof of Bauschke’s Theorem [4,

Theorem 5.6.2] on bounded linear regularity in finite dimensions.

4. Error bounds for convex inequalities

In this section we apply our results on weak sharp minima to derive necessary and
sufficient conditions under which a global error bound exists for the convex inequality
system

h(x) ≤ 0 x ∈ C, (19)

where it is assumed that h : X �→ IR is lower semi-continuous, convex, and not identi-
cally +∞, and the set C ⊂ X is nonempty, closed, and convex. By a global error bound
for (19), we mean the existence of a constant α > 0 such that

αdist (x | 
) ≤ dist (x | C)+ h+(x) ∀ x ∈ X, (20)

where


 = { x | x ∈ C, h(x) ≤ 0 } .
In the case where the function h is linear such global error bounds are called Hoffman
bounds [18]. Our analysis is based on the observation that the condition (20) is equivalent
to the statement that the function f : X �→ IR , given by

f (x) = dist (x | C)+ h+(x), (21)



248 James V. Burke, Sien Deng

has 
 as a set of weak sharp minima.
Conditions for the existence of a global error bound for the system (19) can be used

to derive similar conditions for more general convex inequality systems of the form

ht (x) ≤ 0, t ∈ T , and x ∈ C (22)

where T is an index set (possibly infinite), for each t ∈ T the functions ht : X �→ IR i =
1, . . . , N are lower semi-continuous, convex, and not identically +∞, and the setC ⊂ X

is nonempty, closed, and convex. There are many ways in which this can be accomplished
[10, 23, 40, 39]. But perhaps the simplest is to define h(x) = sup {ht (x) | t ∈ T } for
each x ∈ X. Then h is convex and further conditions can be imposed on the domains of
the functions ht to guarantee that the function h satisfies the conditions stated in (19).
We provide a few sample results of this type at the end of this section.

Error bounds for the system (19) have been studied by many authors [2, 12, 20–
23, 40, 39]. Our development is primarily motivated by the finite dimensional results
obtained by Lewis and Pang in [22]. However, we will also see close connections to the
very recent results appearing in [23, 40, 39]. Lewis and Pang note the connection to weak
sharp minima in [22] but do not pursue it. We show that very general error bound results
are easily obtained from the more general results for weak sharp minima. Indeed, using
the results from Part I [8] we obtain a richer variety of results while recovering those
that appear in [22] under weaker hypotheses. An immediate consequence of [8, Theorem
2.3] is the following characterizations of the existence of the global error bound (20).
No proofs are needed.

Theorem 8. Let h : X �→ IR and C be as given in (19).
Let α > 0 and consider the following statements:

1. The global error bound (20) holds.
2. For all x ∈ 
, αIB◦ ∩N
 (x) ⊂ IB◦ ∩NC (x)+ ∂h+(x).
3. For all x ∈ 
 and d ∈ Tdom (h) (x), αdist (d | T
 (x)) ≤ dist (d | TC (x)) +
h′+(x; d).

4. αIB◦ ∩
[⋃
x∈


N
 (x)

]
⊂
⋃
x∈


[
IB◦ ∩NC (x)+ ∂h+(x)

]
.

5. For all x ∈ 
 and d ∈ Tdom (h) (x)∩N
 (x), α ‖d‖ ≤ dist (d | TC (x))+ h′+(x; d).
6. The inclusion α̂IB◦ ⊂ IB◦ ∩NC (x)+ ∂h+(x)+ [

Tdom (h) (x) ∩N
 (x)
]◦

holds for
all 0 ≤ α̂ < α and x ∈ 
.

7. For all y ∈ dom (h), αdist (y | 
) ≤ dist (y − p | TC (p))+ h′+(p; y − p) where
p = P(y | 
).

Statements 1 through 4 are equivalent. If, in addition, X is assumed to be a Hilbert
space, then these statements are equivalent to each of the statements 5, 6, and 7.

Remark 5. The equivalence of statements 2. and 3. in Theorem 8 is given in [40, Theorem
2.3]. However, the authors of [40] were unaware of the results in [8] and so needed to
reconstruct some of the machinery in [8] to establish this result.

In order to understand Theorem 8 better, one needs a better description of the sub-
differential of h+(x). Although this is a simple max-function there is a bit of a twist
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in that it may be the case that { x |h(x) < 0 } �⊂ int (dom (h)). When this occurs, the
standard formula for the subdifferential of max-functions does not apply.

Proposition 3. Let h : X �→ IR be as given in (19).

(i) If dom (h) ∩ { x |h(x) > 0 } �= ∅, then

∂h+(x) =


∂h(x) , if h(x) > 0,
Ndom (h) (x) , if h(x) < 0, and
cl∗
(
Ndom (h) (x) ∪ (⋃λ∈[0,1] λ∂h(x)

))
, if h(x) = 0.

(23)

(ii) If dom (h) ∩ { x |h(x) > 0 } = ∅, then h+ = ψlevh(0) = ψdom(h) and ∂h+(x) =
Nlevh(0) (x) = Ndom (h) (x) for all x ∈ dom (h).

(iii) If x̄ ∈ C ∩ { x |h(x) < 0 },
∂h+(x̄) = Ndom (h) (x̄) = Nlevh(0) (x̄) , and N
 (x̄) = NC∩dom (h) (x̄) .

Remark 6. The expression for ∂h+(x) in (23) for the case h(x) = 0 follows from a more
general result of Volle [35, Theorem 2].

Remark 7. Note that if x ∈ h−1(0) and ∂h(x) = ∅, then ∂h+(x) = Ndom (h) (x). On the
other hand, if x ∈ h−1(0) and ∂h(x) �= ∅, then ∂h+(x) = ⋃

λ∈[0,1] λ∂h(x) since in this
case Ndom (h) (x) ⊂ ∂h(x).

Proof. Part (ii) is a straightforward consequence of the definitions and so we only
prove (i). Define gi : X �→ IR for i = 1, 2 by g1(x) ≡ 0 and g2(x) = h(x),
and set I (x) = { i | gi(x) = h+(x) }. The inclusions ∂h+(x) ⊇ ⋃

i∈I (x) ∂gi(x) and
∂h+(x) ⊇ Ndom (h) (x) are well-known and easily verified. These two inclusions imme-
diately imply that the right hand side of (23) is contained in the left hand side of (23)
since the set ∂h+(x) is weak∗ closed and convex. Therefore, we need only prove the
reverse inclusion. We consider 3 cases: h(x) > 0, 0 > h(x), and h(x) = 0.

If h(x) > 0, then h+(y) = h(y) on a neighborhood of x due to the lower semi-con-
tinuity of h. Consequently, ∂h+(y) = ∂h(y) for all y near x.

If 0 > h(x), then, for all d ∈ X for which there is a t̄ > 0 such that x+ td ∈ dom (h)

for all t ∈ [0, t̄], we have h(x+ λt̄d) ≤ h(x)+ λ[h(x+ t̄d)−h(x)] for 0 < λ ≤ 1, and
so for t > 0 sufficiently small we have h(x+ td) < 0. Consequently, for such directions
d we have h′+(x; d) = 0. On the other hand, if x + td /∈ dom (h) for all small t > 0,
then h′+(x; d) = +∞. Therefore, by [33, Theorem 11], ∂h+(x) = Ndom (h) (x) .

If h(x) = 0, then result is an immediate consequence of [35, Theorem 2].
We now prove (iii). The equivalence ∂h+(x̄) = Ndom (h) (x̄) has already been estab-

lished in (23). The second equation in (iii) is equivalent to the equation Tlevh(0) (x̄) =
Tdom (h) (x̄) . Clearly, Tlevh(0) (x̄) ⊂ Tdom (h) (x̄) , and so we need to show the reverse
inclusion. For this let d ∈ X be such that there is a t̄ > 0 for which x̄ + td ∈ dom (h)

for all t ∈ [0, t̄]. Then, h(x̄+λt̄d) ≤ h(x̄)+λ[h(x̄+ t̄d)−h(x̄)] for 0 < λ ≤ 1, so that
h(x̄+ td) < 0 for all t > 0 sufficiently small. Consequently, Tdom (h) (x̄) ⊂ Tlevh(0) (x̄).

The final equation in (iii) follows in a manner similar to that of the second equation.
We show the equivalent formula T
 (x̄) = TC∩dom (h) (x̄). Since 
 ⊂ C ∩ dom (h),
we need only show that TC∩dom (h) (x̄) ⊂ T
 (x̄). For this let d ∈ X be such that there
is a t̄ > 0 for which x̄ + td ∈ C ∩ dom (h) for all t ∈ [0, t̄]. Then, h(x̄ + λt̄d) ≤
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h(x̄) + λ[h(x̄) − h(x̄ + t̄d)], so that h(x̄ + td) < 0 and x̄ + td ∈ C for all t > 0
sufficiently small. Consequently, TC∩dom (h) (x̄) ⊂ T
 (x̄). ��

There are a number of conditions under which the characterizations given in Theorem
8 can be refined. We follow the pattern of results given in [22] and consider conditions
under which the solution set 
 can be replaced by the set C ∩ f−1(0).

Theorem 9. Let the hypotheses of Theorem 8 hold and let α̂ > 0. Consider the following
statements:

2’. For all x ∈ C ∩ h−1(0), α̂IB◦ ∩N
 (x) ⊂ IB◦ ∩NC (x)+ ∂h+(x).
3’. For all x ∈ C ∩ h−1(0) and d ∈ Tdom (h) (x),
α̂dist (d | T
 (x)) ≤ dist (d | TC (x))+ h′+(x; d).

4’. α̂IB◦ ∩

 ⋃
x∈C∩h−1(0)

N
 (x)


 ⊂

⋃
x∈C∩h−1(0)

[
IB◦ ∩NC (x)+ ∂h+(x)

]
.

5’. For all x ∈ C ∩ h−1(0) and d ∈ Tdom (h) (x) ∩N
 (x),
α̂ ‖d‖ ≤ dist (d | TC (x))+ h′+(x; d).

6’. The inclusion α̃IB◦ ⊂ IB◦ ∩NC (x)+ ∂h+(x)+
[
Tdom (h) (x) ∩N
 (x)

]◦
holds for

all 0 ≤ α̃ < α and x ∈ C ∩ h−1(0).

In addition, consider the following hypotheses:

(a) { x ∈ C |h(x) < 0 } ⊂ int (dom (h)).
(b) The pair of sets {C, levh (0)} is linearly regular.
(c) The pair of sets {C, dom (h)} satisfies (9) for all x ∈ C ∩ dom (h).
(d) X is a Hilbert space and P(dom (h) | C) ⊂ dom (h).

If (a), (b), or (c) holds, then each of the conditions 2’, 3’, and 4’ imply that the global
error bound (20) holds for some α ∈ (0, α̂] (α = min{α̂, 1} under (a)). If, in addition,X
is a Hilbert space, then each of the conditions 2’– 6’ imply that the global error bound
(20) holds for some α ∈ (0, α̂] (α = min{α̂, 1} under (a)). Finally, condition (d) implies
condition (c).

Remark 8. When X is assumed to be finite dimensional, hypotheses (a) and (d) corre-
spond to conditions (8) and (9) in Lewis and Pang [22], respectively. Therefore, Part 5’
recovers Theorem 2 in [22]

Remark 9. Parts 2’, 3’, 4’, and 6’ as well as conditions (b) and (c) have not previously
appeared in the literature. When dom (h) is closed, by Theorem 2, condition (c) is
equivalent to the linear regularity of the pair {C, dom (h)}.
Proof. If 
 = C ∩ h−1((−∞, 0]) = C ∩ h−1(0), the result follows from Theorem
8. Hence we assume for the remainder of the proof that the set { x ∈ C |h(x) < 0 } =
C ∩ h−1((−∞, 0)) �= ∅.

The proof of the equivalence of the conditions 2, 3, 4, 5, and 6 in [8, Theorem 2.3]
is pointwise with respect to elements of S̃. Therefore, since Theorem 8 shows that the
conditions in [8, Theorem 2.3] are equivalent to the corresponding conditions in Theo-
rem 8 with f (x) = dist (x | C) + h+(x), S̃ = 
, and S = dom (f ) = dom (h), the
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conditions 2’– 4’ are equivalent in the general case, and are equivalent to the conditions
5’ and 6’ in the Hilbert space setting. Hence, to establish the result, we need only show
that one of the conditions 2’– 4’ implies the corresponding condition in Theorem 8 for
some α ∈ (0, α̂] (with α = min{α̂, 1} if (a)). To this end, we show that 3’ implies 3
in Theorem 8 when it is assumed that (a) holds, and show that 2’ implies 2 Theorem
8 when (b) holds. This is done by showing that there is an ᾱ > 0 such that 2’ or 3’ is
automatically satisfied on the set 
̂ = C ∩ { x |h(x) < 0 }, whereby the corresponding
result, 2 or 3 respectively, is satisfied with α = min{ᾱ, α̂} since
 = 
̂ ∪ (C ∩h−1(0)).

If (a) holds, then, in fact, ε > 0 may be chosen so that h(x) < 0 for all x ∈ x̄ + εIB
and
∩(x̄+εIB) = C∩(x̄+εIB). Therefore, h′+(x̄; d) = 0 for all d ∈ X andN
 (x̄) =
NC (x̄), and so, by [8, Theorem A.1, Part 6], dist (d | T
 (x̄)) = dist (d | TC (x̄)) +
h′+(x̄; d) for all d ∈ Tdom (h) (x̄). Consequently, 3’ implies 3 with α = min{α̂, 1}.

If (b) holds, then Theorem 2 shows that there exists ᾱ > 0 such that

ᾱIB◦ ∩N
 (x) ⊂ IB◦ ∩NC (x)+ IB◦ ∩Nlevh(0) (x) (24)

for all x ∈ 
. Let x̄ ∈ C ∩ { x |h(x) < 0 }. By combining (24) with Lemma 3(iii) we
obtain

ᾱIB◦ ∩N
 (x̄) ⊂ IB◦ ∩NC (x̄)+Ndom (h) (x̄) = IB◦ ∩NC (x̄)+ ∂h+(x̄). (25)

Hence, 2’ implies 2 with α = min{α̂, ᾱ}.
If (c) holds, then one establishes (25) as when (b) holds from which the result follows.
Suppose (d) holds and set Ĉ = C∩dom (h). Then P(x | C) = P(x | Ĉ) for all x ∈

dom (h), or equivalently, dist (x | C)+ψdom (h)(x) = dist (x | Ĉ)+ψdom (h)(x) ∀ x ∈ X.
Therefore, [33, Theorem 20] and [8, Theorem A.1, Part 5] imply that IB◦ ∩ N

Ĉ
(x) ⊂

IB◦ ∩ N
Ĉ
(x) + Ndom (h) (x) = IB◦ ∩ NC (x) + Ndom (h) (x) for all x ∈ Ĉ. Hence, for

any x ∈ Ĉ and z ∈ IB◦ ∩ N
Ĉ
(x) there exist z1 ∈ IB◦ ∩ NC (x) and z2 ∈ Ndom (h) (x)

with z = z1 + z2, and so
∥∥z2
∥∥ ≤ 2. Consequently, 1

2 IB◦ ∩ N
Ĉ
(x) ⊂ IB◦ ∩ NC (x) +

IB◦ ∩ Ndom (h) (x)∀x ∈ Ĉ. Therefore, the pair of sets {C, dom (h)} satisfies (9) for all
x ∈ Ĉ. ��

We now turn to the study of sufficient conditions for the existence of the error bound
(20). The two key conditions in our study are the Slater condition, { x |h(x) < 0 } �= ∅,
and the linear regularity of the pair of sets {C, levh (0)}. The linear regularity condition
already appears in the previous result and is a corner stone of the analysis given by
Bauschke, Borwein, and Li as well [5]. It is easy to see that the global error bound (20)
implies the linear regularity of the pair {C, levh (0)}.
Theorem 10. Let h and C be as given in (19). If the global error bound (20) holds, then
the pair {C, levh (0)} is linearly regular.

Proof. By statement 2 in Theorem 8, αIB◦ ∩ N
 (x) ⊂ IB◦ ∩ NC (x)+ ∂h+(x) for all
x ∈ 
. Since every lower semi-continuous convex function f : X �→ IR satisfies the
inclusion cone (∂f (x)) ⊂ Nlevf (f (x)) (x) at points in x ∈ dom (f ), this implies that
αIB◦ ∩ N
 (x) ⊂ IB◦ ∩ NC (x) + Nlevh(0) (x) ∀ x ∈ 
. Therefore, given x ∈ 
 and
z ∈ αIB◦ ∩N
 (x) there exist z1 ∈ IB◦ ∩NC (x) and z2 ∈ Nlevh(0) (x) with z = z1 + z2.
In particular, this implies that

∥∥z2
∥∥ ≤ α + 1. It follows that α

α+1 IB◦ ∩ N
 (x) ⊂ IB◦ ∩
NC (x)+ IB◦ ∩Nlevh(0) (x) for all x ∈ 
, and so the result follows from Theorem 2. ��



252 James V. Burke, Sien Deng

Our next result comes from convex analysis folklore. Its proof parallels the finite
dimensional proof given by Rockafellar in [32, Theorem 23.7]. This basic result shows
that the Slater condition implies that the Abadie constraint qualification,

(ACQ) Nlevh(0) (x) = cl∗ (cone (∂h(x))) ∀x ∈ h−1(0) ∩ dom (∂h),

is satisfied. We begin with the following technical lemma based on [32, Theorem 7.6].

Lemma 4. Let g : X �→ IR be a convex function on the normed linear spaceX, and sup-
pose thatµ ∈ IR is such that the set { x | g(x) < µ } is nonempty.Then cl ({ x | g(x)<µ })
= { x | (cl g)(x) ≤ µ } .
Proof. Since cl g is the lower semi-continuous hull of g, the set { x | (cl g)(x) ≤ µ } is
closed and

(cl g)(x) ≤ g(x) ∀ x ∈ X. (26)

Now if x̄ ∈ cl ({ x | g(x) < µ }), then there is a sequence {xi} ∈ { x | g(x) < µ }
with xi → x̄. Hence, by (26), (cl g)(xi) ≤ g(xi) < µ for all i = 1, 2, . . . . Since
cl g is lower semi-continuous, (cl g)(x̄) ≤ µ and so x̄ ∈ { x | (cl g)(x) ≤ µ }. Thus,
cl ({ x | g(x) < µ }) is a closed subset of the set { x | (cl g)(x) ≤ µ }.

We now show the reverse inclusion. Let x̄∈{ x | (cl g)(x)≤µ }, let x̂∈{ x | g(x)<µ },
and set 0 < β = µ − g(x̂). Since cl (epi (g)) = epi (cl (g)), there exists a sequence
{(xi, µi)} ⊂ epi (g)withµi → (cl g)(x̄)≤µ and xi→ x̄ If the sequence {µi} contains a
subsequence {µi}J such thatµi < µ for all i ∈ J , then x̄ ∈ cl ({ x | g(x) < µ }). Hence,
with no loss in generality, we may assume that 0 ≤ δi = µi − µ for all i = 1, 2, . . . .
Let {εi} ⊂ (0, β2 ) satisfy εi ↓ 0 and set λi = β−εi

β+δi so that 0 < β
2(β+δi ) ≤ λi < 1 for all

i = 1, 2, . . . . Observe that

g((1 − λi)x̂ + λix
i) ≤ (1 − λi)g(x̂)+ λig(x

i)

= (1 − λi)(g(x̂)− µ)+ µ+ λi(µi − µ)

= λi(β + δi)− β + µ ≤ µ− εi < µ,

so that (1−λi)x̂+λixi ∈ { x | g(x) < µ } with (1−λi)x̂+λixi → x̄ which establishes
the result. ��
Theorem 11. LethandC be as given in (19). Ifx ∈ dom (∂h) is such thatx /∈ arg minh,
or equivalently, 0 /∈ ∂h(x), then Nlevh(h(x)) (x) = cl∗ (cone (∂h(x))). In particular, we
obtain that the Slater condition implies that the Abadie constraint qualification holds.

Proof. Let x ∈ dom (∂h). Since h is lower semi-continuous, the set levh (h(x)) is

closed. Moreover, since { y |h(y)<h(x) } is nonempty, Lemma 4 implies that cl
{
yh(y)

<h(x)
}

= levh (h(x)) . Now, for y ∈ dom (h), h′(x; y − x) < 0 if and only if there is

some 1 ≥ λ > 0 such that h(x + λ(y − x)) < h(x) since

h′(x; y − x) = inf
t>0

h(x + t (y − x))− h(x)

t
.
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Therefore, again by Lemma 4,

Tlevh(h(x)) (x) = cl { λ(z− x) | 0 < λ, h(z) ≤ h(x) }
= cl { λ(z− x) | 0 < λ, z ∈ cl { y |h(y) < h(x) } }
= cl { λ(y − x) | 0 < λ, h(y) < h(x) }
= cl

{
λ(y − x)

∣∣ 0 < λ, y ∈ dom (h), h′(x; y − x) < 0
}
.

Consequently,

Nlevh(h(x)) (x) = {
z
∣∣ 〈z, y − x〉 ≤ 0 ∀ y ∈ dom (h) with h′(x; y − x) < 0

}
.

In addition, we have h′(x; ·) : X → IR since ∂h(x) �= ∅, so that Lemma 4 and [33,
Theorem 11] combine to imply that cl

({
d
∣∣h′(x; d) < 0

}) = {
d
∣∣ψ∗

∂h(x)
(d) ≤ 0

}
.

Hence,

Nlevh(h(x)) (x) =
{
z

∣∣∣∣ 〈z, λ(y − x)〉 ≤ 0 ∀ λ > 0, and y ∈ dom (h)

with h′(x; λ(y − x)) < 0

}

= {
z
∣∣ 〈z, d〉 ≤ 0 ∀ d with h′(x; d) < 0

}
= {

d
∣∣h′(x; d) < 0

}◦
= (cl

({
d
∣∣h′(x; d) < 0

})
)◦

= {
d
∣∣ψ∗

∂h(x)
(d) ≤ 0

}◦ = { d | 〈z, d〉 ≤ 0 ∀z ∈ ∂h(x) }◦
= { d | 〈z, d〉 ≤ 0 ∀z ∈ cone (∂h(x)) }◦ = cl∗ (cone (∂h(x))),

where the first equality follows since h′(x; λ(y − x)) = λh′(x; y − x) for all λ > 0,
the second equality follows since h′(x; d) = +∞ if d �= λ(y − x) with λ > 0 and
y ∈ dom (h), and the fourth equality follows since K◦ = cl (K)◦ for all K ⊂ X

convex. ��
Theorem 12. Let the hypotheses of Proposition 3 hold and suppose that
 ⊂ dom (∂h)

and that the strong Slater condition 0 /∈ cl
(
∂h(C ∩ h−1(0))

)
holds. Then the global

error bound (20) holds for some α > 0 if and only if the pair of sets {C, levh (0)} is
linearly regular.

Remark 10. The strong Slater condition 0 /∈ cl
(
∂h(C ∩ h−1(0))

)
implies that the sub-

differential ∂h(x) is uniformly bounded away from the origin on C ∩ h−1(0). This
condition is equivalent to the condition used in [22, Corollary 1, Part (b)] when C = X,
but is weaker than the condition used in [22, Corollary 2, Part (b)]. Theorem 12 refines
the implication (b) ⇒ (a) in [22, Corollary 2] by characterizing precisely when a global
error bound occurs under the strong Slater condition. Note also that the requirement that
C ∩ h−1(0) ⊂ int (dom (h)), or equivalently 
 ⊂ int (dom (h)), in [22, Corollary 2]
is replaced by the weaker condition 
 ⊂ dom (∂h) in Theorem 12.

Proof. By Theorem 10, we need only show that the strong Slater condition and the linear
regularity hypothesis implies the global error bound (20). First note that the strong Slater
condition implies that the set { x |h(x) < 0 } is nonempty, and so,

Nlevh(0) (x) = cl∗ (cone (∂h(x))) ∀ x ∈ h−1(0) ∩ dom (∂h). (27)
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Combining this with Lemma 3(iii) and Proposition 3, we find that

Nlevh(0) (x) = cl∗ (cone (∂h+(x))) ∀ x ∈ 
. (28)

The strong Slater condition also implies that there is an α1 > 0 such that

inf
x∈C∩h−1(0)∩dom (∂h)

dist (0 | ∂h(x)) ≥ α1,

and so, by [8, Lemma 3.4, Part 2],

α1IB◦ ∩ cone (∂h+(x)) ⊂ ∂h+(x) ∀ x ∈ C ∩ h−1(0) ∩ dom (∂h). (29)

Setting α2 = min{1, α1}, we obtain from (29) and Proposition 3 that

α2IB◦ ∩ cone (∂h+(x)) ⊂ ∂h+(x) ∀ x ∈ 
, (30)

which in turn implies that

α2IB◦ ∩ cl∗ (cone (∂h+(x))) ⊂ ∂h+(x) ∀ x ∈ 
. (31)

By Theorem 2, the pair of sets {C, levh (0)} is linearly regular if and only if there is
an α3 > 0 such that

α3IB◦ ∩N
 (x) ⊂ IB◦ ∩NC (x)+ IB◦ ∩Nlevh(0) (x) ∀ x ∈ 
,
since 
 = C ∩ levh (0). By (28), this is equivalent to the statement

α3IB◦ ∩N
 (x) ⊂ IB◦ ∩NC (x)+ IB◦ ∩ cl∗ (cone (∂h+(x))) ∀ x ∈ 
. (32)

Consequently, (31) implies that for α = α2α3

αIB◦ ∩N
 (x) ⊂ IB◦ ∩NC (x)+ ∂h+(x) ∀ x ∈ 
, (33)

which, by Theorem 8, implies that the global error bound (20) holds. ��
It is easy to see that if the global error bound (20) holds for (19), then the function

f (x) = h+(x)+ψC(x) has
 as a set of weak sharp minima. The following result gives
a sufficient condition for the reverse implication to hold, which is supplementary to [8,
Theorem 7.1].

Theorem 13. Let h : X �→ IR and C be as given in (19). Suppose that 
 is a set of
weak sharp minima for h+ over C, and that ∂(h+(x)+ψC(x)) = ∂h+(x)+NC (x) for
all x ∈ 
. If the set ∪x∈
∂h+(x) is bounded, then the global error bound (20) holds.

Proof. Since
 is a set of weak sharp minima for h+ over C, there is an α > 0 such that

αIB◦ ∩N
 (x) ⊂ ∂h+(x)+NC (x) ∀ x ∈ 
. (34)

By assumption, there is a β > 0 such that
∥∥x∗∥∥ ≤ β ∀ x∗ ∈ ∪x∈
∂h+(x). (35)
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The inclusion (34) along with (35) implies that

αIB◦ ∩N
 (x) ⊂ ∂h+(x)+ (α + β)IB◦ ∩NC (x) ∀ x ∈ 
, (36)

which in turn implies that, for any x ∈ 
,

αIB◦ ∩N
 (x) ⊂
{
∂h+(x)+ IB◦ ∩NC (x) , if α + β ≤ 1,
(α + β)∂h+(x)+ (α + β)IB◦ ∩NC (x) , if α + β > 1.

This completes the proof. ��
We now consider extensions to systems of the form (22). Let us first consider the

case where the index set T is finite: T = {1, 2, . . . , N}. As was the case for the function
ρ defined in expression (7) of Section 3, the equivalence of norms in finite dimensions
implies that the error bound (38) is equivalent to any error bound of the form

α̃dist (x | 
) ≤
∥∥∥∥
(

dist (x | C), h1
+(x), . . . , h

N
+(x)

)T ∥∥∥∥ , (37)

where hi+(x) = max{0, hi(x)} i = 1, . . . , N . If the norm ‖·‖ is monotone, then the
function

ρ̄(x) =
∥∥∥∥
(

dist (x | C), h1
+(x), . . . , h

N
+(x)

)T ∥∥∥∥
is convex. For example, one can use the ∞-norm on IRN+1 to obtain the types of error
bounds discussed in [22]. Note that since we deal with only finitely many inequalities,
results obtained for one choice of norm are easily translated into a result for another
choice of norm using the equivalence of norms. When one extends the ideas presented
here to infinite index sets, then one must first embed the problem into an appropriate
function space and then be careful to respect the geometry of that space. In our discussion
of (37) we choose the 1-norm and consider weak sharp minima for the function

αdist (x | 
) ≤ dist (x | C)+
N∑
i=1

hi+(x). (38)

Weak sharp minima characterization readily flow from the earlier results in this section
by simply computing the subdifferential of the function ρ1(x) = ∑N

i=1 h
i+(x). Rather

than pursuing all of the consequences of Theorems 8 and 9 in this context, we instead
focus on the link between the existence of an error bound for the system (22) and the
linear regularity of the level sets of the functions hi, i = 1, . . . , N . We begin with the
following definition.

Definition 5. Let hi : X �→ IR , i = 1, . . . , N be as given in (22). Define the operator
D : X �→ ∏N

i=1X
∗ by D = ∂h1+ × ∂h2+ × · · · × ∂hN+ , and set

D(
) =
{
(z1, z2, . . . , zN) ∈ D(x) | x ∈ 


}

=
{
(z1, z2, . . . , zN)

∣∣∣ x ∈ 
, zi ∈ ∂hi+(x) i = 1, 2, . . . , N
}
.

We say that the system (22) is asymptotically additively regular if for every (w1, w2, . . . ,

wN) in D(
)∞ satisfying
∑N
i=1w

i = 0, we have wi = 0, i = 1, 2, . . . , N.
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Theorem 14. LetX be a finite dimensional space and consider the system (22). Assume
that
 ⊂ ∩Ni=1int (dom hi). Leth(x) = ∑N

i=1 h
i+(x) andCi = {x | hi(x) ≤ 0} for i =

1, 2, . . . , N. Consider the following statements:

1. The set 
 is a set of boundedly weak sharp minima for h over C.
2. The set 
 is a set of boundedly weak sharp minima for h+ dist (· | C).
3. The collection {C,C1, C2, . . . , CN } is boundedly linearly regular.

Statements 1 and 2 are equivalent, and they imply statement 3. Conversely, if for each
i = 1, 2, . . . , N , the set Ci is a set of boundedly weak sharp minima for hi+, then
statement 3 implies statements 1 and 2. In addition, if 
 is a set of weak sharp minima
for h + dist (· | C) and the system (22) is asymptotically additively regular, then the
collection {C,C1, C2, . . . , CN } is linearly regular.

Proof. The equivalence of statements 1 and 2 follows from [8, Theorem 7.1] since h
is Lipschitz continuous on any bounded subsets of X. We now show that statement 2
implies that the collection of sets {C,C1, . . . , CN } is boundedly linearly regular. By [8,
Corollary 5.3] and [8, Theorem 6.3], we have that, for any r > 0, there is an α(r) > 0
such that

α(r)IB◦ ∩N
 (x) ⊂ ∂h(x)+ IB◦ ∩NC (x) ∀x ∈ 
 ∩ rIB (39)

since ∂(h(x)+ dist (x | C)) = ∂h(x)+ IB◦ ∩NC (x). For any x ∈ 
, cone (∂hi+(x)) ⊂
NCi (x) for i = 1, 2, . . . , N . By
 ⊂ int (dom hi), the set ∪x∈
∩rIB∂hi+(x) is a bounded
set. Therefore, there is a β(r) > 0 such that

∂hi+(x) ⊂ β(r)IB◦ ∩NCi (x) ∀x ∈ 
 ∩ rIB (40)

for i=1, 2, . . . , N . Inclusions (39) and (40) along with the fact that ∂h(x)=∑N
i=1∂h

i+(x)
yield

α(r)IB◦ ∩N
 (x) ⊂ (

N∑
i=1

β(r)IB◦ ∩NCi (x))+ IB◦ ∩NC (x) ∀x ∈ 
 ∩ rIB.

This shows that the collection {C,C1, C2, . . . , CN, } is boundedly linearly regular.
For the converse, suppose that statement 3 along with the hypotheses hold. Then,

for any r > 0, there are an α(r) > 0 and βi(r) for i = 1, 2, . . . , N such that

α(r)IB◦ ∩N
 (x) ⊂ (

N∑
i=1

IB◦ ∩NCi (x))+ IB◦ ∩NC (x) ∀x ∈ 
 ∩ rIB, (41)

and

IB◦ ∩NCi (x) ⊂ βi(r)IB◦ ∩ ∂hi+(x) ∀x ∈ Ci ∩ rIB. (42)

Let β(r) = max{βi(r) | i = 1, 2, . . . , N}. Then the inclusions (41) and (42) yield

α(r)IB◦ ∩N
 (x) ⊂ (

N∑
i=1

β(r)IB◦ ∩ ∂hi+(x))+ IB◦ ∩NC (x) ∀x ∈ 
 ∩ rIB,

which shows that statement 2 holds.
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Let us now suppose that (20) holds, and the system (22) is asymptotically additively
regular. Then there is an α > 0 such that

αIB◦ ∩N
 (x) ⊂ ∂h(x)+ IB◦ ∩NC (x) =
N∑
i=1

∂hi+(x)+ IB◦ ∩NC (x) ∀x ∈ 
.
(43)

It follows that

αIB◦ ∩N
 (x) ⊂ (1 + α)IB◦ ∩ (
N∑
i=1

∂hi+(x))+ IB◦ ∩NC (x) ∀x ∈ 
. (44)

We claim that there is a β > 0 such that

(1 + α)IB◦ ∩ (
N∑
i=1

∂hi+(x)) ⊂
N∑
i=1

(βIB◦ ∩ ∂hi+(x)) ∀x ∈ 
. (45)

If the inclusion (45) were not true, then, since
 ⊂ ∩Ni=1 int dom (hi), there would be a
sequence {xj } ⊂ 
 and zi(j) ∈ ∂hi+(xj ) with max{∥∥zi(j)∥∥ | i = 1, 2, . . . , N} → ∞
as j → ∞, and

∥∥∥∑N
i=1 z

i(j)

∥∥∥ ≤ 1 + α for all j . Without loss of generality, sup-

pose that maxNi=1{
∥∥zi(j)∥∥} = ∥∥z1(j)

∥∥ for j = 1, 2, . . . , and zi(j)/
∥∥z1(j)

∥∥ →
wi, i = 1, 2, . . . , N with

∥∥w1
∥∥ = 1. By construction (w1, w2, . . . , wN) ∈ D(
)∞

and
∑N
i=1w

i = 0, but w1 �= 0. That is, the system (22) is not asymptotically additively
regular. This contradiction establishes the inclusion (45). By (43), (44) and (45) and
the fact that cone (∂hi+(x)) ⊂ NCi (x) for all x ∈ 
 and i = 1, 2, . . . , N , we have
αIB◦ ∩ N
 (x) ⊂ ∑N

i=1(βIB◦ ∩ NCi (x))+ IB◦ ∩ NC (x) , ∀x ∈ 
. This proves that
the collection {C,C1, C2, . . . , CN } is linearly regular. ��
Remark 11. The set Ci is a set of boundedly weak sharp minima for hi+ whenever the
Slater condition holds for the inequality system hi(x) ≤ 0.

Remark 12. A simple sufficient condition for the asymptotic additive regularity condi-
tion is the strong additive regularity of the collection

{∂h1
+(
)

∞, ∂h2
+(
)

∞, . . . , ∂hN+(
)
∞}.

Also since
 ⊂ ∩Ni=1int (dom hi), the strong additive regularity of the system (22) holds
trivially if either the solution set 
 is bounded or N = 1.

Remark 13. Note that if x ∈ 
 satisfies hi(x) < 0, then ∂hi+(x) = {0}. Hence the
asymptotic constraint qualification introduced by Auslender and Crouzeix [2] for the
system (22) implies that the system (22) is asymptotically additively regular. Unlike
the asymptotic constraint qualification [2], the asymptotic additive regularity condi-
tion and the weak Slater condition [17, Definition VII. 2.2.3] combined do not imply
the global error bound (20) for the system (22); for instance, the inequality system√
x2

1 + x2
2 − x1 − 1 ≤ 0 satisfies the Slater condition, and the asymptotic additive

regularity condition holds trivially, but (20) fails.
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Remark 14. When C = X, the collection of {C1, C2, . . . , CN } is linear regular if the
weak Slater condition and the asymptotic constraint qualification both hold [5, Theorem
8]. On the other hand, it is well-known in the error bounds literature that the weak Slater
condition and the asymptotic constraint qualification together imply that the set

∑
is a

set of weak sharp minima for h + dist (· | C). Therefore, the comments in Remark 3
above show that the last part of Theorem 14 is a refinement of [5, Theorem 8].

The pattern of proof described above for the system (22) can be extended to the case
of infinite index sets by making the appropriate definitions and restriction. Results of
this type have been established in [23] and [39]. We do not pursue this line here, rather
we consider a different kind of extension to infinite index sets which appears in many
applications. In this setting the index set T has topological structure and the functions
ht (x) = h(t, x) are continuous functions of the index t . Again, we only consider a
sample result.

Following Clarke [11], we make the following additional assumptions.

(A1) T is metrizable and sequentially compact.
(A2) The functions ht : X �→ IR are finite-valued, continuous, and convex for each

t ∈ T .
(A2) The mapping t → ht (x) is continuous for each x ∈ X.
(A3) For eachx ∈ X, there is a neighborhoodU ofx such that the functions {ht | t ∈ T }

are uniformly Lipschitz continuous on U .
(A4) For each x ∈ X, the set {ht (x) | t ∈ T } is bounded.

With these assumptions Clarke [11, Theorem 2.8.2] shows that for each x ∈ X the
subdifferential of the convex function

h(x) = sup
t∈T

ht (x)

is given by the formula

∂h(x) =
{∫

T

∂ht (x)µ(dt) |µ ∈ P [M(x)]

}
,

where M(x) = { t ∈ T |ht (x) = h(x) } and P [M(x)] is the set of Radon probability
measures supported on M(x). With this formula we immediately obtain the following
characterization of the existence of a global error bound of the form (21) for the system
(22). Again no proof is required since the result follows immediately from Proposition
3 and Theorem 9.

Theorem 15. Let the functions ht , t ∈ T satisfy the hypotheses (A1)-(A4) and suppose
that the Slater constraint qualification { x ∈ C |h(x) < 0 } �= ∅ is satisfied. Then the
system (22) satisfies the global error bound (21) if and only if there is an α > 0 such
that for all x ∈ C ∩ h−1(0),

αIB◦ ∩N
 (x) ⊂ IB◦ ∩NC (h(x))+ cl∗
{∫

T

∂ht (x)µ(dt) |µ ∈ P− [M(x)]

}
,

where P− [M(x)] is the set of non-negative Radon measures µ supported on M(x) for
which µ(M(x)) ≤ 1 and the integral of a multifunction is defined to be the integral of
all measurable selections from ∂ht (x) [11, 34].
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Error bounds involving integral functionals of the form

h(x) =
∫
T

h+(t, x) dt

can be derived in a similar fashion using Rockafellar’s theory of normal integrands [34].
However, such a development would take us too far afield of the central theme of this
paper.

A. Barrier cone properties

During the refereeing process, a error was discovered in [8, Lemma B.3, Formula (B.8)].
This error does not change the correctness of any other result in [8]. The corrected version
of [8, Lemma (B.3)] is given below.

Lemma 5. Let C be a nonempty closed convex subset of normed linear space X and
set K = ⋃

x∈C NC (x). Then

K = dom
(
∂ψ∗

C

) ⊂ dom
(
ψ∗
C

) = bar (C) (A.1)

and

cl∗ (K) ⊂ cl∗ (bar (C)) = (C∞)◦. (A.2)

In particular,

(K)◦ ⊃ C∞. (A.3)

If X is assumed to be Banach, then

w−cl (K) = cl (K) = cl (bar (C)) ⊂ cl∗ (K) = cl∗ (bar (C)) = (C∞)◦. (A.4)

If X is assumed to be reflexive, we obtain equality throughout (A.3) and (A.4). If it is
further assumed that X is finite dimensional, then

ri (bar (C)) ⊂ K. (A.5)

Proof. Since ∂ψC = NC , we obtain from [7, Theorem 2] (or [38, Theorem 3.1.2]) that

z ∈ NC (x) ⇐⇒ x ∈ ∂ψ∗
C
(z).

The relations (A.1), (A.2), and (A.3) immediately follow.
AssumeX is Banach, then, by [7, Lemma 1, p608] (or [38, Theorem 3.1.2]), we have

bar (C) ⊂ cl (K) (A.6)

since the range of the subdifferential mapping ∂ψC satisfies Ran (∂ψC) = K . Since
bar (C) is convex (it is the domain of a convex function), cl(bar (C)) = w−cl(bar (C))
[13, Theorem 1]. Hence the first two equivalences in (A.4) follow since, by the inclusions
(A.1) and (A.6), we have

cl(bar (C)) = cl(K) ⊂ w−cl(K) ⊂ w−cl(bar (C)) = cl(bar (C)).
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The inclusion in (A.4) is obvious. The third equivalence in (A.4) follows from (A.1) and

bar (C) ⊂ cl(bar (C)) = cl(K) ⊂ cl∗ (K).

The final equivalence is given in [31, Page 50]. This equivalence can also be viewed as
a special case of formula (B.2) in [8, Lemma B.1].

WhenX is reflexive, cl (bar (C)) = cl∗ (bar (C)), and so all sets in (A.4) are equiv-
alent. This in turn implies the equivalence of the sets in (A.3). The final inclusion (A.5)
is an immediate consequence of [32, Theorem 23.4]. ��
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