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An ��-Laplace Robust Kalman Smoother
Aleksandr Y. Aravkin, Bradley M. Bell, James V. Burke, and Gianluigi Pillonetto

Abstract—Robustness is a major problem in Kalman filtering
and smoothing that can be solved using heavy tailed distributions;
e.g., �-Laplace. This paper describes an algorithm for finding the
maximum a posteriori (MAP) estimate of the Kalman smoother for
a nonlinear model with Gaussian process noise and �-Laplace ob-
servation noise. The algorithm uses the convex composite extension
of the Gauss–Newton method. This yields convex programming
subproblems to which an interior point path-following method is
applied. The number of arithmetic operations required by the al-
gorithm grows linearly with the number of time points because the
algorithm preserves the underlying block tridiagonal structure of
the Kalman smoother problem. Excellent fits are obtained with and
without outliers, even though the outliers are simulated from distri-
butions that are not �-Laplace. It is also tested on actual data with
a nonlinear measurement model for an underwater tracking exper-
iment. The �-Laplace smoother is able to construct a smoothed fit,
without data removal, from data with very large outliers.

Index Terms—Interior point methods, Kalman filtering, Kalman
smoothing, moving horizon estimation, robust statistics.

I. INTRODUCTION

T HE Kalman filter is best known as a system of recursive
equations that finds the minimum variance state estimate

for in the following model: for

(1)

where , are known linear functions, , are mutually
independent Gaussian random variables, and , are the
known covariances of , , respectively. However, in many
applications, the dynamics may be nonlinear and more uncertain
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than in the model (1) (see for example [37]). The covariance ma-
trices ( or ) may be unknown, and the process or measure-
ment noise ( or ) may not be Gaussian. A “robust” Kalman
filter or smoother guards against some violation of the standard
assumptions. It behaves well under nominal conditions (for ex-
ample, Gaussian noise with known moments), and behaves ac-
ceptably when nominal conditions are violated. A 1985 review
paper by Kassam and Poor surveys a wide assortment of arti-
cles and books on robust filters, with emphasis on “minimax”
filters, which are designed to minimize the maximum possible
value of a loss function related to filter performance [29] (also
see [11], [19], [30], [35]). Other approaches to robust Kalman
filtering are reviewed in the 1994 article by Schick and Mitter
[42] where the measurement noise has heavy tails (and ,

are linear). The authors divide the estimation approaches into
three categories: Bayesian, nonparametric, and minimax. They
review the portion of the minimax literature that uses influence
bounding functions to obtain recursive approximate conditional
mean estimators (e.g., [34]). In addition, they present a different
approximation for the conditional mean (under the assumption
that the distribution of is known).

Again, in the case where and are linear, Masreliez
and Martin [34] used the influence function approach (also
called robust regression [23], [26], [33]) on the innovation

, where is the estimate
at time given the estimate at the previous time .
They used an upper bound as their variance estimate and
achieved a robust Kalman filter. The influence function ap-
proach also appears in the more recent papers [16] and [13]. In
this approach the state estimate at the th time is viewed
as the regression of the state estimate at the previous time

together with the measurements at the current time
[16, eq. (15)]. The robust cost function (its derivative is

the influence function) is applied to the measurement residuals;
i.e., , and is equivalent to the Kalman
filter when . These approaches can be viewed
as extensions of M-estimators (defined by Huber [26]) to the
Kalman filter setting.

In this paper, we study the case of non-Gaussian heavy tailed
measurement noise , nonlinear process functions , and non-
linear measurement functions . Heavy tailed densities occur
in applications related to glint noise [25], air turbulence, and
asset returns. Heavier tails are also a reasonable model for a con-
taminated normal distribution where “bad” measurements occur
due to equipment malfunction, secondary noise sources, or other
anomalies. In this, and even more general settings, the min-
imum variance estimate for the state sequence
can be approximated using stochastic simulation methods, such
as Markov chain Monte Carlo or particle filtering, e.g., see [15],
[20], [24], [27], [32], and [44]. These methods are very versa-
tile, and can be applied to a wide range of situations where the
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standard hypotheses in (1) fail to be satisfied. However, these
techniques are very computationally intensive since they require
Monte-Carlo and/or MCMC integration. In addition, they typi-
cally require a delicate tuning of proposal densities to improve
their convergence rates. Moreover, detection of convergence is
often heuristic and uncertain.

The approach taken here differs sharply from both stochastic
simulation methods and previous research on robust filtering. In
contrast to stochastic simulation methods, our approach is based
on an optimization perspective associated with the computation
of the maximum a posteriori (MAP) estimate of the state se-
quence given observations . In contrast to previous ro-
bust filtering methods, we simultaneously optimize with respect
to the entire state sequence and generalize to nonlinear
process functions and measurement functions (here
and below denotes the finite sequence ). The
result is the MAP estimate of the state sequence
given observations where particular heavy tailed distri-
butions ( -Laplace and Huber) model the measurement noise

. An advantage of an optimization approach is that first-
order (and possibly second-order) necessary conditions provide
a certificate of optimality and can be used to assess convergence.
In the linear case, these conditions are also sufficient. However,
in the nonlinear case, at best they only provide an assurance of
local optimality. Nonetheless, optimization methods are numer-
ically efficient and can be used to obtain better proposal densi-
ties for stochastic simulation methods, e.g., [38].

In the Gaussian linear case, the Rauch–Tung–Striebel (RTS)
smoother [3] simultaneously optimizes with respect to the entire
state sequence . The algorithm in [4] extended this to non-
linear process functions and measurement functions .
We extend the method in [4] from Gaussian process and obser-
vational noise to observational noise with a robust log-concave
density such as the -Laplace or Huber densities. Our exten-
sion preserves the block tridiagonal structure in the underlying
linear algebra and scales linearly with the number of states.

Since we use log-concave densities, the optimization problem
for the computation of the MAP estimate is in convex composite
form [9], [10], i.e., the composition of a convex function with
a smooth nonlinear function. By linearizing the nonlinear func-
tion within the convex function, we obtain a Gauss–Newton sub-
problem for the computation of the next iterate. Overall con-
vergence is established using techniques from constrained non-
linear programming.

The algorithmic design is based on the Gauss–Newton
methodology for convex composite optimization [9] rather than
constrained nonlinear programming. This approach is ideally
suited to log-concave densities. In Section III, we show that the
associated Gauss–Newton subproblems are convex quadratic
programs in the case of the -Laplace density and extended
linear-quadratic programs in the case of the Huber density.
Both cases are treated in Section IV where convex duality is
used to show that a primal-dual path following algorithm for
solving these subproblems preserves the underlying block tridi-
agonal structure. In addition, it is also shown that the convex
composite convergence theory inspires subproblem initializa-
tion and termination rules that are particularly efficient. These
rules make strong use of the duality information available in

the primal-dual path following algorithm (see Remark 2). The
proposed subproblem termination rule is linked to the initializa-
tion strategy and automatically adjusts the subproblem solution
accuracy based on the magnitude of the certificate of optimality
for the nonlinear smoothing problem. Further implementation
details are given in Section V.

The paper proceeds as follows. The -Laplace distribution
is introduced and the smoothing model is precisely defined in
Section II. The MAP objective function, a Gauss–Newton ap-
proximation for this objective, and a convex quadratic program
(QP) that represents this approximation appear in Section III.
An interior point method for solving the QP is presented
in Section IV. This method preserves the block tridiagonal
structure of the standard Kalman filter, thus demonstrating
that the computational effort scales linearly with the number
of time points . An algorithm that solves the MAP estima-
tion problem, and convergence theory for the algorithm, are
provided in Section V. The method presented in this paper is
compared to other methods using simulated data in Section VI
and is applied to real data used for underwater tracking in
Section VII. The real data set is particularly good for testing
because it includes independent position measurements that
can be used to verify the tracking results.

II. SMOOTHER MODEL WITH -LAPLACE

MEASUREMENT NOISE

Simultaneous optimization with respect to all time points
was recently applied to the inequality constrained Kalman
smoothing problem using an interior point method (see [6]).
We use similar techniques to produce a robust smoother where
the measurement noise comes from independent realiza-
tions of a multivariate distribution which we refer to as the

-Laplace distribution. In the case where the covariance matrix
is the identity, the negative log of the -Laplace (Gaussian)
density is proportional to the norm ( norm squared) of .
This differs from the standard multivariate Laplace distribution
[31] whose negative log density is proportional to the norm
of (again when the covariance matrix is the identity).

For we use the notation for the norm of ;
i.e., . Define the multivariate -Laplace
distribution with mean and covariance as having the fol-
lowing density:

(2)

where denotes a Cholesky factor of the positive definite
matrix ; i.e., . One can verify that this is a
probability distribution with covariance using the change of
variables . This distribution has been applied
to robust estimation problems; e.g., [18, eq. 2.3]. A comparison
of the Gaussian and Laplace distributions is displayed in Fig. 1.
This comparison includes the densities, negative log densities,
and influence functions, for both distributions.

We use the following general model for the underlying dy-
namic system: for

(3)
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Fig. 1. Gaussian and Laplace densities, negative log densities, and influence functions (for scalar � ).

where is a known process function,
is a known measurement function, the vector

is unknown Gaussian process noise with mean zero and covari-
ance , and the vector is unknown

-Laplace measurement noise (2) with mean zero and covari-
ance . Furthermore, we assume that the vec-
tors are mutually independent. The initial state
estimate is given by which is constant; i.e., its derivative
satisfies .

III. MAXIMUM A POSTERIORI ESTIMATION

The MAP objective function is the negative log density cor-
responding to model (3); i.e.,

(4)

Dropping terms that do not depend on , maximizing the
MAP objective with respect to is equivalent to minimizing

Given a sequence of column vectors and matrices
we use the notation

...

. . .
...

...
. . .

. . .

We also make the following definitions:

Using this notation, the MAP estimation problem is equivalent
to

minimize (5)

This is an example of a convex composite optimization
problem [9] wherein the objective function takes the com-
posite form with convex and smooth. The
standard generalized Gauss–Newton approach to solving this
problem is to linearize the smooth function at the current iterate

and then obtain the new iterate using the Gauss–Newton
approximation

where is the derivative of . The approach is typically cou-
pled with either a line search or a trust-region strategy to ensure
convergence far from a solution [9]. In the case of (5), the smooth
function has twocomponents and thatneedtobe linearized.
Weshowthat theresultingGauss–Newtonsubproblemcanbefor-
mulated as a structured convex quadratic program. To begin, re-
formulate (5) by introducing two new non-negative variables
and representingthepositiveandnegativepartsof .
Thisallowsus towrite the portionof theobjectiveasa linearex-
pression in and at the cost of adding non-negativity con-
straints for and and a nonlinear equality constraint:

minimize

w.r.t

subject to

where is the total number of measure-
ments, is the non-negative real numbers, and is
the vector with all its components equal to the square root of
two. Using a representation similar to [6], define

where , , ,
, and is the vector of ones. Using

this notation, the MAP estimation problem (5) is

minimize

w.r.t

subject to (6)

Define as the approximate objective corresponding to the
affine approximations :



ARAVKIN et al.: -LAPLACE ROBUST KALMAN SMOOTHER 2901

and define to be measurement residuals corresponding
to the affine approximations :

Problem (6) is iteratively approximated by the quadratic pro-
grams (QP)

minimize

subject to (7)

Note that is quadratic in and affine in
. We now rewrite (7) in standard QP format. Define

, , and as
follows:

. . .
. . .

. . .

Here . Next define the vector
by

and define by . Then

(8)

We also define the vectors , and the
matrix as follows:

Dropping the terms in (8) that are constant with respect to ,
subproblem (7) is equivalent to

minimize

w.r.t.

subject to (9)

where (as above) is the vector with all its compo-
nents equal to the square root of two. This is the Gauss–Newton
subproblem that we use to solve the convex composite optimiza-
tion problem (5).

Remark 3.1 (Huber Extension: The Map Subproblem): As
noted in the introduction, it is possible to substitute the Huber
distribution for the -Laplace distribution. In this remark we
lay some of the groundwork required for this extension.

We are given a vector of positive values. The Huber
penalty function with threshold is defined as

if

otherwise

There are vectors and of positive values
such that for each , is a density for a prob-
ability distribution with mean zero and variance one on

; see [1, eq. 5.4.8]. The vector can be computed
using the relation

where is the error function. The value of the vector is
not important for the discussion below. The multivariate Huber
density corresponding to the measurement residuals is

where is the th component of the vector
.

Dropping terms that do not affect the minimizer of the MAP
objective (4), the estimation problem for the Huber case is
equivalent to minimizing

with respect to . Let be the diagonal
matrix with along the diagonal and define ,

, where and are as defined above.
The linearized subproblem for the Huber case is

minimize

where and are as defined above. In contrast to the
-Laplace case (9), the problem above is not a convex quadratic

program. However, it is an extended linear-quadratic convex
program (see [40]), and our solution strategy preserves the un-
derlying problem structure (see [1, Sec. 5.7.3]).

IV. SOLVING THE QP SUBPROBLEM

The QP subproblem (9) can be solved using an interior point
approach. Interior point methods apply a damped Newton’s
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method to a relaxation of the Karush–Kuhn–Tucker (KKT)
conditions. The relaxed optimality conditions are themselves
optimality conditions for an associated relaxed optimization
problem given by

minimize

w.r.t.

subject to (10)

Here, and for the rest of this section, we drop the dependence of
, , , and on . The associated Lagrangian is

where is a dual variable associated with the equality constraint.
The corresponding KKT optimality conditions are

(11)

where (as above) for any vector , is
the diagonal matrix with along the diagonal. Define
and by the equations

and

Using the replacements and
, and then subtracting the first two equations in the

KKT conditions, we have

(12)

Adding the first two equations in (11) and then replacing in the
third equation, the KKT optimality conditions are equivalent to
the following function being equal to zero:

(13)

The one-dimensional curve in the space of vectors
that satisfies the equation , with

and componentwise strictly positive, is called
the central path. The idea behind the primal-dual interior point
method is to apply a Newton based predictor-corrector method
to follow the central path as .

The derivative matrix is given by

This matrix is invertible at points , , and that
are componentwise strictly positive. At such points a step of
Newton’s method for locating roots of is computed by
solving the linear system

(14)

for , , , , and . Elementary block row op-
erations can be used to reduce (14) to an upper block triangular
system. Doing so proves the following lemma:

Lemma 4.1: Given the inputs , , , , , , , ,
and , the following algorithm solves (14) for , , ,

, and :

The matrix in the lemma above is diagonal with all the diag-
onal elements positive. The matrix
is positive definite (because is) and block tridiagonal with
block size . We can multiply the inverse of this matrix times a
vector in [5, Alg. 4]; thus, the work required grows
linearly with the number of time steps.

The interior point algorithm proceeds by applying a damped
Newton’s method to the system of nonlinear equations

, where the damping is employed to
maintain the strict positivity of the iterates .
The central path parameter is simultaneously reduced to zero
so that in the limit the optimality conditions for (9) are satisfied.
We do not provide details for our implementation of the interior
point algorithm since they are easily found elsewhere, but we
do briefly discuss the duality theory for (9) since it impacts
both the termination criteria for the interior point algorithm and
our choice of search direction in solving (5).



ARAVKIN et al.: -LAPLACE ROBUST KALMAN SMOOTHER 2903

The dual to the quadratic program (9) is the quadratic pro-
gram

maximize

w.r.t.

subject to (15)

(where again the dependence of , , , and on has been
dropped). Given a primal feasible point for problem
(9) and its associated primal objective value

as well as a dual feasible point for problem (15) and its asso-
ciated dual objective value

we say that is the duality gap asso-
ciated with the primal-dual pair . This value is
necessarily non-negative, taking the value zero if and only if

is primal optimal and is dual optimal.
Lemma 4.2: Suppose satisfy the affine

equations

(16)

with , , , componentwise strictly positive. If we
choose as in (12), then is a primal-dual feasible
pair and is the associated duality gap.

Proof: If (16) and (12) hold then ,
and equals

Remark 4.1 (Huber Extension: Path-Following): When the
-Laplace density is replaced by the Huber density, the relaxed

version of the KKT optimality conditions is where

Following the procedure outlined above for the case, one can
show that a Newton-based predictor-corrector path-following
method that follows the central path for this function also pre-
serves the underlying block tridiagonal structure of the original
problem.

V. SOLVING THE MAP ESTIMATION PROBLEM

We employ a standard generalized Gauss–Newton algo-
rithm for the convex composite structure (5) with a simple
backtracking line search. The objective function in (5) has the
form , where the convex function and the smooth
function are given by

(17)

(18)

The first-order necessary condition for optimality in the
convex composite problem minimize is

, where is the generalized subdiffer-
ential of at [40] and is the convex subdifferential
of at [39]. Elementary convex analysis gives us the
equivalence

This motivates our definition of the difference function
, and its minimum

with respect to direction . Hence,
if and only if . The directional derivative

of is given by [10]

Given , we define a set of descent directions at by
(not to be confused with

, the diagonal matrix with on the diagonal). Note that
if there is a such that , then

. These ideas motivate the following application
of the Gauss–Newton algorithm in [9].

Algorithm 5.1: The Iterated -Laplace Kalman Smoother:
1) (Initialize) We are given an initial estimate

of state sequence, an overall termination criteria,
a termination criteria for subproblem,

a line search rejection criteria, a line search step
size factor. Set the iteration counter .

2) (Gauss–Newton Step) Find an approximate solution to
the QP subproblem (9) at . To be specific,

is in the set . Set and
Terminate if .

3) (Line Search) Set to the maximum element of

4) (Iterate) Set and goto Step 2.
Remark 5.1 (Existence of Solutions to (9)): Due the coer-

civity of (17) there always exists a vector such that
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. Indeed, the coercivity of implies that the
set is compact, and so the set

is also compact since the range of is a closed subspace.
It follows that , and
there is a such that (because is
compact). Let be such that .
It follows that .

Remark 5.2 (Implementation of Step 2): Step 2 of the algo-
rithm specifies that the search direction satisfies

(19)

In this remark we describe how this can be achieved using the
primal-dual interior point algorithm of the previous section. We
begin by translating condition (19) into the notation of Lemma
4.2. For a fixed in problem (9), the optimal choices for and

are

where for any vector the vectors and are de-
fined componentwise by , and

. We define the corresponding optimal value function

The relationships between problem (7), (8), and problem (9),
show that there is a function , that does not depend on ,
such that

Using , inequality (19) becomes

where denotes the optimal value of the QP subproblem
(9). Adding

to both sides of the previous inequality we obtain

We observe that, from elementary duality theory,
for every point that is feasible for the dual problem

(15). We also observe that, if is primal feasible

Combining these two observations with the preceding in-
equality, we find that condition (19) is satisfied whenever

(20)

where is any point that is dual feasible and , are such
that is primal feasible. The left-hand side of (20) is

times the duality gap associated with the current primal-dual
feasible pair . This gap is driven to zero by the
interior point algorithm, while the right-hand side is driven to
the value . If is not a stationary point of
problem (5), then . In this case, inequality (20)
must be satisfied by the iterates of the interior point algorithm
after finitely many iterations (and hence condition (19) is also
satisfied).

Lemma 4.2 can be used to simplify condition (20). This
lemma states that if satisfies the affine
equations (16) and (12) with , and all strictly
positive, then

Moreover, if the interior point algorithm is initialized at a point
satisfying the affine equations (16) and (12), then by (14) all
subsequent iterates must satisfy these equations as well. In this
case,

(21)

for all interior point iterates, and the criteria (20) becomes

(22)

In our implementation, given an initial value for the homotopy
parameter , we initialize the interior point algorithm at the
point

We initialize and use (22) as the stopping criteria. This
initial point satisfies the affine equations (16) and (12). Thus,
(19) is satisfied at termination, and, by (21), the accuracy of the
subproblem solution automatically adjusts with the difference
of the objective values. That is, as increases to zero, the
accuracy required in the QP subproblem solution automatically
increases.

Theorem 5.1: Let and be as in (17) and (18), respec-
tively, and further assume that is such that is
uniformly continuous on the set . If

is a sequence generated by the Gauss–Newton Algorithm
above with initial point and , then one of the following
must occur:

(i) The algorithm terminates finitely at a point with
.

(ii) for every subsequence for which the set
is bounded.

(iii) The sequence diverges to .
Moreover, if is any cluster point of a subsequence
such that the subsequence is bounded, then .
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Proof: The first three assertions are a restatement of [9,
Theorem 2.4] in our context, where the sets in [9, Theorem
2.4] are given by . The requirement that is
Lipschitz continuous on the set is an im-
mediate consequence of the fact that is coercive, so this set is
compact. This completes the proof of (i), (ii), and (iii). We now
prove the final assertion of this theorem.

Suppose is a cluster point of a sequence for which
is bounded. We can assume that there is a subsequence
and a vector such that .

Fix any other point . By construction, we know that

Taking the limit over gives

But was an arbitrary point in and so .
A stronger convergence result is possible under stronger as-

sumptions on and .
Corollary 5.1: Let and be as in (17) and (18), respec-

tively, and recall that . Fix , de-
fine , suppose that

is bounded, and

(23)

If is a sequence generated by the Gauss–Newton algorithm
above with initial point and , then and are
bounded and either the algorithm terminates finitely at a point

with , or as . Moreover, every
cluster point of the sequence satisfies .

Remark 5.3: The condition (23) is guaranteed to hold if each
of the matrices is nonsingular for all

.
Proof: First note that is closed since is contin-

uous and is compact, therefore, is compact. Hence,
is also compact. Therefore, is uniformly con-

tinuous on which implies that the hypotheses of
Theorem 5.1 are satisfied, and so one of (i)-(iii) must hold. If (i)
holds we are done, so we will assume that the sequence is
infinite. Since , this sequence is bounded. We
now show that the sequence of search directions is also
bounded.

We claim that there exists such that
for all and . Indeed,

if this were not the case, then there would exist sequences
and such that and

. The set is
compact; hence, there exist a subsequence , vector

, and vector with , such that
and . It follows from the inequality

above that , and taking the limit
with respect to the subsequence we obtain .
Thus, is in the kernel of and . This contradicts

the assumption that the kernel of is the singleton
and thereby proves the claim.

Since is compact, there is a such that for
all and for ,

since by construction.
Hence, the sequence of search directions is bounded.
Hence Theorem 5.1 tells us that as .

The final statement of the corollary follows immediately from
the final statement of Theorem 5.1.

VI. METHOD COMPARISON USING SIMULATED DATA

We implemented the Iterated -Laplace Kalman Smoother
(ILS) in Algorithm 5.1. In this section, we compare its esti-
mates with the Iterated Gaussian Kalman Smoother (IGS) esti-
mates computed by [7] (without constraints), with the Gaussian
Kalman Filter (GKF) estimates computed by [36], and with the
Robust Kalman Filter (RKF) estimates computed by [41].

The simulated numerical experiments have four components:
the state sequence simulation, the measurement sequence sim-
ulation, the specification of the mathematical model in (3), and
the method for reporting the experimental results. In applica-
tions the observed phenomenon typically does not obey the as-
sumptions posited by its mathematical model [8]. That is, mod-
eling error is always present. In (3), the role of the model func-
tions and is to capture our knowledge and be-
liefs while the random vectors and attempt to capture our
uncertainty and ignorance. Both experiments described below
exhibit some modeling error. Of particular importance is the
modeling error present in the measurements which we refer to
as outlier data. The goal is to show that the proposed estimation
procedure is robust with respect to this error. The four compo-
nents of our numerical experiments are detailed below.

1) State Sequence Simulation: We call the simulated state se-
quence “ground truth.” The first experiment is linear and
its ground truth is obtained by sampling from a smooth nonlinear
trajectory in the plane. Although the resulting state sequence is
deterministic, it does not satisfy the transition equation

which models, up to first order, our belief that the tra-
jectory is smooth. The second experiment is nonlinear and the
ground truth is obtained by specifying and generating the se-
quence from the transition equation ,
where is independent and identically distributed Gaussian.
Thus, the second experiment has a stochastic state sequence and
this sequence satisfies the model assumptions in (3).

2) Measurement Sequence Simulation: Since we study ro-
bustness with respect to the measurement sequence, the mea-
surements should not satisfy the assumptions in (3). That is, the
smoother has an imperfect model for the sequence . We
simulate from a mixture of two normal distributions: the nom-
inal distribution and the outlier distribution. We vary the propor-
tions of the mixture as well as the variance of the outliers.

3) Mathematical Model Specification: We specify the func-
tions , , and the variance matrices , in
(3). This data is known to the smoother.
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TABLE I
MEDIAN MSE AND 95% CONFIDENCE INTERVALS FOR THE

DIFFERENT ESTIMATION METHODS

TABLE II
MEDIAN MSE OVER 1000 RUNS AND CONFIDENCE INTERVALS

CONTAINING 95% OF MSE RESULTS

4) Reporting Results: The experimental results are con-
densed and reported as the median of the mean square errors
(MSE) with respect to 1000 replications of each experiment. We
also provide 95% confidence intervals for the MSE, i.e., intervals
that contain 95% of the MSE results. The results in Table I are for
the linear problem and compare the quality of estimates between
filters and smoothers as well as between robust and least squares
fitting. The results in Table II are for a nonlinear problem and
hence only the iterated smoothers are compared.

A. Unknown Linear Deterministic Process

For this simulation, the “ground truth” state vector satisfies
the following deterministic linear differential equation:

i.e.,

For , let and . We simulate
a lack of knowledge of the ground truth using the following
stochastic process model for the mean of given

In other words, the first component is modeled as a random walk
and the second as the integral of the first plus random noise. The
process model for the variance of given is

This model is discussed in more detail in [6, Sec. 8].
Two full periods of were generated with and

; i.e., discrete time points equally spaced over the
interval . For the measurements were
simulated by . The measurement noise

Fig. 2. Simulation: measurements (+), outliers (o) (absolute residuals more
than three standard deviations), true function (thick line), � -Laplace estimate
(thin line), Gaussian estimate (dashed line), Gaussian outlier removal estimate
(dotted line).

was generated as a mixture of two normals with denoting the
fraction of outlier contamination; i.e.,

(24)

This was done for and . The
model for the mean of given is ,
where denotes the second component of . The model for
the variance of given is . This simulates a lack
of knowledge of the distribution for the outliers; i.e., .
Note that we are recovering estimates for the smooth function

and its derivative using noisy measurements
(with outliers) of the function values.

We simulated 1000 realizations of the sequence keeping
the ground truth fixed, and for each realization, and each esti-
mation method, we computed the corresponding state sequence
estimate . The MSE corresponding to such an estimate is
defined by

(25)

where . In Table I, the Gaussian Kalman Filter
is denoted by (GKF), the Robust Kalman Filter (RKF), the It-
erated Gaussian Smoother (IGS), and the Iterated -Laplace
Smoother (ILS). (The RKF used its default efficiency setting 0.9
[41].) For each of these estimation techniques, each value of ,
and each value of , the corresponding table entry is the median
MSE followed by the centralized 95% confidence interval for
the MSE. For this problem, the model functions and

are linear so the iterated smoothers IGS and ILS only
require one iteration to compute an estimate sequence .

Note the -Laplace smoother performs nearly as well as the
Gaussian smoother at the nominal conditions ( ). The

-Laplace smoother performs better and more consistently in
cases with data contamination ( and ). We also
see that the robust filter performs better than the standard filter
in cases with data contamination. It is also apparent that the
smoothers perform better than the filters.
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Fig. 3. The left two panels show estimation of � (top) and � (bottom) with errors from the nominal model. The stochastic realization is represented by a
thick black line; the Gaussian smoother is the blue dashed line, and the � -smoother is the magenta dash-dotted line. Right two panels show the same stochastic
realization but with measurement errors now from ��� �� � ���� ����. Outliers appear on the top and bottom boundary in the top right panel.

Outlier detection and removal followed by refitting is a simple
approach torobustestimationandcanbeapplied to thesmoothing
problem. An inherent weakness of this approach is that the out-
lier detection is done using an initial fit which assumes outliers
are not present. This can lead to good data being classified as out-
liers and result in over fitting the remaining data. An example of
this is illustrated in Fig. 2 which plots the estimation results for
a realization of where and . Outlier re-
moval also makes critical review of the model more difficult. A
robust smoothing method with a consistent model, such as the

-Laplace smoother, does not suffer from these difficulties.

B. Stochastic Nonlinear Process

The Van der Pol oscillator is a popular nonlinear process for
comparing Kalman filters; e.g., [21] and [28, Sec. 4.1]. The cor-
responding nonlinear differential equation is

and

Given the Euler approximation for
is

For this simulation, the “ground truth” is obtained from a sto-
chastic Euler approximation of the Van der Pol oscillator. To
be specific, with , , and , the
ground truth state vector at time is given by

and for :

(26)

where is a realization of independent Gaussian noise with
variance 0.01. Our model for state transitions (3) uses

for , and so is identical to the model used to
simulate the ground truth . Thus, we have precise knowl-
edge of the process that generated the ground truth . The
initial state is imprecisely specified by setting

with corresponding variance .
For the measurements were simulated by

. The measurement noise was generated as
follows:

(27)

This was done for and
. The model for the mean of given

is . As in the previous simulation,
we simulated a lack of knowledge of the distribution for the
outliers; i.e., . In (3), the model for the variance of
given is .

We simulated 1000 realizations of the ground truth state
sequence and the corresponding measurement sequence

. For each realization, we computed the corresponding state
sequence estimate using both the IGS and IKS procedures.
The MSE corresponding to such an estimate is defined by (25),
where is given by (26). For this problem, the model func-
tions are nonlinear so the GKF and RKF were not
included. The results of the simulation appear in Table II. As the
proportion and variance of the outliers increase, the Gaussian
smoother degrades, but the -Laplace smoother is not affected.

Fig. 3 provides a visual illustration of one realization
and its corresponding estimates . The left two panels
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Fig. 4. Track: independent GPS verification (thick line and +), iterated
Gaussian smoother estimate (thin line).

demonstrate that, when no outliers are present, both the IGS
and ILS generate accurate estimates. Note that we only observe
the first component of the state and that the variance of the
observation is relatively large (see top two panels). The right
two panels show what can go wrong when outliers are present.
The Van der Pol oscillator can have sharp peaks as a result
of the nonlinearity in its process model, and outliers in the
measurements can “trick” the IGS into these modes when
they are not really present. In contrast, the Iterated -Laplace
Smoother avoids this problem.

VII. UNDERWATER TRACKING APPLICATION

As a test of the -Laplace smoother, we compared it to an
outlier removal method that was used for an underwater tracking
experiment. In this experiment, an object was tracked using
ocean floor transponders. The object was hung on a steel cable
approximately 200 meters below a ship. The ship was pitching
and rolling on the surface of the ocean and the pilot of the ship
was attempting to “hold station”; i.e., stay at a specific latitude
and longitude. A pressure sensor was mounted on the object
and it recorded pressure measurements at an approximate rate of
once per second. Four acoustic transponders were mounted on
the bottom of the ocean and their locations were determined to
sub-meter accuracy prior to this experiment. The acoustic travel
time between these bottom mounted transponders and the ob-
ject at the end of the cable was measured at approximately 16-s
intervals. The acoustic travel times, and the pressure measure-
ments, were used to estimate the location of the object at the end
of the cable.

In addition to the pressure and transponder data, a GPS an-
tenna was located near the support point for the cable and the
corresponding latitude, longitude, and height were recorded once
per second. The GPS used real time differential corrections to
obtain sub-meter accuracy in its positioning. Therefore, the GPS
data can be used as an independent verification of the tracking re-
sults. In Figs. 4 and 5, the GPS data is denoted using the acronym
Cnav which is the company that makes the GPS device.

East, north, and depth coordinates are in meters and relative to
an origin located at 21.750838 degrees of latitude, 126.148058
degrees of longitude, and mean sea level. We use to denote

Fig. 5. Track: independent GPS verification (thick line and +), top: Gaussian
smoother with outlier removal (thin line), bottom: � -Laplace smoother (thin
line).

the location of the bottom mounted transponders in (east, north,
depth) which were given by

The speed of sound in the ocean was modeled as constant in
the horizontal and varying with depth. The speed as a function
of depth was measured using a CTD which measures
water characteristics such as salinity, temperature, pressure,
and density. The average sound speed used for the th bottom
mounted transponder was ,
where is the third component of . The resulting sound
speed approximations were 1509.2, 1509.2, 1508.9, and 1508.1
meters per second. A delay of .003 seconds was subtracted
from the round trip travel time measurements, then they were
divided by two and multiplied by the sound speed for the
corresponding transponder to get ranges. A range correction
was added to this straight line approximation so that the travel
time matched acoustic ray tracing at a nominal position. These
range corrections were approximately , ,

, and , meters.
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Pressure measurements in absolute bars were converted to
depth in meters (below the surface of the ocean) by the formula
depth pressure .

We use to denote the total number of time points at which
we have tracking data. For , the state vector at
time is defined by where

is the ( east, north, depth ) location of the object
(in meters from the origin), and is the time deriva-
tive of this location.

The measurement vector at time is denoted by . The first
four components of are the range measurements to the corre-
sponding bottom mounted transponders and the last component
is the depth corresponding to the pressure measurement. For

, the model for the mean of the corresponding range
measurements was . Note
that the functions are nonlinear due to the presence of the
norm. These measurements were modeled as independent and
having a standard deviation of 3 meters. The model for the mean
of the pressure measurement was . These mea-
surements were modeled as having a standard deviation of 0.05
meters (the pressure sensor was much more accurate than the
range measurements).

We use to denote . The model for the mean of
given ; i.e., is equal to

The east, north, and depth components of given are
modeled as normally distributed with mean zero and standard
deviation . The derivative of east, north, and depth com-
ponents of given are modeled as normally distributed
with mean zero and standard deviation .

The iterated Kalman smoother implemented in the
ckbs-07–11-07 package uses a Gaussian model for the mea-
surement errors. This Gaussian smoother allows for removing
measurements by setting the corresponding inverse variance to
zero. It was used to estimate the state sequence , and the
corresponding residuals for each component of
were computed. These residuals were used to compute a sample
standard deviation for each of the measurement components.
Measurement components that corresponded to more than
three times the sample standard deviation were removed and
the estimate for the state sequence was recalculated with the
subsampled data set.

To illustrate the need for outlier removal, the Gaussian
smoother results without outlier removal are shown in Fig. 4.
There are three large peaks (two in the east component and one
in the north component of the state) that appear as a result of
large measurement noise.

The two fits are shown side by side in Fig. 5. The darker
curves appearing below the track are independent verifications
using the GPS tracking near the top of the cable. The pressure
sensor was approximately 198 meters below the surface and
the GPS antenna was approximately 8 meters above the surface
during this comparison. A depth of 198 meters was added to the
depth location of the GPS antenna so that the depth comparison
can use the same axis for both the GPS data and the tracking
results (and the difference should be about 8 meters). The time

Fig. 6. Residuals top: Gaussian smoother with outlier removal, bottom:
� -Laplace smoother. In these plots, transponders are labeled by their frequen-
cies in kHz; � � �����, � � �����, � � �����, and � � �����. All
residuals are in meters.

scale for the depth plots is much finer (a total of a hundred sec-
onds instead of one quarter hour) and demonstrates the accuracy
of the GPS tracking as validated by the pressure sensor. The

-Laplace smoother was able to use the whole data sequence,
despite large outliers in the data. The fits look very similar, and
it is clear that the -Laplace smoother is not affected by large
outliers in the data.

It is interesting to compare the residuals. These are presented
side by side in Fig. 6. Outliers are shown as “o” characters in this
figure and outliers with absolute value larger than three standard
deviations are plotted at the vertical axis limits. It is important
to note that the Gaussian smoother with outlier removal detects
outliers after the first fit that are not outliers after the second fit.
This results in “over-smoothing” of the outlier removal track
and more detail in the -Laplace track in Fig. 5.

The -Laplace smoother pushes more of the residuals
to zero, which we expect. In particular, the residuals corre-
sponding to the depth measurements (the most frequent and
accurate measure) are often zero for the -Laplace smoother.
It is as if the -Laplace smoother detects which pressure
measurements are most accurate and treats those measurements
as constraints during the fitting.
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VIII. CONCLUSION

This paper presents an efficient method for solving the MAP
estimation problem for the Kalman smoother with -Laplace
measurement noise. The -Laplace smoother was demon-
strated to have lower mean squared error than the iterated
Kalman smoother across several simulated outlier schemes
for both linear and nonlinear process models. In addition,
the -Laplace smoother did not have the “over-smoothing”
problem that occurred when a common outlier removal scheme
was applied to real-world underwater tracking data. The
techniques presented here can be extended to other robust
measurement noise distributions and to robustness with respect
to the noise in the dynamics. Conceptually, a solution to the
problem treated in this paper that takes into account the shape
of the posterior of the states could be obtained using particle
filters and Monte Carlo smoothing approaches, see, e.g., [2],
[12], [14], and [17]. These techniques are also able to return
confidence intervals around the estimates. However, already in
the Gaussian case they require a delicate tuning of the proposal
densities necessary to obtain the posterior in sampled form,
see, e.g., [22], a problem which can be further complicated
by the presence of Laplace priors (see the discussion in [43,
subsec. 8.3]). It remains an open question for future research as
to whether the methods proposed in this paper can also be used
to provide efficient proposal densities for robust Markov chain
Monte Carlo smoothing.
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