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CONVEXITY AND LIPSCHITZ BEHAVIOR OF SMALL
PSEUDOSPECTRA∗
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Abstract. The ε-pseudospectrum of a matrix A is the subset of the complex plane consisting
of all eigenvalues of complex matrices within a distance ε of A, measured by the operator 2-norm.
Given a nonderogatory matrix A0, for small ε > 0, we show that the ε-pseudospectrum of any matrix
A near A0 consists of compact convex neighborhoods of the eigenvalues of A0. Furthermore, the
dependence of each of these neighborhoods on A is Lipschitz.
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1. Introduction. Given a matrix A in the space of n × n complex matrices
Mn, the spectrum Λ(A) is an informative analytic tool, but must be interpreted with
care. In particular, when A has a multiple eigenvalue, small perturbations cause the
spectrum to behave in a non-Lipschitz fashion.

Pseudospectra are robust analogs of the spectrum, enjoying many useful modelling
properties. A comprehensive reference is [9]. We denote the operator 2-norm on Mn

by ‖ · ‖. For real ε > 0, the ε-pseudospectrum of A is the subset of the complex plane
consisting of all eigenvalues of all complex matrices within a distance ε of A, measured
by the operator 2-norm:

(1.1) Λε(A) =
⋃

‖X−A‖≤ε

Λ(X).

This subset of the complex plane C is semialgebraic (meaning that it can be
described as a finite union of sets each defined via finitely many polynomial inequalities
[2]) and consists of at most n connected components; each component is compact and
contains an eigenvalue of A. Visual plots of pseudospectra are richly informative and
are conveniently computable via the EigTool package [5]. Note that, by contrast to
our definition, [9] defines pseudospectra via the strict inequality ‖X −A‖ < ε.

Our aim in this work is to show how shifting attention from the spectrum to pseu-
dospectra has a regularizing effect on variational behavior. Specifically, for matrices
A that are in a certain sense typical, even in the presence of multiple eigenvalues, if
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SMALL PSEUDOSPECTRA 587

the parameter ε is small, the ε-pseudospectrum consists of compact convex neighbor-
hoods of the eigenvalues and varies in a Lipschitz fashion with respect to the Hausdorff
distance.

2. Examples. We begin with two examples to illustrate the potential difficul-
ties. We first observe how the pseudospectrum can vary in a non-Lipschitz fashion
even around a two-by-two matrix with simple eigenvalues. Second, we note that the
component of the ε-pseudospectrum containing a derogatory eigenvalue may fail to
be convex, no matter how small the parameter ε > 0.

To help our calculations, we use a well-known description of the pseudospectrum,
more convenient than the definition (1.1). Denoting the smallest singular value by
σmin : Mn → R, the pseudospectrum is related to the reciprocal of the norm of the
resolvent,

σmin(A− zI) = ‖(A− zI)−1‖−1,

via the useful characterization

Λε(A) = {z ∈ C : σmin(A− zI) ≤ ε}.

For our first example, we consider the behavior of the pseudospectrum Λφ−1(·),
where φ is the golden ratio (1 +

√
5)/2, for matrices close to

Â =

[
1 1
0 −1

]
.

An elementary calculation shows, for real r and θ, the formula

(2.1) 2σ2
min(Â− reiθI) = 3 + 2r2 −

√
5 + 4r2(3 + 2 cos 2θ).

This leads to a description of the pseudospectrum of Â:

Λφ−1(Â) = {reiθ : r2 ≤ 2(2 − φ + cos 2θ)}.

The boundary of this set is a lemniscate centered at zero (see Figure 2.1); its interior
consists of two disjoint open sets, each containing one of the eigenvalues ±1. In
particular, notice that the pseudospectrum is contained in its tangent cone at zero:

(2.2) Λφ−1(Â) ⊂ {reiθ : cos 2θ ≥ φ− 2}.

Now consider the point ri on the imaginary axis as r ↓ 0. The inclusion (2.2)

implies a lower bound on the distance from this point to the pseudospectrum Λφ−1(Â)
of the form

(2.3) d(ri,Λφ−1(Â)) ≥ αr,

for some constant α > 0. On the other hand, formula (2.1) implies

(2.4) σmin(Â− reiθI) = φ− 1 + O(r2),

so for some constant β > 0 we know that

ri ∈ Λφ−1+βr2(Â).
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588 J. V. BURKE, A. S. LEWIS, AND M. L. OVERTON
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Fig. 2.1. Pseudospectrum of Â.

Using the definition of the pseudospectrum (1.1), we can rewrite the right-hand side
as ⋃

‖A−Â‖≤βr2

Λφ−1(A),

so there exists a matrix Ar satisfying

(2.5) ‖Ar − Â‖ ≤ βr2 and ri ∈ Λφ−1(Ar).

The Hausdorff distance between two nonempty sets K,L ⊂ C is the quantity

H(K,L) = max
{

sup
z∈K

d(z, L), sup
z∈L

d(z,K)
}
,

where d(z, L) is the distance from z to L. Now, in conjunction with inequality (2.3),
the relationships (2.5) imply that the Hausdorff distance between the pseudospectra

Λφ−1(Â) and Λφ−1(Ar) is at least αr, and yet the distance between the matrices Â

and Ar is at most βr2. Thus the variation of the mapping Λφ−1 around Â is not
Lipschitz.

The pathology in this example is caused by the existence of a critical point of
the function z 
→ σmin(Â − zI) at a point on the boundary of the pseudospectrum
(in this case z = 0): this can be seen directly from formula (2.4), or by observing

that the left and right singular vectors of the matrix Â corresponding to the smallest
singular value φ − 1 are orthogonal (see [3, Cor. 7.2]). A direct calculation is also

illuminating. Since σmin(Â) = φ− 1, replacing by zero the diagonal entry φ− 1 in the

singular value decomposition of Â makes a perturbation of size φ− 1 and results in a
singular matrix. But a straightforward calculation shows that this singular matrix is
similar to a two-by-two Jordan block, so further perturbations of size δ result in the
zero eigenvalue splitting into two distinct eigenvalues of size proportional to

√
δ. It
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SMALL PSEUDOSPECTRA 589

is this splitting that causes the pseudospectrum to behave in a non-Lipschitz fashion.
In the development that follows, we avoid this possibility by focusing on the case of
small ε.

We discuss various aspects of the growth of pseudospectra as the parameter ε
grows in a forthcoming work [4]. In particular, we can quantitatively estimate the
component of the pseudospectrum Λε(A) containing the eigenvalue λ: classical eigen-
value perturbation theory shows that the component approximates a disk of radius
(αε)1/m as ε ↓ 0, where m is the multiplicity of λ as a root of the minimal polynomial
for A, and α is its associated condition number [4].

Despite approximating disks, small pseudospectral components may be nonconvex
in general, as shown by our second example, suggested by [8]. Consider the matrix

Ã =

[
0 1
0 1

]
.

An easy calculation shows

f(r, θ) = σ2
min(Ã− reiθI) = 1 − r cos θ + r2 −

√
(1 − r cos θ)2 + r2

=
r2

2
(1 − r cos θ) + O(r4) as r ↓ 0.

Hence the component of the pseudospectrum Λε(Ã) containing zero, which we denote
Λ0
ε(Ã), is a slightly distorted disk centered at zero and with radius approximately√
2ε, for small ε > 0.

When θ = π/2, another calculation shows

∂f

∂r
= 2r

(
1 − 1√

1 + r2

)
> 0 for all r > 0.

Hence for θ near π/2, the equation f(r, θ) = ε2 implicitly defines r as a smooth
function g(θ), and for r near g(π/2) =

√
2ε + O(ε2), the pseudospectrum is

{reiθ : r ≤ g(θ)}.

One more calculation shows

g′(π/2) =

√
1 + g2(π/2) − 1

2
√

1 + g2(π/2) − 1
= ε2 + O(ε3).

To summarize, the pseudospectral boundary for the matrix Ã crosses the positive
imaginary axis at a unique point zε = (

√
2ε + O(ε2))i. The boundary nearby is a

smooth curve crossing the imaginary axis nonorthogonally and bounding the pseu-
dospectral component below it. Clearly, exactly the same properties hold for the
matrix −Ã, and the two boundaries are mirror images in the imaginary axis. Finally,
consider the matrix

A =

[
Ã 0

0 −Ã

]
.

Since the singular values of block-diagonal matrices are just the singular values of the
blocks, we have Λε(A) = Λε(Ã)∪Λε(−Ã), so we know Λ0

ε(A) = Λ0
ε(Ã)∪Λ0

ε(−Ã). By
considering a neighborhood of the point zε, this latter set cannot be convex.

In this example the difficulty is caused by the fact that the zero eigenvalue is
derogatory. In what follows, we show good behavior of pseudospectra around non-
derogatory eigenvalues, providing the parameter ε is sufficiently small.
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590 J. V. BURKE, A. S. LEWIS, AND M. L. OVERTON

3. Background results. We recall some results from [3]. A real-valued function
on a real vector space is real-analytic at zero if in some neighborhood of zero it can be
written as the sum of an absolutely convergent power series in the coordinates relative
to some basis, and we make an analogous definition at other points. In particular,
such functions are C∞ near the point in question.

The smallest singular value of the matrix Z is simple when the smallest eigenvalue
of the Hermitian matrix Z∗Z is simple. Since the eigenvalues of matrices depend
continuously on the matrix, the set of matrices Z with simple smallest singular values
is open.

We consider the function h : Mn × C → R defined by

h(A, z) = (σmin(A− zI))2.

For any A ∈ Mn, we also define a function hA : C → R by hA(z) = h(A, z). Treat-
ing C as a Euclidean space with inner product 〈w, z〉 = Re (w∗z), we can interpret
gradients ∇hA(z) as elements of C.

Theorem 3.1 (analytic singular value). If the smallest singular value of the
matrix Z is simple, then the function σ2

min is real-analytic at Z.
An eigenvalue of A is nonderogatory if it has geometric multiplicity one. Among

multiple eigenvalues, the nonderogatory ones are the most typical (from the perspec-
tive of the dimensions of the corresponding manifolds in Mn [1]). The matrix A is
nonderogatory if all its eigenvalues are nonderogatory.

The following result is very well known.
Proposition 3.2 (nonderogatory eigenvalues). A matrix A has a nonderogatory

eigenvalue λ if and only if zero is a simple singular value of A− λI.
The next result, an immediate consequence of [3, Thm. 7.4 and Cor. 7.8], shows

that the resolvent norm is well-behaved near any nonderogatory eigenvalue of A. For
a symmetric matrix X, we write X � 0 to mean X is positive-definite.

Theorem 3.3 (growth near an eigenvalue). Suppose λ is a nonderogatory eigen-
value of the matrix A. Then, for all z �= λ near λ, the function hA is real-analytic
with ∇hA(z) �= 0 and ∇2hA(z) � 0.

Related results appear in [6].

4. Convexity. In [3] we observe, as a consequence of Theorem 3.3 (growth near
an eigenvalue), that if λ is a nonderogatory eigenvalue of a matrix A, then for small
ε > 0 the part of the pseudospectrum Λε(A) near λ is strictly convex. (We call a
closed set S ⊂ C strictly convex if the open line segment (u, v) lies in intS for any
distinct points u, v ∈ S.) The first step in our development is to generalize this result
to allow the matrix A to vary. We denote the closed unit disk in C by D and the
closed unit ball in Mn by B.

We begin with a rather technical statement of our basic tool.
Theorem 4.1 (small pseudospectra). Consider a nonderogatory eigenvalue λ of

a matrix A0 ∈ Mn. For any sufficiently small number μ > 0, there exists a number
ε̄ ∈ (0, μ) (depending on μ) such that all numbers ε ∈ (0, ε̄) have the following two
properties.

1. For all matrices A ∈ Mn in a neighborhood of A0 (depending on μ and ε),
the set

(4.1) Λ̂ε(A) =
{
z ∈ Λε(A) : |z − λ| < μ

}
is the component of the pseudospectrum Λε(A) containing λ and contains no eigen-
values of A0 except λ.
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SMALL PSEUDOSPECTRA 591

2. There exists a number η̄ ∈ (0, μ) (depending on μ and ε) such that, given any
number η ∈ (0, η̄), all matrices A in a neighborhood of A0 (depending on μ, ε, and η)
satisfy, in addition to the above property,
(i) Λ̂ε(A) is compact, strictly convex, and contains λ + ηD,

and, for all points z ∈ λ + μD,
(ii) the smallest singular value of A− zI is simple, and
(iii) if |z − λ| ≥ η, then ∇hA(z) �= 0 and ∇2hA(z) � 0.

Proof. Without loss of generality, λ = 0. By Theorem 3.3 (growth near an
eigenvalue), there exists a number μ > 0 such that

(4.2) 0 < |z| ≤ μ ⇒ ∇hA0
(z) �= 0 and ∇2hA0

(z) � 0.

Hence the function hA0
is strictly convex on the disk μD, with a strict local minimum

value of zero at zero. In particular, we deduce

(4.3) Λ(A0) ∩ μD = {0}.

Consider the open set

Ω =
{

(A, z) ∈ Mn × C : the smallest singular value of A− zI is simple
}
.

Theorem 3.1 (analytic singular value) implies that the function h is real-analytic
throughout Ω, so the function (A, z) 
→ ∇2hA(z) is continuous on Ω. Clearly (A0, 0) ∈
Ω. Hence, by reducing μ if necessary, we can suppose there exists a number δ1 > 0
such that {

(A, z) ∈ Mn × μD : ‖A−A0‖ < δ1

}
⊂ Ω.

Choose any number μ1 ∈ (0, μ). Then we claim

(4.4) Λε(A0) ⊂ μ1D ∪ μDc

for all small ε > 0 (where Dc denotes the complement of D). If this were not the case,
there would exist sequences of parameters εr ↓ 0 and points zr ∈ Λεr (A0) satisfying
μ1 < |zr| ≤ μ. By compactness, we can suppose zr approaches a nonzero point z ∈
μD. However, since σmin(A0 − zrI) ≤ εr for all r, we then deduce σmin(A0 − zI) ≤ 0,
so z ∈ Λ(A0), contradicting (4.3).

Fix any ε > 0 small enough to ensure inclusion (4.4), and choose any number
μ2 ∈ (μ1, μ). We claim there exists a number δ2 ∈ (0, δ1) such that

(4.5) ‖A−A0‖ < δ2 ⇒ Λ̂ε(A) ⊂ μ2D.

Indeed, if this fails, there are sequences of matrices Ar → A0 and points zr ∈ Λ̂ε(Ar)
satisfying μ2 < |zr| < μ. By compactness, we can suppose zr approaches a point
z ∈ μD satisfying |z| ≥ μ2 > μ1. However, since σmin(Ar − zrI) ≤ ε for all r, we
deduce σmin(A0−zI) ≤ ε, and hence z ∈ Λε(A0). But this contradicts inclusion (4.4).

The inclusion Λ̂ε(A) ⊂ μ2D implies that the set Λ̂ε(A) is compact, being the
intersection of the two compact sets Λε(A) and μ2D.

For our next step, observe that, by continuity, we know there exists a number
η ∈ (0, μ) such that σmin(A0 − zI) < ε for all points z ∈ ηD. We now claim there
exists a number δ3 ∈ (0, δ2) such that

(4.6) ‖A−A0‖ < δ3 ⇒ ηD ⊂ int Λ̂ε(A).
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592 J. V. BURKE, A. S. LEWIS, AND M. L. OVERTON

Suppose this property fails, so there are sequences of matrices Ar → A0 and points
zr ∈ ηD satisfying zr �∈ int Λ̂ε(Ar), and hence σmin(Ar−zrI) ≥ ε. By compactness, we
can suppose zr approaches a point z ∈ ηD, giving the contradiction σmin(A0−zI) ≥ ε.

We next claim there exists a number δ ∈ (0, δ3) such that, whenever ‖A−A0‖ ≤ δ
and η ≤ |z| ≤ μ, we have

(4.7) ∇hA(z) �= 0 and ∇2hA(z) � 0.

If this fails, there are sequences of matrices Ar → A0 and points zr satisfying η ≤
|zr| ≤ μ and

min
{
|∇hAr (zr)|, λmin(∇2hAr (zr))

}
≤ 0

for all r. By compactness, we can suppose zr approaches a point ẑ satisfying η ≤
|ẑ| ≤ μ. By the continuity with respect to (A, z) ∈ Ω of the functions ∇hA(z) and
∇2hA(z), we deduce

min
{
|∇hA0(ẑ)|, λmin(∇2hA0(ẑ))

}
≤ 0,

contradicting statement (4.2).

We next prove that the set Λ̂ε(A) is strictly convex. To this end, consider any
matrix A satisfying ‖A−A0‖ < δ and any two distinct points u, v ∈ Λ̂ε(A). We want
to show the open line segment (u, v) lies in int Λ̂ε(A). By property (4.6), we know
that

(4.8) ηD ⊂ int Λ̂ε(A).

We consider various cases.

(i) |u|, |v| ≤ η. The result then follows by inclusion (4.8).
(ii) (u, v) ∩ ηD = ∅. In this case, we know hA(u) ≤ ε2 and hA(v) ≤ ε2, and

the function hA is strictly convex on the line segment [u, v], by property (4.7), so the
result follows.

(iii) |u| ≤ η and |v| > η. Then consider the unique number γ ∈ [0, 1] such that
the point w = γu + (1 − γ)v satisfies |w| = η. Then [u,w] ⊂ int Λ̂ε(A) by inclusion
(4.8), while (w, v) ⊂ int Λ̂ε(A) by case (ii).

(iv) |u| > η and |v| ≤ η. By swapping u and v, we obtain case (iii).
(v) |u|, |v| > η and (u, v)∩ ηD �= ∅. Consider the two (possibly equal) solutions

γ1 ≥ γ2 in [0, 1] to the quadratic equation |γu + (1 − γ)v|2 = η2. For each j = 1, 2,
set wj = γju + (1 − γj)v. Then [w1, w2] ⊂ int Λ̂ε(A) by inclusion (4.8), while both

intervals (u,w1) and (w2, v) lie in int Λ̂ε(A) by case (ii).

This completes the proof of strict convexity.

To see that the set Λ̂ε(A) must be the component of the pseudospectrum Λε(A)
containing λ, note that the function A 
→ σmin(A − λI) is continuous on Mn, and
σmin(A0 − λI) = 0, so λ ∈ Λ̂ε(A) for all A near A0. Since the Λ̂ε(A) is a connected
subset of Λε(A), being convex, the result follows.

Corollary 4.2 (strict convexity). Consider a nonderogatory eigenvalue λ of
a matrix A0 ∈ Mn. Given any sufficiently small ε > 0, the component of the pseu-
dospectrum Λε(A) containing λ is strictly convex for all matrices A sufficiently close
to A0.

D
ow

nl
oa

de
d 

03
/2

3/
16

 to
 2

05
.1

75
.1

18
.9

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



SMALL PSEUDOSPECTRA 593

5. Sensitivity. We are now ready to study the dependence of a fixed component
of the pseudospectrum Λε(A) on the matrix A.

Lemma 5.1 (gradient continuity). Suppose all the assumptions of Theorem 4.1
(small pseudospectra) hold. For nonzero complex w, consider the function αw : Mn →
R defined by

(5.1) αw(A) = sup{Re (w∗z) : z ∈ Λ̂ε(A)}.

Then the function (A,w) 
→ αw(A) is C∞ on the set{
(A,w) ∈ Mn × C : ‖A−A0‖ ≤ δ, w �= 0

}
.

Proof. The supremum (5.1) is attained at a unique point z(A,w) ∈ Λ̂ε(A), since
the set Λ̂ε(A) is compact and strictly convex. We can also write the supremum as a
smooth optimization problem,

αw(A) = sup
{

Re (w∗z) : hA(z) ≤ ε2, |z − λ| < μ
}
.

By continuity, the optimal solution z(A,w) must satisfy hA(z(A,w)) = ε2. The
function hA is real-analytic (so, in particular, C∞), and satisfies the condition

(5.2) ∇hA(z(A,w)) �= 0 and ∇2hA(z(A,w)) � 0.

We now apply a standard sensitivity argument to show that the dependence of
the optimal solution z(A,w) on the parameters (A,w) is also C∞. We argue as
follows. Since ∇hA(z(A,w)) �= 0, there exists a Lagrange multiplier γ(A,w) ∈ R
corresponding to the optimal solution. Thus z = z(A,w) and γ = γ(A,w) solve the
system

w + γ∇hA(z) = 0,

hA(z) = ε2.

But it is easy to check that condition (5.2) implies that the Jacobian for the left-hand
side is surjective at (z(A,w), γ(A,w)). Hence the implicit function theorem implies
that the mapping (A,w) 
→ z(A,w) is C∞. The result follows.

We can now prove our main result.
Theorem 5.2 (component Lipschitz behavior). Consider a nonderogatory eigen-

value λ of a matrix A0 ∈ Mn. For any sufficiently small number μ > 0, there exists
a number ε̄ ∈ (0, μ) (depending on μ) such that for all numbers ε ∈ (0, ε̄), and all
matrices A ∈ Mn in a neighborhood of A0 (depending on μ and ε), the set

Λ̂ε(A) =
{
z ∈ Λε(A) : |z − λ| < μ

}
has the following properties:

(i) Λ̂ε(A) is the component of the pseudospectrum Λε(A) containing λ.
(ii) Λ̂ε(A) contains no eigenvalues of A0 except λ.
(iii) Λ̂ε(A) is compact and strictly convex.
(iv) The set-valued mapping Λ̂ε is Lipschitz on a neighborhood of A0 (with respect

to the Hausdorff distance).
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Proof. We apply Theorem 4.1 (small pseudospectra) and Corollary 4.2 (strict
convexity). Using Lemma 5.1 (gradient continuity), we can define a number

L = max
{
‖∇αw(A)‖ : A ∈ Γ, |w| = 1

}
,

where the set Γ is the neighborhood of the matrix A0 referred to in Theorem 4.1.
Consider any two matrices A1, A2 ∈ Γ. According to [7, Lemma 2], the Hausdorff
distance between the sets Λ̂ε(A1) and Λ̂ε(A2) is given by

max
|w|=1

∣∣∣αw(A1) − αw(A2)
∣∣∣,

and, by the definition of L, this quantity cannot exceed L‖A1 −A2‖.
In particular, we obtain the following variational property of the entire pseudopec-

trum.

Corollary 5.3 (pseudospectral Lipschitz behavior). If the matrix A0 ∈ Mn is
nonderogatory, then for any small ε > 0, the dependence of the pseudospectrum Λε(A)
on the matrix A ∈ Mn is Lipschitz near A0 (with respect to the Hausdorff distance).

Proof. Denote the distinct eigenvalues of A0 by λ1, λ2, . . . , λm, and denote the
separation of the eigenvalues by ν = minj 	=k |λj − λk|. Now apply the preceding
result successively at each eigenvalue λj to obtain a number μ < ν/3 such that any
small ε > 0 has the following property: for all matrices A near A0 and each index
j = 1, 2, . . . ,m, the component of the pseudospectrum Λε(A) containing λj is

Λj
ε(A) = {z ∈ Λε(A) : |z − λj | < μ},

and the set-valued mapping Λj
ε is Lipschitz around A0.

Now consider any matrices A1, A2 ∈ Mn near A0. For any fixed index j, we have

(5.3) z ∈ Λj
ε(A1) ⇒ d(z,Λε(A2)) = d(z,Λj

ε(A2)).

To see this, notice that d(z,Λj
ε(A2)) < μ because λj ∈ Λj

ε(A2). On the other hand,
for indices k �= j, we know

|z − λj | < μ, |λj − λk| > 3μ, Λk
ε (A2) ⊂ λk + μD,

so d(z,Λk
ε (A2)) > μ. Since

d(z,Λε(A2)) = min
k

d(z,Λk
ε (A2)),

our claim (5.3) now follows.

As a consequence of the implication (5.3), we obtain

sup
z∈Λε(A1)

d(z,Λε(A2)) = max
j

sup
z∈Λj

ε(A1)

d(z,Λε(A2)) = max
j

sup
z∈Λj

ε(A1)

d(z,Λj
ε(A2)),

and similarly,

sup
z∈Λε(A2)

d(z,Λε(A1)) = max
k

sup
z∈Λk

ε (A2)

d(z,Λk
ε (A1)).
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Hence the Hausdorff distance between the pseudospectra Λε(A1) and Λε(A2) is given
by

H
(
Λε(A1),Λε(A2)

)
= max

{
sup

z∈Λε(A1)

d(z,Λε(A2)), sup
z∈Λε(A2)

d(z,Λε(A1))
}

= max
{

max
j

sup
z∈Λj

ε(A1)

d(z,Λj
ε(A2)),max

k
sup

z∈Λk
ε (A2)

d(z,Λk
ε (A1))

}

= max
r

max
{

sup
z∈Λr

ε (A1)

d(z,Λr
ε(A2)), sup

z∈Λr
ε (A2)

d(z,Λr
ε(A1))

}
= max

r
H
(
Λr
ε(A1),Λ

r
ε(A2)

)
.

The result now follows.

Acknowledgments. The authors thank Mark Embree and Nick Trefethen for a
number of insights that improved the overall presentation.

Note added in proof. A generalization of Corollary 5.3 to the derogatory case
appears in a recent preprint, “Variational Analysis of Pseudospectra” by A. S. Lewis
and C. H. J. Pang.
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