
Algorithmic Differentiation of Implicit Functions
and Optimal Values

Bradley M. Bell1 and James V. Burke2

1 Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA,
bradbell@washington.edu

2 Department of Mathematics, University of Washington, Seattle, WA 98195, USA,
burke@math.washington.edu

Summary. In applied optimization, an understanding of the sensitivity of the optimal value
to changes in structural parameters is often essential. Applications include parametric opti-
mization, saddle point problems, Benders decompositions, and multilevel optimization. In this
paper we adapt a known automatic differentiation (AD) technique for obtaining derivatives of
implicitly defined functions for application to optimal value functions. The formulation we
develop is well suited to the evaluation of first and second derivatives of optimal values. The
result is a method that yields large savings in time and memory. The savings are demonstrated
by a Benders decomposition example using both the ADOL-C and CppAD packages. Some
of the source code for these comparisons is included to aid testing with other hardware and
compilers, other AD packages, as well as future versions of ADOL-C and CppAD. The source
code also serves as an aid in the implementation of the method for actual applications. In ad-
dition, it demonstrates how multiple C++ operator overloading AD packages can be used with
the same source code. This provides motivation for the coding numerical routines where the
floating point type is a C++ template parameter.

Keywords: Automatic differentiation, Newton’s method, iterative process, implicit function,
parametric programming, C++ template functions, ADOL-C, CppAD

1 Introduction

In applications such as parametric programming, hierarchical optimization, Bender’s
decomposition, and saddle point problems, one is confronted with the need to under-
stand the variational properties of an optimal value function. For example, in sad-
dle point problems, one maximizes with respect to some variables and minimizes
with respect to other variables. One may view a saddle point problem as a maxi-
mization problem where the objective is an optimal value function. Both first and
second derivatives of the optimal value function are useful in solving this maximiza-
tion problem. A similar situation occurs in the context of a Bender’s decomposition
(as was the case that motivated this research). In most cases, the optimal value is

68 Bradley M. Bell and James V. Burke

evaluated using an iterative optimization procedure. Direct application of Algorith-
mic Differentiation (AD) to such an evaluation differentiates the entire iterative pro-
cess (the direct method). The convergence theory of the corresponding derivatives
is discussed in [2, 6, 7]. We review an alternative strategy that applies the implicit
function theorem to the first-order optimality conditions. This strategy also applies,
more generally, to differentiation of functions defined implicitly by a system of non-
linear equations. These functions are also evaluated by iterative procedures and the
proposed method avoids the need to differentiate the entire iterative process in this
context as well. The use of the implicit function theorem in this context is well known
in the AD literature, e.g., [1, 4, 5, 10]. We provide a somewhat different formulation
that introduces an auxiliary variable which facilitates the computation of first and
second derivatives for optimal value functions.

In Sect. 2, the implicit function theorem is used to show that differentiating one
Newton iteration is sufficient thereby avoiding the need to differentiate the entire iter-
ative process. As mentioned above, this fact is well known in the AD literature. Meth-
ods for handling the case where the linear equations corresponding to one Newton
step cannot be solved directly and require an iterative process are considered in [8].
An important observation is that, although the Newton step requires the solution of
linear equations, the inversion of these equations need not be differentiated.

Consider the parametrized family of optimization problems

P(x) minimize F(x,y) with respect to y ∈ R
m

where F : R
n×R

m→ R is twice continuously differentiable. Suppose that there is
an open set U ⊂ R

n such that for each value of x ∈ U it is possible to compute
the optimal value for P(x) which we denote by V (x). The function V : U → R

defined in this way is called the optimal value function for the family of optimization
problems P(x). In Sect. 3 we present a method for computing the derivative and
Hessian of V (x). This method facilitates using reverse mode to obtain the derivative
of V (x) in a small multiple of the work to compute F(x,y). In Sect. 4 we present a
comparison between differentiation of the entire iterative process (the direct method)
with our suggested method for computing the Hessian. This comparison is made
using the ADOL-C [9, version 1.10.2] and CppAD [3, version 20071225] packages.

The Appendix contains some of the source code that is used for the comparisons.
This source code can be used to check the results for various computer systems, other
AD packages, as well as future versions of ADOL-C and CppAD. It also serves as
a starting point to implement the method for actual applications, i.e., other defini-
tions of F(x,y). In addition, it demonstrates the extent to which multiple C++ AD
operator overloading packages can be used with the same C++ source code. This
provides motivation for the coding numerical routines where the floating point type
is a template parameter.

AD of Implicit Functions & Optimal Values 69

2 Jacobians of an Implicit Function

We begin by building the necessary tools for the application of AD to the differen-
tiation of implicitly defined functions. Suppose U ⊂ R

n and V ⊂ Rm are open and
the function H : U ×V → R

m is smooth. We assume that for each x ∈U the equa-
tion H(x,y) = 0 has a unique solution Y (x) ∈ V . That is, the equation H(x,y) = 0
implicitly defines the function Y : U → V by

H[x,Y (x)] = 0 .

Let Y (k)(x) denote the k-th derivative of Y and let Hy(x,y) denote the partial derivative
of H with respect to y. Conditions guaranteeing the existence of the function Y , as
well as its derivatives and their formulas, in terms of the partials of H are given by the
implicit function theorem. We use these formulas to define a function Ỹ (x,u) whose
partial derivative in u evaluated at x gives Y (1)(x). The form of the function Ỹ (x,u)
is based on the Newton step used to evaluate Y (x). The partial derivative of Ỹ (x,u)
with respect to u is well suited to the application of AD since it avoids the need to
differentiate the iterative procedure used to compute Y (x). The following theorem is
similar to, e.g., [10, equation (3.6)] and [5, Lemma 2.3]. We present the result in our
notation as an aid in understanding this paper.

Theorem 1. Suppose U ⊂ R
n and V ⊂ Rm are open, H : U ×V → R

m is contin-
uously differentiable, x̄ ∈ U , ȳ ∈ V , H[x̄, ȳ] = 0, and Hy[x̄, ȳ] is invertible. Then, if
necessary, U and V may be chosen to be smaller neighborhoods of x̄ and ȳ, respec-
tively, in order to guarantee the existence of a continuously differentiable function
Y : U → V satisfying Y (x̄) = ȳ and for all x ∈ U , H[x,Y (x)] = 0. Moreover, the
function Ỹ : U ×U → R

m, defined by

Ỹ (x,u) = Y (x)−Hy[x,Y (x)]−1H[u,Y (x)] ,

satisfies Ỹ (x,x) = Y (x) and

Ỹu(x,x) = Y (1)(x) =−Hy[x,Y (x)]−1Hx[x,Y (x)] .

Note that Y (1)(x) can be obtained without having to completely differentiate the
procedure for solving the linear equation Hy[x,Y (x)]∆y = H[u,Y (x)]. Solving this
equation typically requires the computation of an appropriate factorization of the
matrix Hy[x,Y (x)]. By using the function Ỹ one avoids the need to apply AD to the
computation of this factorization. (This has been noted before, e.g., [10, equation
(3.6)] and [5, Algorithm 3.1].)

As stated above, the function Ỹ is connected to Newton’s method for solving the
equation H[x,y] = 0 for y given x. For a given value for x, Newton’s method (in its
simplest form) approximates the value of Y (x) by starting with an initial value y0(x)
and then computing the iterates

yk+1(x) = yk(x)−Hy[x,yk(x)]−1H[x,yk(x)]

70 Bradley M. Bell and James V. Burke

until the value H[x,yk(x)] is sufficiently close to zero. The initial iterate y0(x) need
not depend on x. The last iterate yk(x) is the value used to approximate Y (x). If one di-
rectly applies AD to differentiate the relation between the final yk(x) and x (the direct
method), all of the computations for all of the iterates are differentiated. Theorem 1
shows that one can alternatively use AD to compute the partial derivative Ỹu(x,u) at
u = x to obtain Y (1)(x) . Since x is a fixed parameter in this calculation, no derivatives
of the matrix inverse of Hy[x,Y (x)] are required (in actual computations, this matrix
is factored instead of inverted and the factorization need not be differentiated).

3 Differentiating an Optimal Value Function

Suppose that U ⊂R
n and V ⊂R

m are open, F : U ×V →R is twice continuously
differentiable on U ×V , and define the optimal value function V : U → R by

V (x) = min F(x,y) with respect to y ∈ V . (1)

In the next result we define a function Ṽ (x,u) that facilitates the application of AD
to the computation of the first and second derivatives of V (x).

Theorem 2. Let U , V , F and V be as in (1), and suppose that x̄ ∈ U and ȳ ∈ V
are such that Fy(x̄, ȳ) = 0 and Fyy(x̄, ȳ) is positive definite. Then, if necessary, U and
V may be chosen to be smaller neighborhoods of x̄ and ȳ, respectively, so that there
exists a twice continuously differentiable function Y : U → V where Y (x) is the
unique minimizer of F(x, ·) on V , i.e.,

Y (x) = argmin F(x,y) with respect to y ∈ V .

We define Ỹ : U ×U → R and Ṽ : U ×U → R by

Ỹ (x,u) = Y (x)−Fyy[x,Y (x)]−1Fy[u,Y (x)] ,
Ṽ (x,u) = F [u,Ỹ (x,u)] .

It follows that for all x ∈U , Ṽ (x,x) = V (x),

Ṽu(x,x) = V (1)(x) = Fx[x,Y (x)] ,

Ṽuu(x,x) = V (2)(x) = Fxx[x,Y (x)]+Fxy[x,Y (x)]Y (1)(x) .

Proof. The implicit function theorem guarantees the existence and uniqueness of the
function Y satisfying the first- and second-order sufficiency conditions for optimality
in the definition of V (x). It follows from the first-order necessary conditions for
optimality that Fy[x,Y (x)] = 0. Defining H(x,y) = Fy(x,y) and applying Theorem 1,
we conclude that

Ỹ (x,x) = Y (x) ,

Ỹu(x,u) = Y (1)(x) . (2)

AD of Implicit Functions & Optimal Values 71

It follows that
Ṽ (x,x) = F [x,Ỹ (x,x)] = F [x,Y (x)] = V (x) ,

which establishes the function value assertion in the theorem.
The definition of Ṽ gives

Ṽu(x,u) = Fx[u,Ỹ (x,u)]+Fy[u,Ỹ (x,u)]Ỹu(x,u) .

Using Fy[x,Y (x)] = 0 and Ỹ (x,x) = Y (x), we have

Ṽu(x,x) = Fx[x,Y (x)] . (3)

On the other hand, since V (x) = F [x,Y (x)], we have

V (1)(x) = Fx[x,Y (x)]+Fy[x,Y (x)]Y (1)(x) ,

= Fx[x,Y (x)] . (4)

Equations (3) and (4) establish the first derivative assertions in the theorem.
The second derivative assertions requires a more extensive calculation. It follows

from (4) that
V (2)(x) = Fxx[x,Y (x)]+Fxy[x,Y (x)]Y (1)(x) . (5)

As noted above Fy[x,Y (x)] = 0 for all x ∈ U . Taking the derivative of this identity
with respect to x, we have

0 = Fyx[x,Y (x)]+Fyy[x,Y (x)]Y (1)(x) ,

0 = Y (1)(x)TFyx[x,Y (x)]+Y (1)(x)TFyy[x,Y (x)]Y (1)(x) . (6)

Fix x ∈U and define G : R
n→ R

n+m by

G(u) =
(

u
Ỹ (x,u)

)
.

It follows from this definition that

Ṽ (x,u) = (F ◦G)(u) ,

Ṽu(x,u) = F(1)[G(u)]G(1)(u) , and

Ṽuu(x,u) = G(1)(u)TF(2)[G(u)]G(1)(u)

+
n

∑
j=1

Fx(j)[G(u)]G(2)
(j)(u)+

m

∑
i=1

Fy(i)[G(u)]G(2)
(n+i)(u) ,

where Fx(j) and Fy(i) are the partials of F with respect to x j and yi respectively,
and where G(j)(u) and G(n+i)(u) are the j-th and (n + i)-th components of G(u)

respectively. Using the fact that G(2)
(j)(u) = 0 for j ≤ n, Fy[G(x)] = Fy[x,Ỹ (x,x)] = 0,

Ỹ (x,x) = Y (x), and Ỹu(x,x) = Y (1)(x), we have

72 Bradley M. Bell and James V. Burke

Ṽuu(x,x) = G(1)(x)TF(2)[G(x)]G(1)(x) ,

= Fxx[x,Y (x)]+Y (1)(x)TFyy[x,Y (x)]Y (1)(x)

+ Y (1)(x)TFyx[x,Y (x)]+Fxy[x,Y (x)]Y (1)(x) .

We now use (6) to conclude that

Ṽuu(x,x) = Fxx[x,Y (x)]+Fxy[x,Y (x)]Y (1)(x) .

This equation, combined with (5), yields the second derivative assertions in the
theorem.

Remark 1. The same proof works when the theorem is modified with following re-
placements: Fyy(x̄, ȳ) is invertible, Y : U → V is defined by Fy[x,Y (x)] = 0, and
V : U →R is defined by V (x) = F [x,Y (x)]. This extension is useful in certain appli-
cations, e.g., mathematical programs with equilibrium constraints (MPECs).

In summary, algorithmic differentiation is used to compute Ṽu(x,u) and Ṽuu(x,u)
at u = x. The result is the first and second derivatives of the optimal value function
V (x), respectively. Computing the first derivative V (1)(x) in this way requires a small
multiple of w where w is the amount of work necessary to compute values of the
function F(x,y) ([5, Algorithm 3.1] can also be applied to obtain this result). Com-
puting the second derivative V (2)(x) requires a small multiple of nw (recall that n is
the number of components in the vector x).

Note that one could use (2) to compute Y (1)(x) and then use the formula

V (2)(x) = Fxx[x,Y (x)]+Fxy[x,Y (x)]Y (1)(x)

to compute the second derivative of V (x). Even if m is large, forward mode can be
used to compute Ỹu(x,u) at u = x in a small multiple of nw. Thus, it is possible that,
for some problems, this alternative would compare reasonably well with the method
proposed above.

4 Example

The direct method for computing V (2)(x) applies AD to compute the second deriva-
tive of F [x,Y (x)] with respect x. This includes the iterations used to determine Y (x)
in the AD calculations. In this section, we present an example that compares the di-
rect method to the method proposed in the previous section using both the ADOL-C
[9, version 1.10.2] and CppAD [3, version 20071225] packages.

Our example is based on the function F̂ : U×V → R defined by

F̂(x,y) = xexp(y)+ exp(−y)− log(x),

where n = 1 and U ⊂ R
n is the set of positive real numbers, m = 1 and V ⊂ R

m

is the entire set of real numbers. This example has the advantage that the relevant

AD of Implicit Functions & Optimal Values 73

mathematical objects have closed form expressions. Indeed, Ŷ (x) (the minimizer of
F̂(x,y) with respect to y) and V̂ (2)(x) (the Hessian of F̂ [x,Ŷ (x)]) are given by

Ŷ (x) = log
(
1/
√

x
)

, (7)

V̂ (x) = 2
√

x− log(x) ,

V̂ (1)(x) = x−1/2− x−1 , and

V̂ (2)(x) = x−2− x−3/2/2 . (8)

Using this example function, we build a family of test functions that can be scaled
for memory use and computational load. This is done by approximating the exponen-
tial function exp(y) with its Mth degree Taylor approximation at the origin, i.e.,

Exp(y) = 1+ y+ y2/2!+ · · ·+ yM/M! .

As M increases, the complexity of the computation increases. For all of values of M
greater than or equal twenty, we consider the functions Exp(y) and exp(y) to be equal
(to near numerical precision) for y in the interval [0,2]. Using Exp(y), we compute
F(x,y) and its partial derivatives with respect to y as follows:

F(x,y) = xExp(y)+1/Exp(y)− log(x) ,

Fy(x,y) = xExp(y)−1/Exp(y) , and
Fyy(x,y) = xExp(y)+1/Exp(y) .

The method used to compute Y (x) does not matter, we only need to minimize F(x,y)
with respect to y. For this example, it is sufficient to solve for a zero of Fy(x,y)
(because F is convex with respect to y). Thus, to keep the source code simple, we use
ten iterations of Newton’s method to approximate Y (x) as follows: for k = 0, . . . ,9

y0(x) = 1 ,

yk+1(x) = yk(x)−Fy[x,yk(x)]/Fyy[x,yk(x)] , and
Y (x) = y10(x) . (9)

Note that this is only an approximate value for Y (x), but we use it as if it were exact,
i.e., as if Fy[x,Y (x)] = 0. We then use this approximation for Y (x) to compute

V (x) = F [x,Y (x)] ,
Ỹ (x,u) = Y (x)−Fy[u,Y (x)]/Fyy[x,Y (x)] , and
Ṽ (x,u) = F [u,Ỹ (x,u)] .

The source code for computing the functions F , Fy, Fyy, V (x), Ỹ and Ṽ are in-
cluded in Sect. 6.1. The Hessians V (2)(x) (direct method) and Ṽuu(x,u) (proposed
method) are computed using the ADOL-C function hessian and the CppAD
ADFun<double> member function Hessian.

As a check that the calculations of V (2)(x) are correct, we compute Ŷ (x) and
V̂ (2)(x) defined in equations (7) and (8). The source code for computing the functions
Ŷ (x) and V̂ (2)(x) are included in Sect. 6.2. The example results for this correctness
check, and for the memory and speed tests, are included in the tables below.

74 Bradley M. Bell and James V. Burke

4.1 Memory and Speed Tables

In the memory and speed tables below, the first column contains the value of M cor-
responding to each row (the output value M is the highest order term in the power
series approximation for exp(y)). The next two columns, n_xx and n_uu, contain a
measure of how much memory is required to store the results of a forward mode AD
operation (in preparation for a reverse mode operation) for the corresponding com-
putation of V (2)(x) and Ṽuu(x,u), respectively. The next column n_uu/xx contains
the ratio of n_uu divided by n_xx. The smaller the n_uu/xx the more computation
favors the use of Ṽuu(x,u) for the second derivative. The next two columns, t_xx and
t_uu, contain the run time, in milliseconds, used to compute V (2)(x) and Ṽuu(x,u)
respectively. Note that, for both ADOL-C and CppAD, the computational graph was
re-taped for each computation of V (2)(x) and each computation of Ṽuu(x,u). The next
column t_uu/xx contains the ratio of t_uu divided by t_xx. Again, the smaller the
ratio the more the computation favors the use of Ṽuu(x,u) for the second derivative.

4.2 Correctness Tables

In the correctness tables below, the first column displays M corresponding to the
correctness test, the second column displays Y (x) defined by (9) (x = 2), the third
column displays Ycheck which is equal to Ŷ (x) (see Sect. 6.2), the fourth col-
umn displays V (2)(x) computed by the corresponding AD package using the direct
method, the fifth column displays Ṽuu(x,u) computed by the corresponding AD pack-
age (x = 2, u = 2), the sixth column displays V2check which is equal to V̂ (2)(x) (see
Sect. 6.2).

4.3 System Description

The results below were generated using version 1.10.2 of ADOL-C, version
20071225 of CppAD, version 3.4.4 of the cygwin g++ compiler with the -O2
and -DNDEBUG compiler options, Microsoft Windows XP, a 3.00GHz pentium
processor with 2GB of memory. The example results will vary depending on the
operating system, machine, C++ compiler, compiler options, and hardware used.

4.4 ADOL-C

In this section we report the results for the case where the ADOL-C package is
used. The ADOL-C usrparms.h values BUFSIZE and TBUFSIZE were left at their
default value, 65536. The Hessians of V (x) with respect to x and Ṽ (x,u) with re-
spect to u were computed using the ADOL-C function hessian. Following the call
hessian(tag,1,x,H) a call was made to tapestats(tag,counts). In the out-
put below, n_xx and n_uu are the corresponding value counts[3]. This is an in-
dication of the amount of memory required for the Hessian calculation (see [9] for
more details).

AD of Implicit Functions & Optimal Values 75

Memory and Speed Table / ADOL-C
M n_xx n_uu n_uu/xx t_xx t_uu t_uu/xx

20 3803 746 0.196 0.794 0.271 0.341
40 7163 1066 0.149 11.236 0.366 0.033
60 10523 1386 0.132 15.152 0.458 0.030
80 13883 1706 0.123 20.408 0.557 0.027

100 17243 2026 0.117 25.000 0.656 0.026
Correctness Table / ADOL-C
M Y(x) Ycheck V_xx V_uu V2check

100 -0.3465736 -0.3465736 0.0732233 0.0732233 0.0732233

4.5 CppAD

In this section we report the results for the case where the CppAD package is used.
The Hessians of V (x) with respect to x and Ṽ (x,u) with respect to u were com-
puted using the CppAD ADFun<double> member function Hessian. In the output
below, n_xx and n_uu are the corresponding number of variables used during the
calculation, i.e., the return value of f.size_var() where f is the corresponding
AD function object. This is an indication of the amount of memory required for the
Hessian calculation (see [3] for more details).

Memory and Speed Table / CppAD
M n_xx n_uu n_uu/xx t_xx t_uu t_uu/xx

20 2175 121 0.056 0.549 0.141 0.257
40 4455 241 0.054 0.946 0.208 0.220
60 6735 361 0.054 1.328 0.279 0.210
80 9015 481 0.053 1.739 0.332 0.191

100 11295 601 0.053 2.198 0.404 0.184
Correctness Table / CppAD

M Y(x) Ycheck V_xx V_uu V2check
100 -0.3465736 -0.3465736 0.0732233 0.0732233 0.0732233

5 Conclusion

Theorem 1 provides a representation of an implicit function that facilitates efficient
computation of its first derivative using AD. Theorem 2 provides a representation of
an optimal value functions that facilitates efficient computation of its first and second
derivative using AD. Section 4 demonstrates the advantage of this representation
when using ADOL-C and CppAD. We suspect much smaller run times for CppAD,
as compared to ADOL-C, are due to the fact that ADOL-C uses disk to store its
values when the example parameter M is larger than 20. The source code for the
example, that is not specific to a particular AD package, has been included as an aid
in testing with other hardware and compilers, other AD packages, as well as future
versions of ADOL-C, CppAD. It also serves as an example of the benefit of C++
template functions in the context of AD by operator overloading.

76 Bradley M. Bell and James V. Burke

6 Appendix

6.1 Template Functions

The following template functions are used to compute V (2)(x) and Ṽuu(x,u) using the
ADOL-C type adouble and the CppAD type CppAD::AD<double>.

// Exp(x), a slow version of exp(x)
extern size_t M_;
template<class Float> Float Exp(const Float &x)
{ Float sum = 1., term = 1.;

for(size_t i = 1 ; i < M_; i++)
{ term *= (x / Float(i));

sum += term;
}
return sum;

}
// F(x, y) = x * exp(y) + exp(-y) - log(x)
template<class Float> Float F(const Float &x, const Float &y)
{ return x * Exp(y) + 1./Exp(y) - log(x); }
// F_y(x, y) = x * exp(y) - exp(-y)
template<class Float> Float F_y(const Float &x, const Float &y)
{ return x * Exp(y) - 1./Exp(y); }
// F_yy(x, y) = x * exp(y) + exp(-y)
template<class Float> Float F_yy(const Float &x, const Float &y)
{ return x * Exp(y) + 1./Exp(y); }
// Use ten iterations of Newtons method to compute Y(x)
template<class Float> Float Y(const Float &x)
{ Float y = 1.; // initial y

for(size_t i = 0; i < 10; i++) // 10 Newton iterations
y = y - F_y(x, y) / F_yy(x, y);

return y;
}
// V(x)
template<class Float> Float V(const Float &x)
{ return F(x, Y(x)); }
// Y˜ (x , u), pass Y(x) so it does not need to be recalculated
template<class Float>
Float Ytilde(double x, const Float &u_ad, double y_of_x)
{ Float y_of_x_ad = y_of_x;

return y_of_x_ad - F_y(u_ad , y_of_x_ad) / F_yy(x, y_of_x);
}
// V˜ (x, u), pass Y(x) so it does not need to be recalculated
template<class Float>
Float Vtilde(double x, const Float &u_ad, double y_of_x)
{ return F(u_ad , Ytilde(x, u_ad, y_of_x)); }

6.2 Check Functions

The functions Ŷ (x) defined in (7) and V̂ (2)(x) defined in (8) are coded below as
Ycheck and V2check respectively. These functions are used to check that the value
of Y (x) and V (2)(x) are computed correctly.

AD of Implicit Functions & Optimal Values 77

double Ycheck(double x)
{ return - log(x) / 2.; }
double V2check(double x)
{ return 1. / (x * x) - 0.5 / (x * sqrt(x)); }

Acknowledgement. This research was supported in part by NIH grant P41 EB-001975 and
NSF grant DMS-0505712.

References

1. Azmy, Y.: Post-convergence automatic differentiation of iterative schemes. Nuclear Sci-
ence and Engineering 125(1), 12–18 (1997)

2. Beck, T.: Automatic differentiation of iterative processes. Journal of Computational and
Applied Mathematics 50(1–3), 109–118 (1994)

3. Bell, B.: CppAD: a package for C++ algorithmic differentiation (2007). http://www.
coin-or.org/CppAD

4. Büskens, C., Griesse, R.: Parametric sensitivity analysis of perturbed PDE optimal control
problems with state and control constraints. Journal of Optimization Theory and Appli-
cations 131(1), 17–35 (2006)

5. Christianson, B.: Reverse accumulation and implicit functions. Optimization Methods
and Software 9, 307–322 (1998)

6. Gilbert, J.: Automatic differentiation and iterative processes. Optimization Methods and
Software 1(1), 13–21 (1992)

7. Griewank, A., Bischof, C., Corliss, G., Carle, A., Williamson, K.: Derivative conver-
gence for iterative equation solvers. Optimization Methods and Software 2(3-4), 321–355
(1993)

8. Griewank, A., Faure, C.: Reduced functions, gradients and Hessians from fixed-point
iterations for state equations. Numerical Algorithms 30(2), 113–39 (2002)

9. Griewank, A., Juedes, D., Mitev, H., Utke, J., Vogel, O., Walther, A.: ADOL-C: A package
for the automatic differentiation of algorithms written in C/C++. Tech. rep., Institute of
Scientific Computing, Technical University Dresden (1999). Updated version of the paper
published in ACM Trans. Math. Software 22, 1996, 131–167

10. Schachtner, R., Schaffler, S.: Critical stationary points and descent from saddlepoints
in constrained optimization via implicit automatic differentiation. Optimization 27(3),
245–52 (1993)

