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38 J. V. Burke, S. Deng

1 Introduction

We continue our study of weak sharp minima by focusing on applications to error
bounds for differentiable convex inclusions. Given a Gateaux differentiable mapping
h : X �→ Y between normed linear spaces X and Y consider the problem of finding
points x ∈ X satisfying the inclusion

h(x) ∈ C, where C ⊂ Y is non-empty, closed, and convex (1)

and h is concave with respect to the recession cone of C , i.e.,

h((1−λ)x + λz)− [(1−λ)h(x)+ λh(z)] ∈ C∞ for all x, z ∈ X and λ∈ [0, 1], (2)

where

C∞ = { d | x + d ∈ C ∀ x ∈ C } .

We call such problems convex inclusions. When C is a cone, the study of convex inclu-
sions and associated error bounds goes back to the early work of Robinson [37–39]
and Ursescu [43]. Most results for general convex inclusions can be obtained from
this case by a standard lifting technique [8, Sect. 5], but not always [15, Sect. 6]. The
prototype convex inclusion is obtained by taking Y = IRm and C = IRs− × {0}m−s .
The inclusion (1) is then equivalent to a finite system of inequalities and equations
hi (x) ≤ 0, for i = 1, 2, . . . , s and hi (x) = 0, for i = s+1, . . . ,m ,where hi denotes
the i th component function of h. Here the concavity condition on h reduces to the
requirement that each hi is convex for i = 1, 2, . . . , s and affine for i = s +1, . . . ,m.

Denote the solution set for (1) by

Σ = { x | h(x) ∈ C } ,

and assume thatΣ �= ∅ throughout the paper. Let ‖·‖ denote the norm on the underly-
ing space. We say that the inclusion (1) satisfies a local error bound at a point x̄ ∈ Σ
if there exists a neighborhood U of x̄ and an α > 0 such that

αdist (x | Σ) ≤ dist (h(x) | C) ∀ x ∈ U, (3)

where dist (z | C̃) = inf
{

‖z − s‖
∣∣∣ s ∈ C̃

}
for any subset C̃ of a normed linear

space. If U = X , then this inequality is said to be a global error bound for (1). The
parameter α in (3) is called the modulus of the error bound.

If h is continuous, the existence of a local error bound is equivalent to the notion of
calmness [42] of the constraint set-valued mapping Σ̃ from Y into X at (0, x̄) where

Σ̃(y) = { x | h(x)+ y ∈ C } (4)
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Weak sharp minima, Part III 39

and Σ̃(0) = Σ , as observed by Henrion and Outrata [23, pp. 438]. For more on the
calmness property and its role in variational analysis, see [9,16,21,22,42] and ref-
erences therein. The existence of a local error bound is also related to the notion of
metric regularity for constraint systems [42, Chap. 9]. Indeed, in some references the
existence of a local error bound is called metric regularity [30]. In [7] this notion is
referred to as weak metric regularity and in [18] it is called metric subregularity. We
use the term “local error bound” in order to more closely align our study with the
large body of work on error bounds for systems of convex equations and inequali-
ties (e.g., see [3,6,11,15,17,25–31,33–35,38,46,47] and Sect. 4.3 of [4]). Nondiffer-
entiable convex inequalities are studied in [3,6,28,29,35] and in Part II [11] of
this work.

Infinite systems of convex inequalities can be studied within the framework of (1)
using convex multi-function methods [37–39,43] as well as exact penalization [8]
and weak sharp minima [10] techniques. More recently such systems have also been
studied in [46] and [47] which contain several old and some new results.

In Sect. 2 we begin by quickly reviewing the necessary tools from Part I on weak
sharp minima. The body of the results are contained in Sect. 3. We first recall the basic
results from [8] on pairs (h,C) satisfying (2). The fundamental subdifferential charac-
terization theorem for error bounds is then established as an immediate consequence
of results in Part I [10]. As a result, we obtain a characterization of the calmness of
the set-valued mapping Σ̃ at a point. We then focus on the hypotheses that imply the
conditions established in the subdifferential characterization hold. These hypotheses
are called constraint qualifications. We start with the case where C is assumed to be
a polyhedral set in finite dimensional space. In this case we easily recover Hoffman’s
bound [25] and Li’s result [30] on the equivalence of the Abadie constraint quali-
fication and the existence of a local error bound as special cases. We then examine
a spectrum of constraint qualifications appearing in the literature and establish the
relationships between them. We conclude with a few observations on affine convex
inclusions establishing a number of verifiable sufficient conditions under which an
affine convex inclusion has a local or global error bound.

The notation that we employ is consistent with that used in Parts I and II, and is for
the most part the same as that in [2,19,40,41]. A partial list is provided below for the
reader’s convenience.

Denote the dual space of X by X∗. When X is endowed with the weak topology and
X∗ with the weak∗ topology then the spaces X and X∗ are said to be paired in duality
by the continuous bi-linear form 〈x∗, x〉 = x∗(x) defined on X∗ × X [41]. Denote
the norm on X∗ by ‖ · ‖◦: ‖z‖◦ = supx∈IB〈z, x〉, where IB = { x ∈ X | ‖x‖ ≤ 1 } is
the unit ball in X . We will use the notation IB for the unit ball of whatever space we
are discussing. If there is a possibility of confusion, we will write IBZ for the unit ball

in the normed linear space Z . Given a set C̃ in either X or X∗, the set cl
(

C̃
)

is the

closure of this set in the norm topology, and given a set E in X∗, the set cl∗ (E) is the
closure in the weak∗ topology.

For a non-empty subset C̃ of any normed linear space Y , denote the indicator func-
tion of C̃ and the support function of C̃ by ψC̃(·) and ψ ∗̃

C
(·), respectively. Thus, in

particular, ‖z‖o = ψ∗
IB(z). The barrier cone of a convex set C̃ is the set bar

(
C̃
)

=
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40 J. V. Burke, S. Deng

dom
(
ψ ∗̃

C
(·)). The lineality of C̃ , denoted by lin

(
C̃
)

is the smallest subspace L such

that x + L ⊂ C̃ for all x ∈ C̃ . Clearly, lin
(

C̃
)

= lin
(

C̃∞
)

. The norm-topology

interior of C̃ is int
(

C̃
)

, and the boundary of C̃ is bdry (C̃) = cl
(

C̃
)
\int

(
C̃
)

. When

Y is finite-dimensional, ri
(

C̃
)

is the interior of C̃ relative to the smallest affine set

containing C̃ . The cone generated by C̃ is cone (C̃) = ∪λ≥0{λC̃}. The linear span of

C̃ is denoted by span
(

C̃
)

, and the affine hull of C̃ is denoted by aff (C̃).

Define the projection of a point x ∈ X onto the set C̃ , denoted P(x | C̃), as the
set of all points in C̃ that are closest to x as measured by the norm ‖·‖: P(x | C̃) ={

y ∈ C̃
∣∣∣ ‖x − y‖ = dist (x | C̃)

}
. For non-empty sets C̃ ⊂ X and E ⊂ X∗, the

polar of C̃ and E are given, respectively, by the sets C̃◦ = {x∗ ∈ X∗ | 〈x∗, x〉 ≤
1 ∀x ∈ C̃}, E◦ = {x ∈ X | 〈x∗, x〉 ≤ 1 ∀x∗ ∈ E}, respectively. Thus, in particular,
IB◦ ⊂ X∗ is the unit ball associated with the dual norm ‖·‖o. If either C̃ or E is a
subspace, we also write C̃◦ = C̃⊥ and E◦ = E⊥. For a non-empty closed convex set

C̃ in X , and x ∈ C̃ , define the tangent cone to C̃ at x by TC̃ (x) = cl
(⋃

t>0
C̃−x

t

)
.

The normal cone to C̃ at x is given by NC̃ (x) = TC̃ (x)
◦ . It is easy to see that

NC̃ (x) =
{

x∗ ∈ X∗|〈x∗, y − x〉 ≤ 0, for any y ∈ C̃
}
.

Given a linear operator T : X �→ Y between topological vector spaces X and Y ,
we denote the kernel (or null-space) of T and the range of T by Nul (T ) and Ran (T ),
respectively.

Let f : X �→ IR be a lower semi-continuous convex function. The function
f ∗ : X∗ �→ IR defined by f ∗(x∗) = supx∈X (〈x∗, x〉 − f (x)) is called the con-
vex conjugate of f . The subdifferential of f at x and the directional derivative of f
at x in the direction d are denoted by ∂ f (x) and f ′(x; d) respectively.

2 Weak sharp minima

Let X be a normed linear space, S ⊂ X a non-empty closed convex set, and f : X �→
IR = IR ∪ {+∞} a lower semi-continuous convex function. We assume that S ∩
dom ( f ) �= ∅, where dom ( f ) = { x ∈ X | f (x) < ∞} , and

S̄ =
{

x ∈ S

∣∣∣∣ f (x) = min
y∈S

f (y)

}
�= ∅.

The set S̄ ⊂ X is said to be a set of weak sharp minima for the function f over the set
S with modulus α > 0 if

f (x̄)+ αdist (x | S̄) ≤ f (x) for all x̄ ∈ S̄ and x ∈ S, (5)

where dist (x | S̄) = inf x̄∈S̄ ‖x − x̄‖ , and ‖·‖ is the norm on X . The set S̄ is said to
be a set of weak sharp minima at x̄ ∈ S̄ for f over the set S if there exists an ε > 0
and α > 0 such that
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Weak sharp minima, Part III 41

f (x̄)+ αdist (x | S̄) ≤ f (x) for all x ∈ S ∩ (x̄ + εIB).

Theorem 1 [10, Theorem 2.3 and Theorem 5.2] Let f, S, and S̄ be as in (5), and
assume that the addition formula

∂( f + ψS)(x) = cl∗ (∂ f (x)+ NS (x)), (6)

holds for all x ∈ S̄. Let α > 0. Then the following are true.
(A) The set S̄ is a set of weak sharp minima for the function f over the set S ⊂ X
with modulus α if and only if the normal cone inclusion

αIB◦⋂ NS̄ (x) ⊂ cl∗ (∂ f (x)+ NS (x)) (7)

holds for all x ∈ S̄.
(B) Assume X is either Hilbert or finite-dimensional. Then S̄ is a set of weak sharp
minima at x̄ ∈ S̄ for f over the set S if and only if there exist some α > 0 and ε > 0
such that (7) holds for all x ∈ S̄ ∩ int(x̄ + εIB).

It is shown in Part I that the normal cone inclusion (7) can be decomposed into two
independent conditions. These conditions play a pivotal role in connecting the notion
of weak sharp minima to a number of related ideas in the literature.

Lemma 1 [10, Lemma 3.1] Let the basic assumptions of Theorem 1 hold. Given
x ∈ S̄, we have

αIB◦ ∩ NS̄ (x) ⊂ cl∗ (∂ f (x)+ NS (x)) (8)

if and only if

cone (cl∗ (∂ f (x)+ NS (x))) = NS̄ (x) and

αIB◦ ∩ [cone (cl∗ (∂ f (x)+ NS (x)))
] ⊂ cl∗ (∂ f (x)+ NS (x)) . (9)

In addition, if the set ∂ f (x)+ NS (x) is weak∗ closed, then

cone (cl∗ (∂ f (x)+ NS (x))) = cone (∂ f (x))+ NS (x) .

The history and motivations for the study of weak sharp minima are well doc-
umented in [10,12,13,20,36,45], where one can find extensive references on weak
sharp minima and related issues.

3 Error bounds for differentiable convex inclusions

Let X, Y, h, C , and Σ be as in (1) and (2). Observe that the inclusion (1) has an
error bound at a point x̄ if and only if the set Σ is a set of weak sharp minima for the
function f (x) = dist (h(x) | C). Our goal is to apply the characterization results in
Theorem 1 for weak sharp minima to study the convex inclusion (1) and in this way
obtain error bound results.
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42 J. V. Burke, S. Deng

Lemma 2 [8, Lemma 5.1] The following statements are equivalent:

1. h : X �→ Y is concave with respect the recession cone of C.
2. For each y∗ ∈ bar (C), the mapping hy∗ : X �→ IR defined by hy∗(x) = 〈y∗, h(x)〉

is a convex function of x.

Moreover, either one of these statements implies that the function f (x) = dist (h(x) |
C) is convex.

We now focus on Gateaux differentiable convex inclusions.

Definition 1 Let L(X,Y ) denote the space of bounded linear transformations from
X to Y with norm given by ‖A‖ = sup { ‖Ax‖ | ‖x‖ ≤ 1 } . We say that the mapping
h : X �→ Y is Gateaux differentiable at x ∈ X if there exists A ∈ L(X,Y ) such that

lim
λ↘0

1

λ
‖h(x + λd)− h(x)− λAd‖ = 0,

for every d ∈ X . Denote the transformation A by h′(x). We say that h is continuously
Gateaux differentiable on an open subset U of X if the mapping from X to L(X,Y )
given by x �→ h′(x) is well-defined and continuous.

Gateaux differentiability at a point x ∈ X can be expressed equivalently by the
equation

h(x + λd) = h(x)+ λh′(x)d + o(λ),

where the function o(λ) depends on both x and d, and satisfies limλ↘0
o(λ)
λ

= 0. We
list a few important consequences of differentiability for convex inclusions.

Lemma 3 Consider the convex inclusion (1) and (2) where it is further assumed that
the mapping h : X �→ Y is Gateaux differentiable at the point x̄ ∈ X. Let ρ : Y �→ IR
denote the distance function ρ(y) = dist (y | C), and let f : X �→ IR be the convex
function f (x) = ρ ◦ h.

1. For every x ∈ X, h(x̄)+ h′(x̄)(x − x̄)− h(x) ∈ C∞.
2. Σ ⊂ {

x ∈ X
∣∣ h(x̄)+ h′(x̄)(x − x̄) ∈ C

}
.

3. If x̄ ∈ Σ , then TΣ (x̄) ⊂ h′(x̄)−1TC (h(x̄)) and h′(x̄)∗NC (h(x̄)) ⊂ NΣ (x̄) .
4. For all d ∈ X we have f ′(x̄; d) = ρ′(h(x̄); h′(x̄)d) .
5. ∂ f (x̄) = h′(x̄)∗(IB◦ ∩ NC (h(x))).

Proof 1. Since h(x̄ +λ(x − x̄))−h(x̄)−λ[h(x)−h(x̄)] ∈ C∞ ∀ λ ∈ [0, 1],we have
h(x̄)+ h(x̄+λ(x−x̄))−h(x̄)

λ
− h(x) ∈ C∞ ∀ λ ∈ (0, 1]. The result follows by taking the

limit as λ ↘ 0.
2. This follows immediately from Part 1 and the definition of the recession cone.
3. This is an immediate consequence of Part 2 and [2, Theorem 16, pp. 174].
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Weak sharp minima, Part III 43

4. Since ρ is globally Lipschitz with Lipschitz constant 1, we have

| f (x̄ + λd)− ρ(h(x̄)+ λh′(x̄)d) | ≤ | h(x̄ + λd)− (h(x̄)+ λh′(x̄)d) |= o(λ),

from which the result follows.
5. This follows immediately from [10, Theorem A.1, Parts 4 and 5]. ��

The normal and tangent cone inclusions in Part 3 of this lemma can be strict. A
condition under which equality holds is called a constraint qualification (CQ). The
straightforward assumption that equality does hold is called the Abadie constraint
qualification [1]. The Abadie CQ is closely related to the condition (9) in Lemma 1.
Indeed, if we take S̄ = Σ and f (x) = dist (h(x) | C) in this lemma, then these condi-
tions are equivalent yielding the following restatement of Lemma 1 in this context. The
proof is omitted since it follows immediately from Lemma 1 and the representation
for the subdifferential of the distance function dist (h(x) | C) provided in Part 5 of
Lemma 3.

Lemma 4 Let the hypotheses of Lemma 3 hold and let α > 0. If x ∈ Σ is a point at
which h is Gateaux differentiable, then

α(IBX )
◦ ∩ NΣ (x) ⊂ h′(x)∗((IBY )

◦ ∩ NC (h(x))) (10)

if and only if

NΣ (x) = h′(x)∗NC (h(x)) and (11)

α(IBX )
◦ ∩ h′(x)∗NC (h(x)) ⊂ h′(x)∗((IBY )

◦ ∩ NC (h(x))) . (12)

We use this lemma to obtain a characterization for the existence of an error bound
for the inclusion (1).

Theorem 2 Let the hypotheses of Lemma 3 hold and assume that h is Gateaux differ-
entiable at every point of Σ . Then the following are true.

1. A global error bound holds for (1) with α > 0 if and only if (11) and (12) hold
for all x ∈ Σ .

2. If it is further assumed that X is a Hilbert space, then (11) and (12) hold for all
x ∈ Σ ∩ int (x̄ + εIB) for some ε > 0 if and only if the inclusion (1) has a local
error bound at x̄ .

3. If both X and Y are assumed to be finite dimensional, then there exists ε > 0 and
α1 > 0 such that both (11) and (12) hold for α = α1 for all x ∈ Σ ∩ int (x̄ + εIB)
if and only if the inclusion (1) has a local error bound at x̄ .

4. If both X and Y are assumed to be finite dimensional, then the convex inclusion
h(x) ∈ C has a local error bound at every point ofΣ if and only if for each r > 0
there exists α > 0 such that both (11) and (12) hold with for all x ∈ r IB ∩Σ .

Remark 1 By Lemma 4, the condition that (11) and (12) hold can be replaced by
the single condition that (10) holds in the statement of each of the results given in
Theorem 2.
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44 J. V. Burke, S. Deng

Remark 2 As noted in the Introduction, if h is assumed to be continuous, then the
existence of local error bound for the inclusion (1) is equivalent to the calmness of
the constraint set-valued mapping Σ̃ (see (4)) at (0, x̄) [23], which is induced by
the inclusion (1). Thus, Parts 2 and 3 provides a characterization for the calmness of
the set-valued mapping Σ̃ at (0, x̄). In addition, if the order structure induced by the
recession cone C∞ makes the space Y a B-lattice [44], then it can be shown that the
concavity of h combined with hypothesis that h is locally order bounded implies that
h is locally Lipschitz continuous. Further results on calmness, including cases where
the mapping h is not assumed to be differentiable, can be found in [23].

Proof 1. It has already been observed that there is a global error bound for (1) with
α > 0 if and only ifΣ is a set of weak sharp minima for dist (h(x) | C) with modulus
α > 0. Hence, by Part (A) of Theorem 1 and Part 5 of Lemma 3, there is a global error
bound for (1) with α > 0 if and only if (10) holds for all x ∈ Σ which by Lemma 4
is equivalent to (11) and (12).
2. This follows immediately from Part (B) of Theorem 1 and Lemma 4.
3. This is an immediate consequence of Part (B) of Theorem 1 and Lemma 4.
4. This is an immediate consequence of [10, Theorem 6.3], [10, Corollary 6.4], and
Lemma 4. ��

These results show that in order to establish an error bound for the convex inclusion
(1) one needs only to establish (11) (the Abadie CQ) and (12) on an appropriate set. We
now examine these conditions in the finite–dimensional setting under the assumption
that the set C is polyhedral.

3.1 The Abadie CQ in the polyhedral case:

Assume that C ⊂ IRm is polyhedral. We show that the condition (12) is satisfied in
a neighborhood of every point in Σ . If in addition h is assumed to be affine, (12) is
satisfied uniformly on Σ . We begin with a simple corollary to [40, Corollary 17.1.2].

Lemma 5 Let C ⊂ IRm be the polyhedral set

C =
{

y
∣∣∣
〈
a j , y

〉
≤ α j , j = 1, 2, . . . , r

}
,

where a j ∈ IRm and α j ∈ IR for j = 1, 2, . . . , r . Given y ∈ C, H ∈ IRn×m, and
z ∈ H NC (y) with z �= 0, there exist linearly independent vectors v1, v2, . . . , vs from
the set of vectors

{
Ha j

∣∣∣ j ∈ {1, 2, . . . , r}, and
〈
a j , y

〉
= α j

}

such that z = ∑s
t=1 λtvt .

Proof Let I = {
j
∣∣ 〈a j , y

〉 = α j
}
. Then the normal cone to C at y is the smallest

convex cone containing the vectors
{

a j | j ∈ I
}
. Apply [40, Corollary 17.1.2] to the

set of vectors S = {
Ha j | j ∈ I

}
to obtain the result. ��
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Proposition 1 Let C ⊂ IRm be a polyhedral convex set and let h : IRn �→ IRm be a
continuously differentiable mapping that is concave with respect to C∞. Then, given
x̄ ∈ Σ , there exists κ > 0 and δ > 0, depending on x̄, such that (12) holds whenever
x ∈ Σ ∩ (x̄ + δIB). If it is further assumed that h is affine, then (12) holds for all
x ∈ Σ .

Proof We may assume C = {
y
∣∣ 〈a j , y

〉 ≤ α j , j = 1, 2, . . . , r
}
, where a j ∈ IRm

and α j ∈ IR for j = 1, 2, . . . , r . Suppose to the contrary that the result is false. Then
there exist sequences xk → x̄ and κk ↑ ∞ such that {xk} ⊂ Σ and

IB◦ ∩ h′(xk)T NC

(
h(xk)

)
⊂ h′(xk)T

(
κkIB◦ ∩ NC

(
h(xk)

))

for all k = 1, 2, . . . . That is, there exist zk ∈ h′(xk)T NC
(
h(xk)

)
with

∥∥zk
∥∥

o = 1
such that zk /∈ h′(xk)T (κkIB◦ ∩ NC

(
h(xk)

)
) for all k = 1, 2, . . . . Set vk

j = h′(xk)T a j

for j = 1, 2, . . . , r and all k = 1, 2, . . . . By Lemma 5, there exist index sets Jk ⊂{
j
∣∣ 〈a j , h(xk)

〉 = α j
}

and scalars λk
j ≥ 0 for j ∈ Jk such that zk = ∑

j∈Jk
λk

jv
k
j

where the vectors
{
vk

j | j ∈ Jk

}
are linearly independent for all k = 1, 2, . . . . Due

to the finiteness of the index sets, we assume with no loss of generality that there is
an index set J ⊂ {1, 2, . . . , r} such that Jk = J for all k = 1, 2, . . . . Since zk is not
an element of h′(xk)T (κkIB◦ ∩ NC

(
h(xk)

)
) for all k = 1, 2, . . . , the vectors wk =∑

j∈J λ
k
j a

j diverge. Thus, we may further assume, with no loss of generality, that for

each j ∈ J there is a λ̄ j ≥ 0 with λk
j (
∑

p∈J λ
k
p)

−1 → λ̄ j , zk(
∑

p∈J λ
k
p)

−1 → 0,

and
∑

p∈J λ̄p > 0. Set τ j = λ̄ j∥∥∥∑p∈J λ̄pa p
∥∥∥

o

for j ∈ J , and w̄ = ∑
p∈J τpa p. We have

‖w̄‖o = 1, w̄ ∈ NC (h(x̄)), and 0 = h′(x̄)T w̄ = ∑
j∈J τ jv j where v j = h′(x̄)T a j

for j = 1, 2, . . . , r .
Consider the function φ(x) = 〈w̄, h(x)〉. By Lemma 2, we know that φ is a convex

function of x . In addition, ∇φ(x̄) = h′(x̄)T w̄ = 0. Hence, x̄ is a global solution to the
problem min φ(x). Suppose there exists x̂ ∈ Σ such that

〈
w̄, h(x̂)

〉 = φ(x̂) > φ(x̄) =
〈w̄, h(x̄)〉. Then, since w̄ ∈ IB◦ ∩ NC (h(x̄)), we have

dist (h(x̂) | C) = sup‖w‖o≤1
〈
w, h(x̂)

〉− ψ∗
C (w) [10, Theorem A.1, Part 2]

≥ 〈
w̄, h(x̂)

〉− ψ∗
C (w̄)

> 〈w̄, h(x̄)〉 − ψ∗
C (w̄)

= dist (h(x̄) | C) [10, Theorem A.1, Part 5]
= 0.

This contradicts the fact that x̂ ∈ Σ . Therefore, Σ ⊂ arg minφ(x) , or equivalently,
0 = h′(x)T w̄ for all x ∈ Σ . In particular, 0 = h′(xk)T w̄ = ∑

j∈J τ jv
k
j . Since

τ j �= 0 for at least one j ∈ J , this contradicts the linear independence of the vectors{
vk

j | j ∈ J
}

, which establishes the result.

Let us now assume that h is affine, then h′(x) ≡ H ∈ IRm×n for all x ∈ IRn . Since
C is polyhedral, it has only finitely many faces, where F ⊂ C is a face of C if and
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only if every convex subset of C whose relative interior meets F is contained in F .
The relative interiors of the faces of C form a partition of C [40, Theorem 18.2]. In
addition, if x, y ∈ C lie in the relative interior of the same face of C , then their normal
cones coincide [14, Theorem 2.3]. Therefore, to each face of C one can associate a
unique normal cone, i.e., the unique normal cone associated with every point in the
relative interior of that face. Thus, in particular, C has only finitely many distinct
normal cones, one for each one of it faces. The first part of this result shows that for
each such normal cone N there is a κN > 0 such that IB◦ ∩ H T N ⊂ H T (κN IB◦ ∩ N ).
Setting κ equal to the maximum of this finite collection of κN ’s yields the result. ��

We give two elementary applications of this result. The first is Hoffman’s bound
[25] and the second is a recent result of Li [30, Theorem 3.5] concerning the equiva-
lence of the existence of a local error bound and Abadie’s CQ in the polyhedral case.
We observe that as stated [30, Theorem 3.5] provides a characterization for the exis-
tence of local error bound at every point ofΣ in terms of the Abadie CQ. However, on
review of [30, Definition 2.1] one sees that the characterization is really a pointwise
characterization. We give the pointwise characterization below.

Theorem 3 Let C ⊂ IRm be a polyhedral convex set and let h : IRn �→ IRm be a
continuously differentiable mapping that is concave with respect to C∞.

1. If h is affine, then a global error bound holds for the inclusion (1).
2. The inclusion (1) has a local error bound at x̄ ∈ Σ if and only if the condition

ACQ(U ∩Σ) holds for some neighborhood U of x̄ .

Proof 1. Suppose h(x) = Ax + a. Since ψΣ(x) = ψC(Ax + a), we find from [40,
Theorem 23.9] that (11) holds on all of Σ . In addition, Proposition 1 implies that
(12) holds uniformly on Σ . Therefore, the global error bound follows from Part 1 of
Theorem 2.
2. By Part 3 of Theorem 2, the existence of a local error bound at x̄ implies that both
(11) and (12) hold in a neighborhood of x̄ where (11) is equivalent to ACQ.

Conversely, Proposition 1 states that there is a neighborhood Û of x̄ such that (12)
holds on Û . Therefore, both (11) and (12) hold on the neighborhood W = U ∩ Û .
Consequently, Part 3 of Theorem 2 applies again to yield the existence of a local error
bound for (1) at x̄ ��

3.2 Other constraint qualifications:

A number of other constraint qualifications are possible for the inclusion (1). Some do
not require the concavity of h with respect to C∞. Let Σ̂ be a subset of X . Typically
Σ̂ will be associated with some subset of the solution setΣ = { x | h(x) ∈ C }. Then,
in finite dimensions, the most well know constraint qualifications are

LICQ(Σ̂): The linear independence constraint qualification:

Nul (h′(x)) ∩ span (NC (h(x))) = {0} ∀ x ∈ Σ̂,

where Nul (h′(x)) denotes the null space of h′(x).
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MFCQ(Σ̂): The Mangasarian–Fromovitz constraint qualification:

Nul (h′(x)) ∩ NC (h(x)) = {0} ∀ x ∈ Σ̂.

ACQ(Σ̂): The Abadie constraint qualification:

NΣ (x) = h′(x)T NC (h(x)) ∀ x ∈ Σ̂.

SCQ: The Slater constraint qualification:

There is a x̂ ∈ IRn such that h(x̂) ∈ ri (C).

Here we have stated the dual formulation of the constraint qualifications LICQ, MFCQ,
and ACQ. The primal formulations are obtained by taking the polar of each of these
expressions:

LICQ(Σ̂)∗: Ran (h′(x))+ lin (TC (h(x))) = IRm ∀ x ∈ Σ̂ .
MFCQ(Σ̂)∗: Ran (h′(x))+ TC (h(x)) = IRm ∀ x ∈ Σ̂ .

ACQ(Σ̂)∗: TΣ (x) = h′(x)−1TC (h(x)) ∀ x ∈ Σ̂.
The equivalence of the primal and dual forms of both the LICQ and MFCQ follow from
[40, Corollary 16.4.2], however, the primal and dual formulations of the ACQ are not
necessarily equivalent. By [40, Corollary 16.3.2], one can show that ACQ(Σ̂) implies
ACQ(Σ̂)∗, but the converse implication holds if and only if the set h′(x)T NC (h(x))
is a closed set for all x ∈ Σ̂ . In the case when C is the cone IRs− ×{0}m−s , it is straight-
forward to show that these definitions for the constraint qualifications LICQ, MFCQ,
ACQ, and SCQ are equivalent to those used in the literature (for example, see [24]).

Using a constraint qualification suitable for the infinite–dimensional case, Magure-
gui [32, Theorem 2] establishes the metric regularity, and hence the existence of a local
error bound, of the inclusion (1) without the assumption that h is concave with respect
to C∞. It is easy to show that Maguregui’s CQ is equivalent to the primal version of the
MFCQ in the finite–dimensional case (e.g., see [13, Lemma 3.2]). Hence, Maguregui’s
result shows that the MFCQ implies the existence of a local error bound (and much
more). Since the LICQ implies the MFCQ, the same result holds for the LICQ.

For convex inclusions, it has long been known that the Slater CQ implies the exis-
tence of a local error bound when the set C is the cone IRs−×{0}m−s . We now establish
this result in the general finite–dimensional case. For this purpose, it is useful to sep-
arate out that part of h which is guaranteed to be affine. A simple technique for doing
this is illustrated in the following lemma.

Lemma 6 Let h : IRn �→ IRm and C ⊂ IRm be as given in (1) and (2). Let L be the
subspace parallel to aff (C) and P be the orthogonal projection matrix onto L. Define
h1 : IRn �→ IRm and h2 : IRn �→ IRm by h1(x) = Ph(x) and h2(x) = (I − P)h(x).

Set y0 = (I − P)y for any y ∈ aff (C), Ĉ = PC, Σ1 =
{

x
∣∣∣ h1(x) ∈ Ĉ

}
, and

Σ2 = {
x
∣∣ h2(x) = y0

}
. Then h2 is affine and Σ = Σ1 ∩Σ2.

Proof We have C∞ ⊂ L and h = h1+h2, hence, h2((1−λ)x +λy) = (1−λ)h2(x)+
λh2(y) for all x, y ∈ IRn and λ ∈ [0, 1]. Therefore, h2 is affine. Since the orthogonal
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projection onto aff (C) is given by Pw + y0 for any w ∈ IRm , we have h(x) ∈ C if
and only if Ph(x) ∈ PC and (I − P)h(x) = y0. This establishes the result. ��
Theorem 4 Let h : IRn �→ IRm and C ⊂ IRm be as given in (1) and (2). Assume
further that h is a continuously differentiable mapping. If the constraint qualification
SCQ holds, then there exists a local error bound for (1) at every point of Σ .

Proof We first assume that int (C) �= ∅ and show that MFCQ(Σ) holds. Indeed, if
MFCQ(Σ) does not hold, then there is an x̃ ∈ Σ and a non-zero vectorw ∈ NC (h(x̃))
with h′(x̃)Tw = 0. Hence the convex function 〈w, h(·)〉 attains its global minimum at
x̃ . But, by [40, Theorem 13.1],

〈
w, h(x̂)

〉
< ψ∗

C (w) = 〈w, h(x̃)〉 , since x̂ ∈ int (C).
This contradiction implies that MFCQ(Σ) holds if int (C) �= ∅.

Now assume that int (C) = ∅ and let L , P, h1, h2, y0, Ĉ, Σ1, and Σ2

be as in Lemma 6, and choose x̄ ∈ Σ . Observe that Σ1 =
{

x
∣∣∣ h1(x) ∈ Ĉ

}
={

x
∣∣∣ h1(x) ∈ Ĉ + L⊥

}
. In addition, h1(x̂) ∈ int

(
Ĉ + L⊥

)
, since h(x̂) ∈ ri (C).

Therefore, the continuity of h implies that x̂ ∈ int (Σ1) ∩ Σ2. By Lemma 6, Σ =
Σ1 ∩ Σ2. Therefore, Bauschke’s Theorem [5, Theorem 5.6.2] applies to yield the
existence of a τ1 > 0 and ε2 > 0 such that

dist2 (x | Σ) ≤ τ1 max{dist2 (x | Σ1), dist2 (x | Σ2)} ∀ x ∈ (x̄ + ε1IB) . (13)

Since h1(x̂) ∈ int
(

Ĉ + L⊥
)

, we know from above that the convex inclusion h1(x) ∈
Ĉ + L⊥ satisfies the constraint qualification MFCQ(Σ1). Therefore, by Maguregui
[32, Theorem 2], there exist τ2 > 0 and ε > 0 such that

dist2 (x | Σ1) ≤ τ2dist2 (h1(x) | Ĉ + L⊥) = τ2dist2 (h1(x) | Ĉ) ∀ x ∈ (x̄ + ε2IB) ,
(14)

where dist2 (h1(x) | Ĉ + L⊥) = dist2 (h1(x) | Ĉ) for all x ∈ IRn since h1(x) ∈ L for
all x ∈ IRn and Ĉ ∈ L . Also, since h2 is affine, there exists τ3 > 0 such that

dist2 (x | Σ2) ≤ τ3

∥∥∥h2(x)− y0
∥∥∥

2
∀ x ∈ IRn . (15)

Setting ε0 = min{ε1, ε2} and τ0 = τ1 max{τ2, τ3}, the relations (13), (14), and (15)
imply that

dist2 (x | Σ) ≤ τ0 max{dist2 (h1(x) | Ĉ),
∥∥∥h2(x)− y0

∥∥∥
2
} ∀ x ∈ (x̄ + εIB). (16)

Next observe that for every x ∈ IRn and y ∈ C ,

‖h(x)− y‖2
2 = ‖(h1(x)− Py)+ (h2(x)− (I − P)y)‖2

2

= ‖h1(x)− Py‖2
2 +

∥∥∥h2(x)− y0
∥∥∥

2

2

≥ max

{
‖h1(x)− Py‖2

2 ,

∥∥∥h2(x)− y0
∥∥∥

2

2

}
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Taking the square-root on both sides of this inequality and then taking the infimum
over all y ∈ C yields the inequality

dist2 (h(x) | C) ≥ max{dist2 (h1(x) | Ĉ),
∥∥∥h2(x)− y0

∥∥∥
2
} ∀ x ∈ IRn . (17)

Combining (17) and (16) yields the result for the 2-norm. This implies the result for
an arbitrary norm by the equivalence of norms. ��

We conclude this section by giving a result that establishes the relationships between
the various constraint qualifications that we have discussed.

Proposition 2 Let h : IRn �→ IRm and C ⊂ IRm be as given in (1) and (2). Assume
further that h is a continuously differentiable mapping. Then, for any x ∈ Σ , we have

LICQ({x}) ⇒ MFCQ({x}) ⇒ SCQ ⇒ ACQ(Σ) .

If it is further assumed that int (C) �= ∅, then SCQ ⇒ MFCQ(Σ).

Proof LICQ({x}) ⇒ MFCQ({x}): This follows immediately from the definitions.
MFCQ({x}) ⇒ SCQ: Let x ∈ Σ be such that MFCQ({x}) is satisfied. If h(x) ∈
ri (C) we are done, so assume that h(x) /∈ ri (C). By [13, Lemma 2.3], the condi-
tion MFCQ({x}) is equivalent to the condition that there exits ε, µ > 0 such that
0 ∈ int (µh′(y)IB + (ri (C)− h(y))) whenever ‖x − y‖ ≤ ε. Consequently,

∃ d ∈ µIB such that h(x)+ h′(x)d ∈ ri (C) . (18)

We will show that (18) is sufficient to establish SCQ.
Let us first assume that int (C) �= ∅, so that h(x) + h′(x)d ∈ int (C). Then

there is an ε > 0 such that S = h(x) + h′(x)d + εIB ⊂ int (C). By convexity,
the angle θ between h(x) + h′(x)d and any vector in the boundary cone (S) satis-
fies 0 < sin θ < 1. Set δ = sin θ . Then for λ > 0 sufficiently small, we have
dist (h(x) + λh′(x)d | bdry (S)) = λ

∥∥h′(x)d
∥∥

2 δ. Now if h(x + λd) �∈ int (C)
for all small λ > 0, then

∥∥h(x)+ λh′(x)d − h(x + λd)
∥∥ ≥ dist (h(x) + λh′(x)d |

bdry (S)) = λ
∥∥h′(x)d

∥∥
2 δ for all small λ > 0. But this contradicts the fact that∥∥h(x)+ λh′(x)d − h(x + λd)

∥∥ = o(λ). Therefore, h(x +λd) ∈ int (C) for all small
λ > 0 which implies that SCQ is satisfied.

Now consider the general case and let L , P, h1, h2, y0, Ĉ, Σ1, andΣ2 be as in
Lemma 6. By Lemma 6, there exist A ∈ IRm×n and a ∈ IRm such that h2(x) = Ax +a.
By (18), there is a d ∈ IRn such that h(x) + h′(x)d ∈ ri (C). In particular, this
implies that h2(x + λd) = A(x + λd) + a = y0 for all λ ∈ IR, or equivalently,
d ∈ Nul (A). In addition, we have also shown that h1(x + λd) ∈ int

(
C1 + L⊥)

for all λ > 0 sufficiently small, since h1(x) + h′
1(x)d ∈ int

(
C1 + L⊥). Therefore,

h(x + λd) = h1(x + λd) + h2(x + λd) ∈ ri (C1) + {y0} = ri (C) for all λ > 0
sufficiently small. This establishes the result.
SCQ ⇒ ACQ(Σ): By Theorem 4, SCQ implies the existence of a local error bound
at every point of Σ . Therefore, the result follows from Part 2 of Theorem 2.
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[int (C) �= ∅] ⇒ [SCQ ⇒ MFCQ(Σ)]: Suppose to the contrary that there is an x̃ ∈ C
and a non-zero vector w ∈ NC (x̃) with h′(x̃)Tw = 0. Then the convex function
〈w, h(·)〉 attains its global minimum at x̃ . But, by [40, Theorem 13.1],

〈
w, h(x̂)

〉
<

ψ∗
C (w) = 〈w, h(x̃)〉 , since x̂ ∈ int (C). This contradiction yields the result. ��
The following examples show that the implications given in the Proposition 2 are

complete.

Examples 1. (ACQ(Σ) �⇒ SCQ) Let h : IR �→ IR2 be given by h(x) = (x,−x)T .
Let C = IR2−. The Σ = {0}, NΣ (0) = IR, NC (0) = IR2+, and h′(0)T IR2+ = IR.
Therefore, the ACQ(Σ) is satisfied, but SCQ is not.

2. (SCQ �⇒ MFCQ({x})) Let h : IR �→ IR2 be given by h(x) = (x, 0)T . Let C =
IR ×{0}. Then SCQ is satisfied, but Nul (h′(x))∩ NC (h(x)) = {0}× IR for every
x ∈ Σ = IR.

3. (MFCQ({x}) �⇒ LICQ({x})) Let h : IR �→ IR2 be given by h(x) = (x, x)T . Let
C = IR2−. Then Σ = IR−, Nul (h′(0)) ∩ NC (h(0)) = {0}, but LICQ({0}) does
not hold.

3.3 Affine convex inclusions and Hoffman bounds:

It is instructive to consider the special case of affine convex inclusions since this is by
far the most studied as well as being arguably the most important case with regard to
applications. Global error bounds for affine convex inclusions are referred to as Hoff-
man bounds in honor of the seminal work of A. J. Hoffman [25]. Hoffman’s original
work focuses on the case where X and Y are finite dimensional and C is the nega-
tive orthant. Historically, this is the most intensively studied case. We do not attempt
a review of the enormous literature on this case or even on the slightly more gen-
eral polyhedral case in finite dimensions. Rather, our focus is on semi-infinite affine
convex inclusions where the set C is only assumed to be convex. Specifically, given
A ∈ L(X,Y ) and b ∈ Y with X being a normed linear space and Y finite dimensional,
we consider convex inclusions of the form

Ax − b ∈ C, where C ⊂ Y non-empty, closed and convex. (19)

To our knowledge, the only study of global error bounds, or Hoffman bounds, for this
general case is [15].

The goal in [15] is to obtain verifiable sufficient conditions under which a global
error bound exists and to obtain sharp computable estimates for the modulus of the
error bound. The main results in [15] are similar to the type stated previously in this sec-
tion for general convex inclusions. For example, in the affine setting the MFCQ({x})
takes the form

Nul (A∗)
⋂

NC (x) = {0}. (20)

Thus, one might conjecture that by specifying that (20) hold at every point of C the
existence of a global error bound would follow. This result indeed follows directly from
[15, Theorem 9]. The precise statement given in [15] makes use of the relationship
between the normal cone and the barrier cone as described in [11, Lemma 5].
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Theorem 5 [15, Theorem 9] Let A ∈ L(X,Y ), b ∈ Y , and C ⊂ Y be as in (19) (Y
finite dimensional) and satisfy

Nul (A∗)
⋂
(C∞)◦ = {0}. (21)

Then the affine convex inclusion (19) has a global error bound.

Remark 3 Sharp estimates for the modulus of the error bound are also presented in
[15, Theorem 9].

Remark 4 The condition (21) is equivalent to the dual statement

Ran (A)+ C∞ = Y . (22)

Remark 5 The actual statement of [15, Theorem 9] requires that b ∈ Ran (A) +
(C1 ∩ ri (C2)) where C = C1

⋂
C2 �= ∅ with both C1 and C2 closed and convex,

and C1 polyhedral. However, due to the equivalence of (21) and (22) a straightfor-
ward separation argument shows that (21) implies Ran (A) + (C1 ∩ ri (C2)) = Y
so the hypotheses of [15, Theorem 9] are trivially satisfied. The condition that b ∈
Ran (A)+ (C1 ∩ ri (C2)) is the counterpart of the Slater CQ in this setting.

The sufficient condition (21) given in Theorem 5 does not require knowledge of the
solution setΣ = { x | Ax − b ∈ C }. In contrast, the necessary and sufficient condition
derived from Part 1 of Theorem 2 makes explicit use of Σ .

Theorem 6 A global error bound holds for (19) (Y finite dimensional) with modulus
α > 0 if and only if for every x ∈ Σ = { x | Ax − b ∈ C } one has

NΣ (x) = A∗NC (Ax + b)

and
αIB◦ ∩ A∗NC (Ax + b) ⊂ A∗(IB◦ ∩ NC (Ax + b)). (23)

If C is a cone and b = 0, a result stronger than Theorem 6 is possible.

Theorem 7 Consider the affine convex inclusion (19) with Y possibly infinite-dimen-
sional, b = 0, and C assumed to be a non-empty, closed, and convex cone. Then the
following statements are equivalent.

1. A global error bound holds for the inclusion (19).
2. The convex inclusion (19) has a local error bound at every point in Σ .
3. There is an α > 0 such that

αIB◦ ∩Σ◦ ⊂ A∗(IB◦ ∩ C◦). (24)

Finally, if Y is finite dimensional, then the constraint qualification

Nul (A∗)
⋂

C◦ = {0} (25)

implies that a global error bound holds for the convex inclusion (19).
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Proof Let ρ(x) = dist (Ax | C). Since C is a cone, Part 3 of [10, Theorem A.1] states
that ρ(x) = ψ∗

IB◦∩C◦(Ax). Thus, in particular,

∂ρ(0) = IB◦ ∩ C◦. (26)

Since A ∈ L(X,Y ), ρ is positively homogeneous which implies that

ρ = ρ∞ and Σ∞ = Σ (27)

is a convex cone. In particular, Σ being a cone implies that

NΣ (0) = Σ◦. (28)

Clearly, Part 1 implies Part 2. Part 3 follows from Part 2 by applying Part 1 of [10,
Theorem 5.2] at x = 0 and using (26) and (28). The fact that Part 3 implies Part 1
follows from [10, Theorem 4.1] along with the relations (27).

Finally, when Y is finite dimensional, the constraint qualification (25) is equivalent
to (21) since C∞ = C . The result now follows from Theorem 5 and (22). ��

This result has implications for the notion of linear regularity introduced in [11,
Sect. 3].

Corollary 1 Let { Ci | i = 1, . . . , N } be a collection of non-empty closed convex
cones in the normed linear space X and suppose that the convex set C = ⋂N

i=1 Ci is
non-empty. Then the following statements are equivalent:

1. The collection { Ci | i = 1, . . . , N } is linearly regular.
2. The collection { Ci | i = 1, . . . , N } is boundedly linearly regular.
3. There is an α > 0 such that

αIB◦ ∩ C◦ ⊂
N∑

i=1

(IB◦ ∩ C◦
i ). (29)

In addition, if any one of these conditions holds, then the set
∑N

i=1 C◦
i is w∗–closed.

Finally, if X is finite dimensional, then the constraint qualification

[z j ∈ C◦
j j = 1, . . . , N ,

N∑
i=1

z j = 0] ⇐⇒ [z j = 0, j = 1, . . . , N ], (30)

implies that the collection { Ci | i = 1, . . . , N } is linearly regular.

Proof Define Ĉ = C1 × · · · × CN ⊂ X × · · · × X = X N and let A ∈ L(X, X N )

be given by Ax = (x, x, . . . , x). Then x ∈ C if and only if Ax ∈ Ĉ . We define the
norm on X N to be

∥∥(x1, x2, . . . , x N )
∥∥ = max

{ ∥∥x j
∥∥ | j = 1, . . . , N

}
. Now apply

Theorem 7 to obtain the equivalence of statements 1, 2, and 3.
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Next observe that statement 3 implies that

C◦ = cone (αIB◦ ∩ C◦) ⊂ cone (
N∑

i=1

(IB◦ ∩ C◦
i )) =

N∑
i=1

C◦
i ⊂ C◦.

Therefore,
∑N

i=1 C◦
i is w∗–closed since C◦ is.

Finally, when X is finite dimensional, the pointedness condition (30) is equivalent
to the condition Nul (A∗) ∩ Ĉ◦ = {0}. The last part of Theorem 7 implies that the
collection { Ci | i = 1, . . . , N } is linearly regular. ��

A key ingredient in Theorem 7 is the positive homogeneity of the distance function
dist (Ax | C). The following example shows that, in general, Theorem 7 fails for
inclusion Ax + b ∈ C even when C is a convex cone. The example shows that even
if (19) has a local error bound at every point, a global error bound may not exist.

Example 1 Consider the inclusion Ax + b ∈ C = C1 × C2, where

C1 = {x ∈ R3 |
√

x2
1 + x2

2 ≤ x3}, C2 = {0},

A =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 0 −1

⎞
⎟⎟⎠ , and b =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ .

Let Σ = {x ∈ R3 | Ax + b ∈ C}. A simple computation shows that Σ = {x ∈
C1 | x3 = x1 + 1}, Σ∞ = {x ∈ R3 | x1 = x3 ≥ 0, x2 = 0} = cone ([1, 0, 1]T ),
and ri(C) = int (C1) × C2. Since Ax̄ + b ∈ ri(C), where x̄ = [0, 0, 1]T , by Theo-
rem 4, the inclusion Ax + b ∈ C has a local error bound at every point of Σ . From
Σ = arg minx∈R3 dist (Ax + b | C), and (dist (Ax + b | C))∞ = (dist (Ax | C))∞ =
dist (Ax | C) [24, Proposition 3.2.9], we know thatΣ∞ = arg minx∈R3 dist (Ax | C).
We claim thatΣ∞ is not a set of weak sharp minima for dist (Ax | C). To see this, let
xn = [n, 1, n]T for n = 1, 2, ... Then dist (xn | Σ∞) = 1, and

dist (Axn | C∞) = dist ([n, 1, n, 0]T | C) = ψ∗
IB◦∩C◦

1
(xn)

= max

{
nx1 + x2 + nx3

∣∣∣∣
√

x2
1 + x2

2 ≤ −x3,−1 ≤ x3 ≤ 0

}

≤ max

{√
n2 + 1

√
x2

1 + x2
2 + nx3

∣∣∣∣∣

√
x2

1 + x2
2 ≤ −x3,

−1 ≤ x3 ≤ 0

}

=
√

n2 + 1 − n = 1√
n2 + 1 + n

.
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It follows that dist (Axn | C) → 0 as n → ∞. Hence there is no α > 0 such that

αdist (x | Σ∞) ≤ dist (Ax | C) ∀x ∈ R3.

By [10, Theorem 4.2],Σ cannot be a set of weak sharp minima for dist (Ax + b | C),
which is equivalent to saying that there is no global error bound for the inclusion
Ax+b ∈ C . Finally, we note that in this example, (1, 0,−1,−1)T ∈ Nul (A∗)∩C◦,i.e.
(21) fails.

The stark difference in the behavior of the solution set to affine convex cone inclu-
sions for b = 0 and b �= 0 is intriguing. In the case when b �= 0, one suspects the
existence of a simple geometric condition under which a local error bound at every
point is equivalent to the existence of a global error bound. We present a partial result in
this direction that applies to general affine convex inclusions in finite dimensions. This
result follows from [10, Theorem 6.5] and, as in Theorem 5, is based on a hypothesis
concerning the relationship between the sets Ran (A) and C∞.

Proposition 3 Suppose that X and Y are finite dimensional and consider the affine
convex inclusion (19). If

Ran (A) ∩ C∞ = {0}, (31)

then the inclusion (19) has a global error bound if and only if it has a local error
bound at every point of Σ .

Proof We have thatΣ∞ = { y | Ay ∈ C∞ }. This, combined with the hypothesis (31),
implies thatΣ∞ = Nul (A). Let P be the orthogonal projector onto Nul (A)⊥ and set
Σ̂ = PΣ . It is straightforward to show that

Σ = Σ̂ + Nul (A).

Therefore, Σ̂∞ ⊂ Σ∞ = Nul (A), and so Σ̂∞ = {0}. Hence, by [40, Theorem 8.4],
the set Σ̂ is bounded. [10, Theorem 6.5] now applies to yield the result. ��
Acknowledgments The authors thank an anonymous referee for very carefully reading the original sub-
mission and for supplying helpful comments which significantly improved the presentation.
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