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Abstract

Six characterizations of the polynomial numerical hull of degree k are established for bounded linear
operators on a Hilbert space. It is shown how these characterizations provide a natural distinction between
interior and boundary points. One of the characterizations is used to prove that the polynomial numerical
hull of any fixed degree k for a Toeplitz matrix whose symbol is piecewise continuous approaches all or
most of that of the infinite-dimensional Toeplitz operator, as the matrix size goes to infinity.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The polynomial numerical hull of degree k for a bounded linear operator A on a Hilbert space
is defined as

Hk(A) := {z ∈ C : ∥p(A)∥ ! |p(z)| ∀p ∈ Pk}, (1)

where Pk denotes the set of polynomials of degree k or less [10,11,5]. The sets Hk(A) are
nonempty and compact, and H1(A) is equal to the closure of the field of values of A [10].
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Polynomial numerical hulls were introduced as a tool for understanding and estimating ∥f (A)∥
for various classes of functions f . When the operator A is normal and ∥ · ∥ is the 2-norm, the
spectrum of A suffices for understanding ∥f (A)∥, but when A is nonnormal the spectrum often
does not supply the kind of information required in applications [14]. Polynomial numerical hulls
have been shown to be a useful tool in a number of applications where the underlying operator A

is nonnormal [5–7]. Nonetheless, very little is known about these sets.
The purpose of this paper is to present several characterizations of polynomial numerical hulls

and their boundary. It is hoped that our characterizations of the boundary will eventually permit
us to apply methods similar to those used for pseudospectra to compute the polynomial numerical
hull. Notwithstanding this numerical interest, an understanding of the geometry of the boundary
of the polynomial numerical hull is fundamental to an understanding of the geometry of the entire
set. We conclude this note by showing that the polynomial numerical hull of any fixed degree k

for a Toeplitz matrix whose symbol is piecewise continuous approaches all or most of that of the
infinite-dimensional Toeplitz operator, as the matrix size goes to infinity. More precisely, we show
that the polynomial numerical hull of degree k for the Toeplitz operator contains the uniform and
partial limits [12] (or, equivalently, the inner and outer limits [13], respectively) as N → ∞ of
the polynomial numerical hulls of degree k for the N × N Toeplitz matrix, which in turn contain
the closure of the interior of that of the Toeplitz operator.

The notation we use is standard. However, for the convenience of the reader, we list some of
this notation here. Let H be a complex Hilbert space with inner product ⟨·, ·⟩. We also use this
notation to denote the usual inner product on Ck: ⟨z, w⟩ := ∑k

j=1 zj w̄j ∀z, w ∈ Ck , where w̄j

is the complex conjugate of wj . The space of linear transformations from H to itself is denoted
L(H), and the subset of these that are bounded is denoted B(H). We use the notation ∥ · ∥ for
the Hilbert space norm for vectors and the corresponding operator norm for linear operators and
matrices. The interior, boundary, and convex hull of a subset S of Ck are denoted int S, bdry S,
and co S, respectively. If K ⊂ Ck is convex and x ∈ K , we denote the normal cone to K at x by

NK(x) := {z ∈ Ck : Re⟨z, y − x⟩ ! 0 ∀y ∈ K}.
It is straightforward to show that x ∈ int K if and only if NK(x) = {0}.

2. The field of values

The polynomial numerical hull is intimately related to the notion of the field of values, or
numerical range, of an operator. Indeed, the polynomial numerical hull of degree 1 of an operator
coincides with the closure of the field of values. But there are other connections as well. For this
reason, we begin our discussion with the field of values.

Let B be a linear operator on the Hilbert space H. The field of values, or numerical range, of
B is defined as

F(B) := {⟨Bq, q⟩ : ∥q∥ = 1}. (2)

The field of values is always a convex set, but it is not necessarily closed in the infinite dimensional
case. For this reason, define F(B) := clF(B) to be the closure of the field of values of B. The
results of the following lemma are known, at least in the case of finite dimensional spaces (see,
for example [8,5]), but we include the proofs here for completeness.

Lemma 2.1. Let B ∈ B(H). The following statements are equivalent:

(i) 0 /∈ F(B).
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(ii) There exists c ∈ C such that F(cB) lies in the open right half plane.
(iii) min{∥I − cB∥ : c ∈ C} < 1.

Moreover, 0 ∈ bdry(F(B)) if and only if there is a c ∈ C such that F(cB) lies in the closed
right half plane with zero on its boundary.

Proof. [(i) ⇐⇒ (ii)] Use the convexity of F(B) and the fact that F(cB) = cF(B) to rotate
F(B) to the right half plane.

[(ii) ⇐⇒ (iii)] Observe the following equivalences:

min
c∈C

∥I − cB∥ < 1 (3)

⇐⇒
∃ϵ > 0, c ∈ C \ {0} such that ∥(I − cB)x∥2 < 1 − ϵ ∀∥x∥ = 1

⇐⇒
∃ϵ > 0, c ∈ C \ {0} such that − 2Re⟨cBx, x⟩ + ∥cBx∥2 < −ϵ ∀∥x∥ = 1. (4)

The final equivalence (4) implies that there exists ϵ > 0 and c ∈ C \ {0} such that

ϵ < Re⟨cBx, x⟩ ∀∥x∥ = 1 (5)

or equivalently, F(cB) lies in the open right half plane.
Next suppose that F(cB) lies in the open right half plane, or equivalently, (5) holds with

ϵ > 0. Let λ > 0 be such that 0 < λ < ϵ/∥cB∥2, or equivalently,

−2λϵ + ∥λcB∥2 < −λϵ with λ > 0. (6)

Set ĉ = λc ∈ C \ {0} and ϵ̂ = λϵ > 0 so that (6) gives −2ϵ̂ + ∥ĉB∥2 < − ϵ̂. Then −2Re⟨ĉBx, x⟩+
∥ĉBx∥2 ! −2ϵ̂ + ∥ĉB∥2 < −ϵ̂ for all ∥x∥ = 1 which, by (4), is equivalent to (3).

Let us now suppose that 0 ∈ bdry(F(B)). The result follows again by rotation and using the
convexity of F(B). "

We also make use of a generalization of the field of values known as the k-dimensional field
of values of k transformations {Bj }kj=1 ⊂ B(H) [8]. This set is given by

{(⟨B1q, q⟩, . . . , ⟨Bkq, q⟩)T : ∥q∥ = 1}. (7)

Our results refer to the convex hull of this set which we denote byF({Bj }kj=1). The setF({Bj }kj=1)

is convex by definition, but may not be closed in infinite dimensions, and so we define
F({Bj }kj=1) := clF({Bj }kj=1). We now connect this notion to that of the classical field of values
thereby allowing us to apply the results of the previous lemma to the k-dimensional field of values.

Lemma 2.2. Let Bj ∈ B(H) for j = 1, . . . , k. Then we have:

1. 0 ∈ F({Bj }kj=1) if and only if 0 ∈ F(
∑k

j=1 cjBj ) for all c ∈ Ck.

2. 0 ∈ bdry(F({Bj }kj=1)) if and only if 0 ∈ F(
∑k

j=1 cjBj ) for all c ∈ Ck and there exists ĉ ∈
Ck \ {0} such that

0 ∈ bdry

⎛

⎝F

⎛

⎝
k∑

j=1

ĉjBj

⎞

⎠

⎞

⎠ .
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Proof. 1. Let us first suppose that 0 ∈ F({Bj }kj=1). By Caratheodory’s theorem [13, p. 55],

there exist sequences {λν} ⊂ R2k+1
+ , {qνj } ⊂ H, j = 1, . . . , 2k + 1, satisfying ∥qνj∥ = 1 for all

j = 1, . . . , 2k + 1 and ν = 1, 2, . . . ,
∑2k+1

j=1 λνj = 1 for ν = 1, 2, . . ., and

2k+1∑

j=1

λνj (⟨B1qνj , qνj ⟩, . . . , ⟨Bkqνj , qνj ⟩)T −→ 0.

Therefore, given any c ∈ Ck , we have
〈

c,

2k+1∑

j=1

λνj

(⟨B1qνj , qνj ⟩
.
.
.

⟨Bkqνj , qνj ⟩

)〉

=
2k+1∑

j=1

λνj

〈[
k∑

ℓ=1

cℓBℓ

]

qνj , qνj

〉

−→ 0

and so 0 ∈ F(
∑k

j=1 cjBj ) since this set is convex and closed.
Next we suppose that 0 /∈ F({Bj }kj=1) and show that there exists c ∈ Ck such that 0 /∈

F(
∑k

j=1 cjBj ). Since 0 /∈ F({Bj }kj=1) where F({Bj }kj=1) is a nonempty closed convex set,

the Hahn–Banach theorem yields the existence of a c ∈ Ck \ {0} such that

0 > Re⟨c, (⟨B1q, q⟩, . . . , ⟨Bkq, q⟩)T⟩ = Re

〈[
k∑

j=1

cjBj

]

q, q

〉

for all ∥q∥ = 1, which implies that 0 /∈ F(
∑k

j=1 cjBj ).

2. If 0 ∈ bdryF({Bj }kj=1), then 0 ∈ F(
∑k

j=1 cjBj ) for all c ∈ Ck , by part 1, and the normal

cone to F({Bj }kj=1) at 0 must contain a nonzero element ĉ ∈ Ck . But then 1 is an element of the

normal cone to F(
∑k

j=1 ĉjBj ) at 0 since for every ∥q∥ = 1,

Re

〈[
k∑

j=1

ĉjBj

]

q, q

〉

= Re⟨ĉ, (⟨B1q, q⟩, . . . , ⟨Bkq, q⟩)T⟩ ! 0.

Hence 0 ∈ bdryF(
∑k

j=1 ĉjBj ) since its normal cone at 0 contains a nonzero element.

Next assume that 0 ∈ F(
∑k

j=1 cjBj ) for all c ∈ Ck and there exists ĉ ∈ Ck \ {0} such that

0 ∈ bdryF(
∑k

j=1 ĉjBj ). Again, by part 1, 0 ∈ F({Bj }kj=1). Since 0 ∈ bdryF(
∑k

j=1 ĉjBj ),

the normal cone to F(
∑k

j=1 ĉjBj ) at 0 must contain a nonzero element ζ ∈ C. But then ζ ĉ is a
nonzero element of the normal cone to F({Bj }kj=1) at 0 since for every ∥q∥ = 1.

Re

〈

ζ ĉ,

(⟨B1q, q⟩
.
.
.

⟨Bkq, q⟩

)〉

= Re ζ

〈[
k∑

j=1

ĉjBj

]

q, q

〉

! 0.

Since the normal cone to F({Bj }kj=1) at 0 contains a nonzero element, 0 must be on the boundary
of this set. "

The relationship between the polynomial numerical hull and the k-dimensional field of values
is obtained by setting the operators Bj in definition (7) equal to powers of a single operator
A − ζ I with A ∈ B(H) yielding the following observation about the field of values of polynomials
in A.
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Lemma 2.3. Given A ∈ B(H) and ζ ∈ C, we have

0 ∈ F

⎛

⎝
k∑

j=1

cj (A − ζ I )j

⎞

⎠ ∀c ∈ Ck ⇐⇒ p(ζ ) ∈ F(p(A)) ∀p ∈ Pk.

Proof. Every polynomial p ∈ Pk can be written in the form p(A) = p(ζ )I +∑k
j=1 cj (A −

ζ I )j , for some c ∈ Ck , and conversely every polynomial of this form is in Pk . Hence the lemma
is an immediate consequence of the identity

{ω} + F(B) = F(ωI + B)

for every ω ∈ C and B ∈ B(H). !

3. Characterizations of Hk(A)

Let p ∈ Pk and z ∈ C be such that p(z) /= 0. Expanding p at z we have

p(ζ ) = c0 + c1(ζ − z) + c2(ζ − z)2 + · · · + ck(ζ − z)k,

where p(z) = c0 /= 0. Hence, given A ∈ B(H), the inequality ∥p(A)∥ " |p(z)| is equivalent to

∥c0I + c1(A − zI) + c2(A − zI)2 + · · · + ck(A − zI)k∥ " |c0|.
Divide this inequality through by |c0| /= 0 to obtain the equivalent inequality

∥∥∥∥∥∥
I −

k∑

j=1

ĉj (A − zI)j

∥∥∥∥∥∥
" 1,

where ĉj = −cj /|c0|, j = 1, . . . , k. Since the inequality ∥p(A)∥ " |p(z)| holds trivially when
p(z) = 0, we obtain the equivalence

∥p(A)∥ " |p(z)| ∀p ∈ Pk ⇐⇒ min
c∈Ck

∥∥∥∥∥∥
I −

k∑

j=1

cj (A − zI)j

∥∥∥∥∥∥
= 1, (8)

where equality is attained in the minimization at c = 0. Combining this equivalence with the
results of the previous section gives a variety of characterizations of the polynomial numerical
hull.

Theorem 3.1. Let A ∈ B(H) and k ∈ N. Then the following statements are equivalent:

1. z ∈ Hk(A).

2. minc∈Ck ∥I −∑k
j=1 cj (A − zI)j∥ = 1.

3. 0 ∈ F(
∑k

j=1 cj (A − zI)j ) for all c ∈ Ck.

4. inf∥q∥=1 Re⟨[∑k
j=1 cj (A − zI)j ]q, q⟩ # 0 for all c ∈ Ck.

5. 0 ∈ F({(A − zI)j }kj=1).

6. p(z) ∈ F(p(A)) for all p ∈ Pk.
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Remarks

(1) The equivalence of 1 and 2 was first established in [5, Theorem 4]. The equivalence of 1
and 5 is given in [5, Corollary 5].

(2) In [2], Davies introduces the set

Numk(A) := {z ∈ C : p(z) ∈ F(p(A)) ∀p ∈ Pk}.
The equivalence of 1 and 6 above implies that Numk(A) = Hk(A). Note that the definition
of the set Numk(A) does not require the use of the norm. Therefore, this definition may prove
useful in extending the notion of the polynomial numerical hull to unbounded operators as
well as to linear operators on more general spaces.

Proof. The equivalence of 1 and 2 is simply a restatement of (8). The equivalence of 2 and 3 is a
consequence of the equivalence of (i) and (iii) in Lemma 2.1. The equivalence of 3 and 4 follows
from the equivalence of (i) and (ii) in Lemma 2.1. The equivalence of 3 and 5 follows from part
1 of Lemma 2.2. Finally, the equivalence of 3 and 6 is the content of Lemma 2.3. !

In the next result we use Theorem 3.1 to characterize the boundary points of the polynomial
numerical hull.

Theorem 3.2. Let A ∈ B(H), ζ ∈ C, and k ∈ N. Then the following statements are equivalent:

1. ζ ∈ bdry(Hk(A)).

2. For all c ∈ Ck

0 ∈ F

⎛

⎝
k∑

j=1

cj (A − ζ I )j

⎞

⎠ (9)

and there exists ĉ ∈ Ck \ {0} such that

0 ∈ bdryF

⎛

⎝
k∑

j=1

ĉj (A − ζ I )j

⎞

⎠ . (10)

3. For all c ∈ Ck

inf
∥q∥=1

Re

〈[
k∑

j=1

cj (A − ζ I )j

]

q, q

〉

" 0

and there exists ĉ ∈ Ck \ {0} such that this infimum is zero.

4. 0 ∈ bdryF({(A − ζ I )j }kj=1).

5. For all p ∈ Pk, p(ζ ) ∈ F(p(A)) and there exists a nonconstant p̂ ∈ Pk such that p̂(ζ ) ∈
bdryF(p̂(A)).

Proof. The equivalence of 2 and 3 follows from Lemma 2.1; the equivalence of 3 and 4 is a
consequence of Lemma 2.2; and the equivalence of 2 and 5 follows from Lemmas 2.2 and 2.3.
We conclude by establishing the equivalence of 1 and 2.
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Condition (9) was already shown to be equivalent to the statement ζ ∈ Hk(A); hence it holds
for ζ ∈ bdryHk(A) since the set is closed.

To show that ζ ∈ bdryHk(A) implies (10), let ζ be a point on the boundary of Hk(A),
and let {ζm}∞m=0 be a sequence of points outside Hk(A) and converging to ζ . For each point
ζm, it follows from 3 in Theorem 3.1 that there exist coefficients c1,m, . . . , ck,m such that 0 /∈
F(
∑k

j=1 cj,m(A − ζmI)j ). We can take these coefficients to satisfy
∑k

j=1 |cj,m|2 = 1, since
multiplying an operator by a nonzero scalar just multiplies its field of values by that scalar and
does not affect whether or not the closure of the field of values contains the origin. Since the vectors
(c1,m, . . . , ck,m, ζm) are bounded, there is a convergent subsequence, {(c1,mℓ , . . . , ck,mℓ , ζmℓ)}∞ℓ=1,
converging to, say, (ĉ1, . . . , ĉk, ζ ). Since the field of values is a continuous function of the linear
operator [8] and since, by 3 in Theorem 3.1,

0 /∈ F

⎛

⎝
k∑

j=1

cj,mℓ(A − ζmℓI )j

⎞

⎠ → F

⎛

⎝
k∑

j=1

ĉj (A − ζ I )j

⎞

⎠ ∋ 0,

it follows that 0 ∈ bdryF(
∑k

j=1 ĉj (A − ζ I )j ).

Conversely, suppose ζ is a point in the interior ofHk(A) and suppose that 0 ∈ bdryF(
∑k

j=1 ×
cj (A − ζ I )j ), for certain scalars c1, . . . , ck . We will show that each cj must be 0.

Since Hk(A) contains a disk of radius r > 0 about ζ , it follows from 3 in Theorem 3.1 that
for any scalars d1, . . . , dk , any δ ∈ [0, r), and any θ ∈ [0, 2π),

0 ∈ F

⎛

⎝
k∑

j=1

dj (A − (ζ − δeiθ )I )j

⎞

⎠ . (11)

Expanding using the binomial formula, we find

k∑

j=1

dj (A − (ζ − δeiθ )I )j =
k∑

j=1

dj

j∑

ℓ=0

(
j

ℓ

)
δℓeiℓθ (A − ζ I )j−ℓ.

Separating out the ℓ = 0 and ℓ = j terms we get

k∑

j=1

dj (A − ζ I )j +
k∑

j=1

dj

j−1∑

ℓ=1

(
j

ℓ

)
δℓeiℓθ (A − ζ I )j−ℓ +

⎛

⎝
k∑

j=1

dj δ
j eijθ

⎞

⎠ I

=
k∑

j=1

⎛

⎝dj +
k−j∑

ℓ=1

dj+ℓ

(
j + ℓ

ℓ

)
δℓeiℓθ

⎞

⎠ (A − ζ I )j +

⎛

⎝
k∑

j=1

dj δ
j eijθ

⎞

⎠ I.

Suppose dk = ck and dj , j = k − 1, . . . , 1 are determined by

dj = cj −
k−j∑

ℓ=1

dj+ℓ

(
j + ℓ

ℓ

)
δℓeiℓθ . (12)

Then

k∑

j=1

dj (A − (ζ − δeiθ )I )j =
k∑

j=1

cj (A − ζ I )j +

⎛

⎝
k∑

j=1

dj δ
j eijθ

⎞

⎠ I (13)
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and the field of values of this matrix is that of
∑k

j=1 cj (A − ζ I )j shifted by
∑k

j=1 dj δ
j eijθ .

To express
∑k

j=1 dj δ
j eijθ in terms of the cj ’s, note that if

∑k
j=1 cj (A − ζ I )j = ∑k

j=1 cj (A −
(ζ − δeiθ )I − δeiθ I )j is expanded using the binomial formula, then the expansion involves
powers from 1 to k of A − (ζ − δeiθ )I plus the term (

∑k
j=1 cj (−1)j δj eijθ )I . Comparing this

with (13), it follows that
k∑

j=1

dj δ
j eijθ =

k∑

j=1

cj (−1)j+1δj eijθ . (14)

If the origin is on the boundary of F(
∑k

j=1 cj (A − ζ I )j ), then there is a line through the
origin that separates the field of values from a half-plane. Suppose c1 = · · · = cℓ−1 = 0 but
cℓ /= 0. Choose θ so that eiℓθ (−1)ℓ+1cℓ lies in the half-plane containing F(

∑k
j=1 cj (A − ζ I )j )

and is orthogonal to the separating line. Then if the field of values is shifted in the direction of
eiℓθ (−1)ℓ+1cℓ its closure will exclude the origin. By choosing δ > 0 sufficiently small, one can
make the shift term in (14) arbitrarily close to cℓ(−1)ℓ+1δℓeiℓθ , and so one can exclude the origin
from the closure of the field of values of

∑k
j=1 dj (A − (ζ − δeiθ )I )j , but this contradicts (11).

Therefore each coefficient cj must be 0. !

4. Polynomial numerical hulls of Toeplitz matrices and operators

In this section T denotes an infinite-dimensional Toeplitz operator:

T =

⎛

⎜⎜⎜⎝

a0 a−1 a−2 . . .

a1 a0 a−1 . . .

a2 a1 a0 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎠
. (15)

The symbol of T evaluated at a point z is defined as

a(z) := a0 +
∞∑

ℓ=1

aℓz
ℓ +

∞∑

ℓ=1

a−ℓz
−ℓ. (16)

We will assume throughout that a ∈ L∞(U), where U := {z ∈ C : |z| = 1} denotes the unit
circle, so that the matrix in (15) corresponds to a bounded linear operator on ℓ2 (see, e.g. [1]).

The polynomial numerical hull of degree 1 for T , i.e., the closure of the field of values, is
known [9]:

H1(T ) = co(a(U)), (17)

where a(U) := {a(z) : z ∈ U}. An extension toHk(T ) is obtained using the polynomially convex
hull of degree k [4], defined for any compact set S ⊂ C as

pcok(S) := {z ∈ C : |p(z)| " max
ζ∈S

|p(ζ )| ∀p ∈ Pk}.

Theorem 4.1. The polynomial numerical hull of degree k # 1 for T satisfies

co(a(U)) ⊃ Hk(T ) ⊃ pcok(a(U)). (18)

Proof. The left inclusion follows from (17) and the fact that Hk(T ) ⊂ H1(T ). To establish the
right inclusion, let p(T ) be any polynomial in T . By the spectral mapping theorem, σ (p(T )) =
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p(σ (T )), where σ (·) denotes the spectrum. By the Hartman–Wintner theorem (see, e.g. [1, The-
orem 1.25, p. 27]), the essential spectrum of T contains the range of its symbol a(U). Hence

∥p(T )∥ ! sup
ζ∈σ (p(T ))

|ζ | ! sup
|z|=1

|p(a(z))|.

The result then follows from definition (1) of Hk(T ). "

In words, the polynomial numerical hull of degree k for an infinite-dimensional Toeplitz oper-
ator lies somewhere between the polynomially convex hull of degree k and the ordinary convex
hull of the image, under the symbol, of the unit circle U.

Let TN be the N by N Toeplitz matrix consisting of the upper left block of the operator in (15):

TN =

⎛

⎜⎜⎜⎜⎜⎝

a0 a−1 a−2 . . . a−(N−1)

a1 a0 a−1 . . . a−(N−2)

a2 a1 a0 . . . a−(N−3)

...
...

...
. . .

...

aN−1 aN−2 aN−3 . . . a0

⎞

⎟⎟⎟⎟⎟⎠
. (19)

It is known that if T is banded or, more generally, if a is piecewise continuous on the unit circle,
then the polynomial numerical hull of degree 1 of TN approaches that of T as N → ∞ [3,6,12].
Moreover, if p(TN) is any polynomial in TN and if a is piecewise continuous on the unit circle,
then it follows from results in [12, Theorem 2] that

p#limN→∞F(p(TN)) = u#limN→∞F(p(TN)) = F(p(T )). (20)

Here u#limN→∞SN , for a sequence of sets SN , denotes the set of all limits of sequences of points
{sN ∈ SN }∞N=1, while p#limN→∞SN denotes all limits of subsequences {sNℓ ∈ SNℓ}∞ℓ=1, where
(N1, N2, . . .) is a subsequence of (1, 2, . . .). Roch [12] refers to these set-valued limits as the
uniform and partial limits of the sequence {SN }, respectively. An extensive literature on these
notions of limit dates from the original work of Painlevé in 1902. The uniform limit is more com-
monly known as the limit infimum, or inner limit, and the partial limit is more commonly known
as the limit supremum, or outer limit [13, Chapter 4]. Clearly u#limN→∞SN ⊂ p#limN→∞SN .
Note that if ζ ∈ int(F(p(T ))), then (20) implies that for N large enough, ζ ∈ int(F(p(TN))),
since these sets are convex and they contain sequences of points approaching points on a circle
about ζ in int(F(p(T ))) (see, for example [13, Proposition 4.15]).

Theorem 4.2. Assume a in (16) is piecewise continuous on the unit circle. For any fixed degree
k ! 1,

Hk(T ) ⊃ p#limN→∞Hk(TN) ⊃ u#limN→∞Hk(TN) ⊃ cl(int(Hk(T ))), (21)

where cl(·) denotes the closure.

Proof. First suppose ζNℓ ∈ Hk(TNℓ) is a convergent subsequence with ζNℓ → ζ as ℓ → ∞. It
follows from 3 Theorem 3.1 that for all c1, . . . , ck , 0 ∈ F(

∑k
j=1 cj (TNℓ − ζNℓI )j ). Since the

field of values is a continuous multi-valued function of the operator, it follows that for each
c1, . . . , ck , there is a sequence of points sNℓ ∈ F(

∑k
j=1 cj (TNℓ − ζ I )j ) such that sNℓ → 0 as

ℓ → ∞. By (20), this implies that 0 ∈ F(
∑k

j=1 cj (T − ζ I )j ), and hence, again by 3 Theorem
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3.1, ζ ∈ Hk(T ). This establishes the first inclusion in (21). The second inclusion is clear from
the definitions of u!lim and p!lim.

Let ζ ∈ int(Hk(T )). Then, by 2 Theorem 3.2, we know that for all c1, . . . , ck with
∑k

j=1 |cj |2 =
1, 0 ∈ int(F(

∑k
j=1 cj (T − ζ I )j )). It follows from (20) that there exists n ≡ n(c1, . . . , ck) such

that for all N " n, 0 ∈ int(F(
∑k

j=1 cj (TN − ζ I )j )). Since the coefficients come from a compact
set and since the field of values is a continuous multi-valued function of c1, . . . , ck , there exist coef-
ficients ĉ1, . . . , ĉk for which the required minimum n-value, n̂ ≡ n(ĉ1, . . . , ĉk), is maximal and
finite. Therefore, forN " n̂ and for all c1, . . . , ck with

∑k
j=1 |cj |2 = 1, 0 ∈ int(F(

∑k
j=1 cj (TN −

ζ I )j )). Hence, by 2 Theorem 3.2, ζ ∈ int(Hk(TN)). This shows that every interior point of
Hk(T ) eventually lies in Hk(TN) and hence that every limit of interior points of Hk(T ) is a
limit of points in Hk(TN). This proves the third inclusion in (21). #

The preceding theorems leave open the possibility that Hk(T ) contains isolated points or
curves between the region enclosed by a(U) and co(a(U)), and, in this case, it is not known
if there is a sequence or subsequence of points in Hk(TN) converging to these points. In the
simplest case, where the region enclosed by a(U) is a convex set, Theorems 4.1 and 4.2 imply
that p!limN→∞Hk(TN) = u!limN→∞Hk(TN) = Hk(T ) = co(a(U)).

Finally, note that Theorem 4.2 makes no direct use of Toeplitz properties; it uses only relation
(20) and properties of the polynomial numerical hull. Hence for any sequence of matrices or
operators AN satisfying

p!limN→∞F(p(AN)) = u!limN→∞F(p(AN)) = F(p(A))

for all polynomials p, the analogue of relation (21) will hold, namely,

Hk(A) ⊃ p!limN→∞Hk(AN) ⊃ u!limN→∞Hk(AN) ⊃ cl(int(Hk(A)))

for any fixed k " 1.
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