The speed of Shor's R-algorithm

J. V. Burke \dagger
Department of Mathematics, University of Washington, Seattle, WA 98195, USA

A. S. Lewis \ddagger
School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853, USA
AND
M. L. Overton§
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA

[Received on 8 May 2007; revised on 4 December 2007]

Dedicated to M. J. D. Powell, master of convergence analysis for nonlinear optimization, on the occasion of his 70th birthday.

Abstract

Shor's r-algorithm is an iterative method for unconstrained optimization, designed for minimizing nonsmooth functions, for which its reported success has been considerable. Although some limited convergence results are known, nothing seems to be known about the algorithm's rate of convergence, even in the smooth case. We study how the method behaves on convex quadratics, proving linear convergence in the two-dimensional case and conjecturing that the algorithm is always linearly convergent, with an asymptotic convergence rate that is independent of the conditioning of the quadratic being minimized.

Keywords: Shor's r-algorithm; space dilation; linear convergence; unconstrained optimization; nonsmooth optimization.

1. Introduction

Shor's r-algorithm (Shor, 1985, Section 3.6) was designed primarily to minimize nonsmooth functions, something that it does quite effectively according to extensive results of Shor and others, particularly Kappel \& Kuntsevich (2000). The r-algorithm, which can be viewed as a variable metric method that does not satisfy the secant equation, should not be confused with Shor's subgradient method with space dilation (Shor, 1985, Section 3.3), which is related to the symmetric rank-one quasi-Newton method (Todd, 1986). The r-algorithm also uses space dilation, but in the direction of the difference of two successive gradients (or subgradients, in the nonsmooth case). The r-algorithm's crucial parameter γ (see below) ranges between 0 and 1 : for the boundary cases $\gamma=0$ and $\gamma=1$, the method reduces respectively to steepest descent and to a variant of the conjugate gradient method (Shor, 1985, p.70). Some limited convergence results are known; a result is given for continuous, piecewise smooth functions in

[^0]Shor (1985, Theorem 3.13). However, nothing seems to be known about the convergence rate of the algorithm, even in the smooth case.

This paper studies the rate of convergence of the r-algorithm on convex quadratics, conjecturing that the method is linearly convergent in this case, with a proof when $n=2$. We also make the stronger conjecture that, for $\gamma \in(0,1)$, the algorithm is linearly convergent with a rate that is independent of the conditioning of the quadratic to which it is applied, a result that would interpolate nicely between well known results for steepest descent and conjugate gradient. Our analysis makes use of properties of the trace and determinant to try to bound the condition number of the matrix that is generated by the r-algorithm. It was M. J. D. Powell who pioneered this kind of technique in the convergence analysis of variable metric methods (Powell, 1971, 1972, 1976).

2. Shor's r-algorithm

For a smooth function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, the algorithm fixes a constant $\gamma \in(0,1)$, begins with an initial point $x_{0} \in \mathbf{R}^{n}$, defines an initial matrix $B_{0}=I$ (the identity matrix), and then iterates as follows, for step $k=0,1,2, \ldots$:

$$
\begin{aligned}
x_{k+1}= & x_{k}-t_{k} B_{k} B_{k}^{T} \nabla f\left(x_{k}\right) \\
& \text { where } t_{k} \text { minimizes } f\left(x_{k+1}\right) \\
r_{k+1}= & B_{k}^{T}\left(\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right) \text { normalized } \\
B_{k+1}= & B_{k}\left(I-\gamma r_{k+1} r_{k+1}^{T}\right)
\end{aligned}
$$

Here and below, "normalized" means normalized using the 2-norm. In practice, an inexact line search would be used to obtain t_{k}, but for the purposes of our analysis, we make the following assumption throughout:

Exact line search: The step size t_{k} globally minimizes $f\left(x_{k+1}\right)$.
Notice that setting $\gamma=0$ would give the method of steepest descent.
We can interpret the algorithm as making steepest descent steps in a transformed space, as follows. At step k, given the current iterate x_{k} and the current transformation matrix B_{k}, we first make the change of variables $y=B_{k}^{-1} x$. In terms of this new variable, we wish to minimize the function

$$
h_{k}(y)=f(x)=f\left(B_{k} y\right) .
$$

Our current point is $y_{k}=B_{k}^{-1} x_{k}$. Starting from this point, a steepest descent step takes us to the new point

$$
y_{k+1}=y_{k}-t_{k} \nabla h_{k}\left(y_{k}\right),
$$

where t_{k} minimizes $h_{k}\left(y_{k+1}\right)$, and from y_{k+1} we invert the change of variables to obtain x_{k+1}. Hence we deduce the iteration:

$$
x_{k+1}=B_{k} y_{k+1}=B_{k}\left(y_{k}-t_{k} \nabla h_{k}\left(y_{k}\right)\right)=x_{k}-t_{k} B_{k} B_{k}^{T} \nabla f\left(x_{k}\right) .
$$

The update to the transformation matrix B_{k} is motivated by the next assumption, that again we make throughout:
Convex quadratic: $f(x)=\frac{1}{2} x^{T} A x$ for a symmetric positive definite matrix A.

In this case it is easy to verify the relationship

$$
x_{1}^{T}\left(\nabla f\left(x_{1}\right)-\nabla f\left(x_{0}\right)\right)=0
$$

In other words, one steepest descent iteration on a convex quadratic results in a difference of successive gradients that is orthogonal to the direction to the minimizer. The transformation represented by the matrix B_{k} dilates the space in the direction of this gradient difference, thereby encouraging future iterations in orthogonal directions. In particular, if we set $\gamma=1$, all future iterations must be orthogonal to the gradient difference, resulting in the conjugate gradient iteration. More generally, the method can be viewed as a variable metric method, but one for which the updated matrix does not satisfy the well known secant equation.

The classical theory for the method of steepest descent relates the rate of decrease in the function value to the conditioning of the quadratic. Specifically, we have

$$
x_{1}^{T} A x_{1} \leqslant\left(\frac{\kappa(A)-1}{\kappa(A)+1}\right)^{2} x_{0}^{T} A x_{0}
$$

where $\kappa(A)=\|A\|\left\|A^{-1}\right\|$, the condition number of A (Luenberger, 1984). In subsequent iterations, applying the same inequality in the transformed space shows

$$
\begin{aligned}
x_{k+1}^{T} A x_{k+1} & =y_{k+1}^{T} B_{k}^{T} A B_{k} y_{k+1} \\
& \leqslant\left(\frac{\kappa\left(B_{k}^{T} A B_{k}\right)-1}{\kappa\left(B_{k}^{T} A B_{k}\right)+1}\right)^{2} y_{k}^{T} B_{k}^{T} A B_{k} y_{k} \\
& =\left(\frac{\kappa\left(B_{k}^{T} A B_{k}\right)-1}{\kappa\left(B_{k}^{T} A B_{k}\right)+1}\right)^{2} x_{k}^{T} A x_{k},
\end{aligned}
$$

since y_{k+1} is obtained from y_{k} by one iteration of steepest descent on the function

$$
h_{k}(y)=\frac{1}{2} y^{T} B_{k}^{T} A B_{k} y .
$$

Consequently, to understand the speed of Shor's r-algorithm in the case of a convex quadratic with an exact line search, we must understand how the condition number of the matrix

$$
A_{k}=B_{k}^{T} A B_{k}
$$

evolves as the step counter k grows.
To study the Shor iteration, we make some changes of variables. In our quadratic case, assuming the iteration does not terminate with some $x_{k}=0$, the iteration becomes

$$
\begin{aligned}
t_{k} & =\frac{x_{k}^{T} A B_{k} B_{k}^{T} A x_{k}}{x_{k}^{T} A B_{k} B_{k}^{T} A B_{k} B_{k}^{T} A x_{k}} \\
x_{k+1} & =x_{k}-t_{k} B_{k} B_{k}^{T} A x_{k} \\
r_{k+1} & =B_{k}^{T} A\left(x_{k+1}-x_{k}\right) \text { normalized } \\
B_{k+1} & =B_{k}\left(I-\gamma r_{k+1} r_{k+1}^{T}\right) .
\end{aligned}
$$

Notice that the iteration is well-defined because $x_{k} \neq 0$. If we define a new (nonzero) variable

$$
z_{k}=B_{k}^{T} A x_{k}
$$

we obtain

$$
\begin{aligned}
t_{k} & =\frac{\left\|z_{k}\right\|^{2}}{z_{k}^{T} A_{k} z_{k}} \\
B_{k}^{T} A x_{k+1} & =z_{k}-t_{k} A_{k} z_{k} \\
r_{k+1} & =A_{k} z_{k} \text { normalized } \\
B_{k+1} & =B_{k}\left(I-\gamma r_{k+1} r_{k+1}^{T}\right) .
\end{aligned}
$$

By definition,

$$
\begin{aligned}
z_{k+1} & =B_{k+1}^{T} A x_{k+1}=\left(I-\gamma r_{k+1} r_{k+1}^{T}\right) B_{k}^{T} A x_{k+1} \\
& =\left(I-\gamma r_{k+1} r_{k+1}^{T}\right)\left(z_{k}-t_{k} A_{k} z_{k}\right) \\
& =\left(I-\gamma r_{k+1} r_{k+1}^{T}\right)\left(z_{k}-\frac{\left\|z_{k}\right\|^{2}}{r_{k+1}^{T} z_{k}} r_{k+1}\right) \\
& =z_{k}-\left(\gamma r_{k+1}^{T} z_{k}+(1-\gamma) \frac{\left\|z_{k}\right\|^{2}}{r_{k+1}^{T} z_{k}}\right) r_{k+1},
\end{aligned}
$$

where once again $r_{k+1}^{T} z_{k} \neq 0$ because $x_{k} \neq 0$. Hence we can rewrite the iteration as follows:

$$
\begin{aligned}
r_{k+1} & =A_{k} z_{k} \text { normalized } \\
B_{k+1} & =B_{k}\left(I-\gamma r_{k+1} r_{k+1}^{T}\right) \\
z_{k+1} & =z_{k}-\left(\gamma r_{k+1}^{T} z_{k}+(1-\gamma) \frac{\left\|z_{k}\right\|^{2}}{r_{k+1}^{T} z_{k}}\right) r_{k+1}
\end{aligned}
$$

Normalizing each vector z_{k} to obtain the corresponding unit vector u_{k} results in the following iteration.
Shor matrix iteration Given any n-by-n symmetric positive definite matrix A_{0} and any unit vector $u_{0} \in \mathbf{R}^{n}$, compute the following sequences for $k=1,2,3, \ldots$:

$$
\left\{\begin{aligned}
r_{k} & =A_{k-1} u_{k-1} \text { normalized } \\
c_{k} & =r_{k}^{T} u_{k-1} \\
D_{k} & =I-\gamma r_{k} r_{k}^{T} \\
A_{k} & =D_{k} A_{k-1} D_{k} \\
u_{k} & =u_{k-1}-\left(\gamma c_{k}+\frac{1-\gamma}{c_{k}}\right) r_{k} \text { normalized. }
\end{aligned}\right.
$$

Note that A_{k} is positive definite for all k. If we allowed the boundary cases $\gamma=0$ and $\gamma=1$, we would have $A_{k}=A_{0}$ for all k in the former case, while in the latter case, the equivalence with conjugate
gradient implies that the rank of A_{k} would drop by one at each step, terminating with $x_{k}=0$ for some $k \leqslant n$.

As noted earlier, we are interested in how the condition number $\kappa\left(A_{k}\right)$ evolves. We begin with the following elementary result for the trace, determinant and condition number.

Lemma 2.1 We have

$$
\begin{gathered}
\operatorname{tr} A_{k}=\operatorname{tr} A_{k-1}-\gamma(2-\gamma) r_{k}^{T} A_{k-1} r_{k}, \\
\operatorname{det} A_{k}=(1-\gamma)^{2} \operatorname{det} A_{k-1}, \quad \text { and } \quad \kappa\left(A_{k}\right) \leqslant \frac{\kappa\left(A_{k-1}\right)}{(1-\gamma)^{2}} .
\end{gathered}
$$

Proof. The equalities are immediate, observing for the second that the matrix D_{k} has one eigenvalue equal to $1-\gamma$ and the rest all one. For the inequality, let $\lambda_{\max }(\cdot)$ and $\lambda_{\min }(\cdot)$ denote maximum and minimum eigenvalue respectively and observe that for any vector v,

$$
v^{T} A_{k} v \geqslant \lambda_{\min }\left(A_{k-1}\right) v^{T} D_{k}^{2} v \geqslant \lambda_{\min }\left(A_{k-1}\right)(1-\gamma)^{2}\|v\|^{2}
$$

and

$$
v^{T} A_{k} v \leqslant \lambda_{\max }\left(A_{k-1}\right) v^{T} D_{k}^{2} v \leqslant \lambda_{\max }\left(A_{k-1}\right)\|v\|^{2} .
$$

Thus $\operatorname{tr} A_{k}$ decreases with k, det A_{k} decreases linearly, and $\kappa\left(A_{k}\right)$ does not grow superlinearly. However, numerical experiments suggest the following conjecture.

Conjecture 2.2 Given any $\gamma \in(0,1)$, any positive definite initial matrix A_{0} and any initial vector u_{0}, the condition numbers of the matrices $A_{0}, A_{1}, A_{2}, \ldots$ generated by the Shor matrix iteration stay bounded.

Suppose this holds, and set

$$
\bar{\kappa}=\limsup _{k} \kappa\left(A_{k}\right) .
$$

Then our observation about the convergence rate of steepest descent in the transformed space implies that the function values $\frac{1}{2} x_{k}^{T} A x_{k}$ generated by Shor's r-algorithm converge to zero linearly with asymptotic rate

$$
\left(\frac{\bar{\kappa}-1}{\bar{\kappa}+1}\right)^{2}
$$

Indeed, experiments suggest a much stronger conjecture.
Conjecture 2.3 For each dimension $n=1,2,3, \ldots$ and each $\gamma \in(0,1)$, there exists a finite constant $\rho(n, \gamma)$ associated with the Shor matrix iteration, independent of the initial positive definite matrix A_{0} and the initial vector u_{0}, such that the condition number of the iterates A_{k} satisfy

$$
\limsup _{k} \kappa\left(A_{k}\right) \leqslant \rho(n, \gamma)
$$

This conjecture would imply that Shor's algorithm converges linearly on convex quadratics at an asymptotic linear rate independent of the initial conditioning of the quadratic. Such a result would interpolate nicely between known results for steepest descent $(\gamma=0)$, for which the conjecture is not true, and conjugate gradient $(\gamma=1)$, which has finite termination. See Fig. 1 for a typical example. The graph plots the condition number of the matrix A_{k} against the iteration count k, for various choices of γ. The

FIG. 1. Conditioning of the A_{k} matrices generated by the Shor algorithm when the initial matrix is the 10 -by- 10 Hilbert matrix.
initial matrix A_{0} was a Hilbert matrix of size 10 , and the initial unit vector u_{0} was generated randomly. For values of γ that are very close to 1 , the method nearly solves the optimization problem in n steps, but then the next step results in a huge increase in the condition number which is reduced in subsequent iterations. This pattern repeats, suggesting that $\rho(n, \gamma) \rightarrow \infty$ as $\gamma \rightarrow 1$. On the other hand, while it seems quite possible that $\rho(n, \gamma)$ can be taken arbitrarily close to 1 as $\gamma \rightarrow 0$, choosing γ close to 0 is not desirable as the transient decrease in the condition number is slower the closer γ is to 0 . These observations motivate a choice of γ that is not too close to 0 or 1 .

The trace and determinant of a positive definite matrix give crude bounds on its condition number, as shown in the following result.

Proposition 2.4 For any n-by- n symmetric positive definite matrix A, define

$$
\mu(A)=\frac{1}{n} \frac{\operatorname{tr} A}{(\operatorname{det} A)^{1 / n}} .
$$

Then

$$
1 \leqslant \mu(A) \leqslant \kappa(A) \leqslant 4(\mu(A))^{n} .
$$

Proof. The first inequality is just the arithmetic-geometric mean inequality, while the second is immediate. The third inequality follows easily from Merikoski et al. (1997, Theorem 2).

In order to keep the presentation self-contained, we also note the following simple proof of a weaker version of the third inequality, replacing the factor 4 by $n^{n} /(n-1)^{n-1}$. Denote the eigenvalues of A by $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}>0$. Then

$$
\kappa(A)=\frac{\lambda_{1}}{\lambda_{n}} \text { and } \mu(A)=\frac{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}}{n\left(\lambda_{1} \cdot \lambda_{2} \cdots \cdots \lambda_{n}\right)^{1 / n}} .
$$

We have

$$
\sum_{i=1}^{n} \lambda_{i}=n \mu(A)\left(\prod_{i=1}^{n} \lambda_{i}\right)^{1 / n}
$$

so dividing by λ_{n} shows

$$
\begin{aligned}
\alpha & =\sum_{i=1}^{n-1} \frac{\lambda_{i}}{\lambda_{n}}<\sum_{i=1}^{n} \frac{\lambda_{i}}{\lambda_{n}}=n \mu(A)\left(\prod_{i=1}^{n} \frac{\lambda_{i}}{\lambda_{n}}\right)^{1 / n} \\
& =n \mu(A)\left(\prod_{i=1}^{n-1} \frac{\lambda_{i}}{\lambda_{n}}\right)^{\frac{1}{n-1} \frac{n-1}{n}} \leqslant n \mu(A)\left(\frac{\alpha}{n-1}\right)^{\frac{n-1}{n}},
\end{aligned}
$$

where the last inequality follows from the arithmetic-geometric mean inequality again. Thus

$$
\alpha^{1 / n}<\frac{n \mu(A)}{(n-1)^{(n-1) / n}} .
$$

Since $\kappa(A)<\alpha$, this provides the weaker upper bound on $\kappa(A)$, which is all we need for what follows.
Thus, for fixed n, the condition number $\kappa\left(A_{k}\right)$ remains bounded if and only if $\mu\left(A_{k}\right)$ remains bounded. Since we know that det A_{k} decreases by the constant factor $(1-\gamma)^{2}$ at every step, we can state our conjectures about the condition number in terms of the trace of A_{k} rather than its condition number. Then Conjecture 2.2 becomes:

Conjecture 2.5 Given any initial n-by- n matrix A_{0} and initial vector u_{0}, the matrices $A_{0}, A_{1}, A_{2}, \ldots$ generated by the Shor matrix iteration have the property that the quantity

$$
(1-\gamma)^{-\frac{2 k}{n}} \operatorname{tr} A_{k}
$$

stays bounded.
The experimental observations of Fig. 1 suggest that the conditioning of the matrices A_{k} generated by the Shor iteration is in some sense "self-correcting": over a long sequence of iterations, any illconditioning evolves away, settling into a stable state of relatively small fluctuations. However, the closer γ is to 1 , the less stable is this behaviour. As we observed above, since $\operatorname{det} A_{k}$ decreases linearly, the behaviour of $\operatorname{tr} A_{k}$ gives a reasonable measure of the conditioning, and this behaviour suggests a partial explanation for the self-correcting mechanism. By Lemma 2.1, the reduction in trace is least when r_{k} is close to an eigenvector corresponding to the smallest eigenvalue of A_{k-1}. In this case, since r_{k} is $A_{k-1} u_{k-1}$ normalized, the unit vectors r_{k} and u_{k-1} must be close, so the scalar c_{k} must be close to one, and then the formula for the new unit vector u_{k} implies that it must be almost orthogonal to u_{k-1}. In particular, the iteration does not allow the vectors r_{k} to "line up" in the direction of a single eigenvector.

In the two-dimensional case, this self-correcting behaviour is enough to verify Conjecture 2.2 . We present a proof for the case $\gamma=1 / 2$, depending on the fact that, while the condition number of A_{k} can increase from one iteration to the next, after two iterations it must decrease.

Theorem 2.6 For the Shor matrix iteration in dimension $n=2$ and with constant $\gamma=1 / 2$, for any step k such that the matrices A_{k-1} and A_{k+1} are both defined,

$$
\kappa\left(A_{k+1}\right)<\kappa\left(A_{k-1}\right) .
$$

Consequently, the Shor r-algorithm (with $\gamma=1 / 2$) for minimizing a two-variable strictly convex quadratic either terminates or converges linearly.
Proof. Since the function $t \mapsto t^{\frac{1}{2}}+t^{-\frac{1}{2}}$ is increasing for $t \geqslant 1$, it suffices to prove

$$
\sqrt{\kappa\left(A_{k+1}\right)}+\frac{1}{\sqrt{\kappa\left(A_{k+1}\right)}}<\sqrt{\kappa\left(A_{k-1}\right)}+\frac{1}{\sqrt{\kappa\left(A_{k-1}\right)}}
$$

or equivalently

$$
\frac{\operatorname{tr} A_{k+1}}{\sqrt{\operatorname{det} A_{k+1}}}<\frac{\operatorname{tr} A_{k-1}}{\sqrt{\operatorname{det} A_{k-1}}}
$$

By Lemma 2.1,

$$
\operatorname{det} A_{k+1}=\frac{1}{16} \operatorname{det} A_{k-1}
$$

On the other hand,

$$
\begin{aligned}
\operatorname{tr} A_{k} & =\operatorname{tr} A_{k-1}-\frac{3}{4} r_{k}^{T} A_{k-1} r_{k} \\
\operatorname{tr} A_{k+1} & =\operatorname{tr} A_{k}-\frac{3}{4} r_{k+1}^{T} A_{k} r_{k+1}
\end{aligned}
$$

Hence we want to show

$$
\operatorname{tr} A_{k-1}>4 \operatorname{tr} A_{k+1}=4\left(\operatorname{tr} A_{k-1}-\frac{3}{4}\left(r_{k}^{T} A_{k-1} r_{k}+r_{k+1}^{T} A_{k} r_{k+1}\right)\right)
$$

or in other words

$$
r_{k}^{T} A_{k-1} r_{k}+r_{k+1}^{T} A_{k} r_{k+1}>\operatorname{tr} A_{k-1}
$$

Let us summarize our task, in simplified notation. Given any unit vector $u \in \mathbf{R}^{2}$ (formerly u_{k-1}) and any 2-by-2 symmetric positive definite matrix F (formerly A_{k-1}), we define

$$
\begin{aligned}
r & =\frac{1}{\|F u\|} F u \\
c & =r^{T} u \\
D & =I-\frac{1}{2} r r^{T} \\
G & =D F D \\
v & =u-\frac{1}{2}\left(c+\frac{1}{c}\right) r \\
w & =\frac{1}{\|G v\|} G v .
\end{aligned}
$$

In our former notation, $r=r_{k}, c=c_{k}, D=D_{k}, G=A_{k}, v$ is some positive multiple of the unit vector u_{k}, and $w=r_{k+1}$. We want to show the inequality

$$
r^{T} F r+w^{T} G w>\operatorname{tr} F,
$$

or in other words

$$
r^{T} F r+\frac{v^{T} G^{3} v}{v^{T} G^{2} v}>\operatorname{tr} F
$$

Without loss of generality we can assume $r=[1,0]^{T}$. Indeed, if we prove the result in this special case, we can deduce the case for general r by a simple change of variables: choose any orthogonal matrix U satisfying $U r=[1,0]^{T}$, and then apply the special case with the vector u replaced by $U u$ and the matrix F replaced by $U F U^{T}$.

So, we can assume $r=[1,0]^{T}$ and then, by the definition of c, we must have $u=[c, s]^{T}$ where $c^{2}+s^{2}=1$. Notice $c>0$ since F is positive definite. Without loss of generality, by rescaling if necessary, we can assume the bottom row of the matrix F has norm one, and then we must have

$$
F=\left[\begin{array}{cc}
a & -s \\
-s & c
\end{array}\right] \text { for some } a>0
$$

We deduce

$$
G=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
a & -s \\
-s & c
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\frac{a}{4} & -\frac{s}{2} \\
-\frac{s}{2} & c
\end{array}\right] .
$$

We want to show

$$
a+\frac{v^{T} G^{3} v}{v^{T} G^{2} v}>a+c
$$

or in other words

$$
v^{T} G^{3} v>c v^{T} G^{2} v
$$

Since

$$
v=\left[\begin{array}{l}
c \\
s
\end{array}\right]-\frac{1}{2}\left(c+\frac{1}{c}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

we deduce $2 c v=s[-s, 2 c]^{T}$, so

$$
8 c G v=(4 G)(2 c v)=s\left[\begin{array}{c}
-s(a+4 c) \\
2+6 c^{2}
\end{array}\right]
$$

Finally, we have

$$
\begin{aligned}
256 c^{2}\left(v^{T} G^{3} v-c v^{T} G^{2} v\right) & =(8 c G v)^{T}(4 G)(8 c G v)-4 c(8 c G v)^{T}(8 c G v) \\
& =(8 c G v)^{T}(4(G-c I))(8 c G v) \\
& =s^{2}\left[\begin{array}{c}
-s(a+4 c) \\
2+6 c^{2}
\end{array}\right]^{T}\left[\begin{array}{cc}
a-4 c & -2 s \\
-2 s & 0
\end{array}\right]\left[\begin{array}{c}
-s(a+4 c) \\
2+6 c^{2}
\end{array}\right] \\
& =s^{2}\left(s^{2}(a-4 c)(a+4 c)^{2}+4 s^{2}(a+4 c)\left(2+6 c^{2}\right)\right) \\
& =s^{4}(a+4 c)\left(a^{2}+8 c^{2}+8\right)>0
\end{aligned}
$$

as required, using the fact that $s \neq 0$ since $v \neq 0$ by assumption.

Numerical experiments show that it is not always the case that $\kappa\left(A_{k+n-1}\right)<\kappa\left(A_{k-1}\right)$ for $n>2$, so proving linear convergence for $n>2$ will require a different approach. Nonetheless, both the observations of Fig. 1 and the relationship with the conjugate gradient method indicate that whatever result might be established, it will probably involve a characterization of behaviour over n steps.

3. Concluding remarks

Our interest in Shor's r-algorithm has two different motivations. One is its apparently substantial practical success in minimizing nonsmooth functions. The other is that the algorithm interpolates between two pillars of optimization, steepest descent and conjugate gradient, and seems to have interesting convergence properties that remain to be established. We hope that our analysis of the r-algorithm in the simplest setting imaginable will stimulate further research on its theoretical behaviour.

Funding

National Science Foundation (DMS-0505712 to J.V.B., DMS-0504032 to A.S.L. and DMS-0714321 to M.L.O.).

References

Kappel, F. \& Kuntsevich, A. (2000) An implementation of Shor's r-algorithm. Comput. Optim. Appl., 15, 193-205.
Luenberger, D. G. (1984) Linear and Nonlinear Programming. Reading, MA: Addison-Wesley.
Merikoski, J. K., Urpala, U., Virtanen, A., Tam, T.-Y. \& Uhlig, F. (1997) A best upper bound for the 2-norm condition number of a matrix. Linear Algebra Appl., 254, 355-365.
Powell, M. J. D. (1971) On the convergence of the variable metric algorithm. J. Inst. Math. Appl., 7, 21-36.
Powell, M. J. D. (1972) Some properties of the variable metric algorithm. Numerical Methods for Nonlinear Optimization (F. A. Lootsma ed.). London: Academic Press, pp. 1-17.
Powell, M. J. D. (1976) Some global convergence properties of a variable metric algorithm for minimization without exact line searches. Nonlinear Programming. SIAM-AMS Proceedings, vol. IX. Providence, RI: American Mathematical Society, pp. 53-72.
Shor, N. Z. (1985) Minimization Methods for Non-differentiable Functions. New York: Springer.
TODD, M. J. (1986) The symmetric rank-one quasi-Newton algorithm is a space-dilation subgradient algorithm. Oper. Res. Lett., 5, 217-219.

[^0]: ${ }^{\dagger}$ Email: burke@ math.washington.edu
 ${ }^{\ddagger}$ Email: aslewis@orie.cornell.edu
 §Corresponding author. Email: overton@cs.nyu.edu

