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Abstract: Reconstruction of a function from noisy data is often formulated as a regularized optimization
problem whose solution closely matches an observed data set and also has a small reproducing kernel
Hilbert space norm. The loss functions that measure agreement between the data and the function are
often smooth (e.g. the least squares penalty), but non-smooth loss functions are of interest in many
applications. Using the least squares penalty, large machine learning problems with kernels amenable to a
stochastic state space representation (which we call state space kernel machines) have been solved using
a Kalman smoothing approach. In this paper we extend this approach for state space kernel machines
to the Vapnik penalty, a particularly important non-smooth penalty that is robust to outlier noise in the
measurements and induces a sparse representation of the reconstructed function. We exploit the structure
of such models using interior point methods that efficiently solve the functional recovery problem with
the Vapnik penalty, and demonstrate the effectiveness of the method on a numerical experiment. The
computational effort of our approach scales linearly with the number of data points.
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1. INTRODUCTION

Minimizing a regularization functional in a reproducing kernel
Hilbert space (RKHS) H associated with a symmetric and
positive-definite kernel K has become a popular approach to
reconstruct a scalar function from noisy data, e.g. see (Aron-
szajn, 1950; Schölkopf and Smola, 2001; Wahba, 1990; Girosi
et al., 1995). In particular, regularization in H estimates the
unknown function as

f̃ (·) = argmin
f (·)

N

∑
i=1

ρ [zi− f (ti)]+ γ‖ f (·)‖2
H , (1)

where γ ∈ R+ is the regularization parameter, ti is the location
where the measurement zi is collected, ρ(·) is the so called
loss function and ‖ · ‖H is the RKHS norm induced by the
reproducing kernel K(·, ·), see (Aronszajn, 1950). The solution
of (1) can also be interpreted in terms of Bayesian estimation.
Under suitable assumptions on the noise model, it represents
the maximum a posteriori estimate of a zero-mean Gaussian
random field of covariance proportional to K(·, ·) (Hengland,
2007). This connection is described in more detail in Section 2.
One of the important features of the above approach is that,
even if the dimension of H is infinite, the solution is a linear
combination of a finite number of kernel functions centered at
the points {ti}. In fact, under mild assumptions on the loss,
according to the representer theorem (Wahba, 1998; Schölkopf

? Sponsor and financial support acknowledgment goes here. Paper titles should
be written in uppercase and lowercase letters, not all uppercase.

et al., 2001) solutions to (1) can be expressed as kernel sections
centered on the sampling locations, i.e.

f̃ (·) =
N

∑
i=1

c̃iK(ti, ·), (2)

where c̃i are suitable scalars. For instance, (2) holds when ρ(·)
is quadratic, defining a regularization network (Poggio and
Girosi, 1990), or is the Vapnik’s ε-insensitive loss, leading to
support vector regression (Vapnik, 1998; Evgeniou et al., 2000;
Gunter and Zhu, 2006). In particular, the Vapnik penalty has
recently been object of considerable attention, due to its sparsity
inducing properties (many c̃i in (2) turn out to be zero) and its
robustness with respect to outliers relative to the quadratic loss.
In many scientific fields such as telecommunications, biology
and biomedicine, one is faced with the problem of reconstruct-
ing the (possibly multi-dimensional) input of a dynamic linear
system from noisy output data (Bertero, 1989; De Vito et al.,
2005). In addition, the system model is often formulated in
state space (Pillonetto and Saccomani, 2006). Without loss of
generality, in this paper we focus on single input single output
systems, restricting our attention to monodimensional regres-
sion problems. We assume that the kernel K(·, ·) is given in
state space form, see e.g. Section 4 in (De Nicolao and Ferrari
Trecate, 2003), and for such problems we use kernel-based
regularization to reconstruct f (·) using (1). More precisely, we
model f (·) as a realization of a nonstationary scalar Gaussian
process (sampled at times {ti}) defined as follows:
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{
ẋ(t) = F(t)x(t)+G(t)dw(t)
f (t) = H(t)x(t), (3)

where t is the time, x(t) ∈ Rn is the state, w(t) ∈ R is a Wiener
process, and for any t the matrices F(t) ∈ Rn×n,G(t) ∈ Rn×1

and H(t) ∈ R1×n are chosen so that the covariance function
of f (·) is K(·, ·). In particular, this means that for any discrete
sampling the random vector f = [ f (t1), . . . , f (tN)]T is Gaussian
with a positive definite autocovariance matrix K ∈RN×N , where
the (i, j) entry of K is given by K(ti, t j). Note that we use f for
the vector corresponding to a discrete sampling of the function
f (·).
We also introduce the covariance of the state x(·) in the state
space model (3). In particular, for the discrete sampling of states

x = [x(t1)T, . . . ,x(tN)T]T

we use Σ to denote the autocovariance matrix of the random
vector x. Then Σ−1 is block tridiagonal, and we exploit this
structure in Section 4.
Consider the following notable example: when f (·) in (3) is
the integral of w(·), the kernel related to the cubic smoothing
splines is obtained, see Remark 2 in (De Nicolao and Ferrari
Trecate, 2003). For a more involved example, when the repro-
ducing kernel K(·, ·) is radial (in our context, depends only on
(|t1− t2|)), the state-space representation model (3) is derived
in (De Nicolao and Ferrari Trecate, 2001). However, the state
space model above is much more general, and allows non-
stationary kernel functions. Notice also that, in view of Runge’s
theorem (Rudin, 1987), the state space representation allows
us to approximate a very wide class of kernels with arbitrary
precision. For instance, the popular Gaussian kernel can be ap-
proximated by the so-called modified Bessel kernels (Williams
and Vivarelli, 1998), which are representable by model (3).
When the loss function ρ(·) in the model (1) is quadratic, and
the model can be represented using (3), then the solution (2) can
be obtained using Kalman smoothing with a number of opera-
tions that scales linearly with the size of the training set, see (De
Nicolao and Ferrari Trecate, 2001). Computational efficiency is
crucial in these problems since the regularization parameter γ

is iteratively adjusted to achieve an estimate for f that satisfies
the chosen fitness criterion (e.g. cross validation or maximum
likelihood). We extend these results to a wider class of loss
functions and focus in particular on the Vapnik penalty. A new
class of learning machines is defined using the state space
models (3) which we call state space kernel machines. The
paper proceeds as follows. In Section 2 we extend the connec-
tion between kernel-based regularization and continuous-time
Kalman smoothing to general losses ρ(·), whereas currently
the connection is known in the literature only for quadratic
loss functions, see e.g. (Kohn et al., 1993). In Section 3 we
take a detailed look at the Vapnik penalty, reformulating it in
a way that enables the application of interior point methods. In
Section 4 we formulate the optimization problem for state space
kernel machines and demonstrate how to solve it with interior
point methods. We also show that the work required scales
linearly with the number of sampled points. In Section 5 we
present a simulated example of functional estimation where the
model (3) is a spline model. Results are obtained and compared
using both a classical Kalman smoother relying upon the L2
loss function and the proposed smoother which incorporates the
Vapnik penalty. The paper ends with a few concluding remarks.

2. CONNECTION WITH BAYESIAN REGULARIZATION
AND KALMAN SMOOTHING

In this section, we describe how to use Kalman smoothing for
general loss functions to solve the functional recovery problem
(1). In our notation, vectors are column vectors. If a and b are
random vectors, p(a) is the probability density for a, E[a] is the
expected value of a,

V(a,b) = E
[
(a−E[a])(b−E[b])T]

is the covariance of a with b, V(a) = V(a,a) is the variance of
a, and maxa p(a|b) is the maximum (with respect to a) of the
conditional probability density for a given b. We begin with two
lemmas which are instrumental in proving Proposition 2.4, the
main result of this section. The proof of the first lemma relies
upon well known properties of joint Gaussian vectors, see e.g.
(Anderson and Moore, 1979), and is therefore omitted.
Lemma 2.1. Suppose that u and y are jointly Gaussian random
vectors. It follows that the maximum of p(y|u) with respect to
y does not depend on the value of u and is given by

max
y

p(y|u)=exp
(
−1

2
det
{
2π
[
V(y)−V(y,u)V(u)−1V(u,y)

]})
.

Lemma 2.2. Suppose that u and y are jointly Gaussian random
vectors, and that z is a random vector for which p(z|u,y) =
p(z|u). Given a realization of z, define corresponding estimates
for u and y by

(û, ŷ) = argmax
u,y

p(z,u,y),

where we assume that the solution (û, ŷ) is unique. It follows
that

û = argmax
u

p(z|u)p(u) and

ŷ = argmax
y

p(y|û) = E(y|û) .

By p(z,u,y) we mean the joint density for all three random
vectors, and by p(y|û) we mean the density for y given that
u = û.

Proof: We have

p(z,u,y) = p(z|u,y) p(u,y)

= p(z|u,y) p(y|u) p(u)

= p(z|u) p(u) p(y|u) .

It follows from the definition of (û, ŷ), and the last equation
above, that

ŷ = argmax
y

p(y|û) = argmax
y

p(z, û,y) , (4)

which proves the second assertion of this lemma.
Define

ū = argmax
u

p(z|u)p(u) , ȳ = argmax
y

p(y|ū) . (5)

Using (4), Lemma 2.1, and (5) we have

p(z, û, ŷ) = p(z|û) p(û) p(ŷ|û)

= p(z|û) p(û) p(ȳ|ū)

p(z, û, ŷ)≤ p(z|ū) p(ū) p(ȳ|ū)

≤ p(z, ū, ȳ)
The reverse inequality follows from the definition of (û, ŷ).
Thus equality holds and it follows from the uniqueness assump-
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tion that ū = û. This proves the first assertion of the lemma and
thereby completes the proof. 2

Remark 2.3. For some applications of Lemma 2.2, there is a
deterministic matrix Y such that y = Yu. In this case p(y|u) is
a delta function concentrated at u and ŷ = Y û. For other ap-
plications, there is a non-zero deterministic matrix U such that
u = Uy. In this case, the matrix V(y)−V(y,u)V(u)−1V(u,y) in
Lemma 2.1 is singular and

ŷ = argmax
y

p(y) subject to û = Uy .

Fix a sequence of time points {t1, . . . , tN} and define

xi = x(ti), Hi = H(ti), fi = f (ti) = Hixi, xi+1
i =

(
xi

xi+1

)
To simplify the notation, we set γ = 1 in (1). For any function
v : R→ Rn, we use the notation v(·) for the function and

v = [v(t1)T,v(t2)T, · · · ,v(tN)T]T

for the sample vector v ∈ RnN . In addition, we use the notation
H(·) for the measurement function and H ∈ RN×Nn for the
matrix

H =


H1 0 · · · 0

0 H2
...

...
. . .

0 · · · HN


The following proposition states the relationship between
Kalman smoothing and regularization in RKHS.
Proposition 2.4. Let f (·) be a zero-mean Gaussian process
with prior distribution given by (3) 1 . Let ρ : R→ R be a loss
function such that

p(z| f ) ∝

N

∏
i=1

exp
[
−1

2
ρ(zi− fi)

]
. (6)

Let x̂ be the maximum a posteriori (MAP) estimate of x condi-
tional on z, i.e.

x̂ = argmin
x

N

∑
i=1

ρ(zi−Hixi)+
1
2

xT
Σ
−1x, (7)

where Σ is the covariance of the state vector x and Σ−1 is block
tridiagonal. Then, the solution of (1) is given for any τ ∈ R by

f̃ (τ) =


Hi x̂i , τ = ti
H(τ) V

[
x(τ),xi+1

i
]

V
(
xi+1

i
)−1

x̂i+1
i , ti < τ < ti+1

H(τ) V [x(τ),x1] V(x1)
−1 x̂1 , τ < t1

H(τ) V [x(τ),xN ] V(xN)−1 x̂N , tN > τ ,

(8)

where i is understood to be in {1, . . . ,N} where it appears in the
expression above.

Proof: The random vectors f ∈ RN and x ∈ RnN are jointly
Gaussian, because f = Hx. In addition p(z| f ,x) = p(z| f ).
Hence we can apply Lemma 2.2 with u = f and y = x (see
Remark 2.3). This lemma defines f̂ and x̂ by

[ f̂ , x̂] = argmax
f ,x

p(z, f ,x)

Using f = Hx, we can can remove f from the optimization
problem above and get

1 This corresponds to assuming, just to simplify the exposition, that H(0)x(0)
is a zero-mean normal random variable.

x̂ = argmax
x

p(z,x) = argmax
x

p(z|x)p(x)

f̂ = Hx̂

This shows that x̂ is the MAP estimator for x. Hence we can
complete the proof by showing that (8) is true.

We begin by showing the f̂ = f̃ . According to Lemma 2.2 we
also have

f̂ = argmax
f

p(z| f )p( f ).

The function K(·, ·) is the covariance for f (·) and K ∈RN×N the
autocovariance of the sample vector f ∈ RN . Taking twice the
negative log of the right hand side in the equation above gives

f̂ = argmin
f

N

∑
i=1

ρ(zi− fi)+ f TK−1 f .

Define c = K−1 f . It follows that f̂ = Kĉ where ĉ solves the
problem

minimize
N

∑
i=1

ρ

[
zi−

N

∑
j=1

K(ti, t j)c j

]
+ cTKc.

Note that cTKc = ‖ f (·)‖2
H where

f (·) =
N

∑
j=1

K(·, t j)c j.

It follows from the representer theorem (2), and γ = 1, that c̃ = ĉ
and hence f̃ = f̂ . Thus we have proved the following assertion:

Assertion: Equation (8) is true for τ ∈ {t1, . . . , tN}.
Consider the case where τ /∈ {t1, . . . , tN}. The prior for f (τ)∈R
and x ∈ RnN is jointly Gaussian. In addition we have

p[z|x, f (τ)] = p(z|x) and [x̂, f̂ (τ)] = argmax
x, f (τ)

p[z,x, f (τ)].

Thus we can apply Lemma 2.2 with u = x and y = f (τ) to
conclude that

f̂ (τ) = argmax
f (τ)

p[ f (τ)|x̂] = E[ f (τ)|x̂] = H(τ) E[x(τ)|x̂].

In addition, we can apply Lemma 2.2 with u = f and y = f (τ)
to conclude that

f̂ (τ) = argmax
f (τ)

p[ f (τ)| f̂ ] = argmax
f (τ)

p[ f (τ)| f̃ ] = f̃ (τ).

Note that the definition for f̂ (τ) in this application of Lemma 2.2
has the same value as when u = x and y = f (τ). Also note that
f̂ = f̃ was shown by the assertion above. Finally note that this
sequence of equalities shows the following assertion:

Assertion: f̃ (τ) = f̂ (τ) for all τ .

We now restrict our attention to the case where there is an
i ∈ {1, . . . ,N − 1} such that ti < τ < ti+1. Using the Markov
property, we have

E[x(τ)|x̂] = E[x(τ)|x̂i+1
i ] = V[x(τ),xi+1

i ]V
(
xi+1

i
)−1

x̂i+1
i ,

f̃ (τ) = f̂ (τ) = H(τ) V[x(τ),xi+1
i ]V

(
xi+1

i
)−1

x̂i+1
i .

This proves the assertion in equation (8) for the case where
t1 ≤ τ ≤ tN . The other two cases τ < t1 and tN < τ can be
obtained following the same reasoning as in the paragraph
above. This completes the proof. 2
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−ε ε

y

x

V (x) = −x− ε; x < −ε
V (x) = 0; −ε ≤ x ≤ ε

V (x) = x− ε; ε ≤ x

Fig. 1. Vapnik Penalty

The above result shows that given x̂, the solution to (1) can be
computed using equation (8). In other words, the estimates of
the state at sampling locations are sufficient to reconstruct the
function f̂ (·) over its entire domain. Moreover, the optimiza-
tion problem (7) exploits the block tridiagonal structure of Σ−1

In the case where ρ(·) is quadratic, (De Nicolao and Ferrari
Trecate, 2001, Theorem 1) provides a procedure for obtaining
the weight vector ĉ at the same time as obtaining the Kalman
smoother estimate f̂ . That procedure has O(Nn3) computa-
tional complexity. In the sections below we present an interior
point algorithm that obtains the same complexity when ρ(·) is
the Vapnik loss.

3. KALMAN SMOOTHING WITH THE VAPNIK
PENALTY

Here and below, we assume − logp(z|x) in (6) is the Vapnik
loss function. The Vapnik loss function with parameter ε ,
also known as the ε-insensitive loss function, is displayed in
Figure 1 and given by

ρ(y) =

{ y− ε if y≥ ε

0 if y ∈ [−ε,+ε]
y+ ε if y≤−ε

= sup
a∈[0,1]

a(y− ε) + sup
b∈[0,1]

b(−y− ε).

Applying Proposition 2.4 to the Vapnik case, the MAP objective
as a function of x ∈ RnN is

1
2

xT
Σ
−1x+

N

∑
i=1

[
sup

u+(i)∈[0,1]
u+

i (zi−Hixi− ε)

+ sup
u−(i)∈[0,1]

u−i (−zi +Hixi− ε)
]
,

(9)

where u+ ∈RN , u− ∈RN , and u+(i) = u+
i , u−(i) = u−i are used

to avoid two levels of subscripting. Note that this objective is
strictly convex, and so has a unique global minimum.
Lemma 3.1. Suppose that x ∈RnN and there are vectors u+, u−
s+, s− p+, p− q+, q− are all in RN

+, such that the following
conditions hold for i = 1, . . . ,N:

Σ
−1x−HT(u+−u−) = 0 , (10)

s+
i p+

i = 0, u+
i q+

i = 0, s+
i +u+

i = 1, p+
i −q+

i = zi−Hixi− ε,
(11)

s−i p−i = 0, u−i q−i = 0, s−i +u−i = 1, p−i −q−i =−zi +Hixi−ε.
(12)

It follows that this choice of x above minimizes (9) over RnN .

Proof: For a convex set A⊂ R, and a ∈ A, we use N (A,a) to
denote the normal cone to A at the point a; e.g.,

N ([0,1],a) =

{ (−∞,0] if a = 0
0 if a ∈ (0,1)

[0,+∞) if a = 1
.

See (Rockafellar, 1970) for more details on normal cones
in general. The optimality conditions for minimizing (9) are
condition (10) and

zi−Hixi− ε ∈N
(
[0,1],u+

i
)

(i = 1, · · ·N) (13)

−zi +Hixi− ε ∈N
(
[0,1],u−i

)
(i = 1, · · ·N). (14)

See (Rockafellar and Wets, 1998) for a discussion of these
optimality conditions. We will show that condition (11) implies
condition (13). The fact that condition (12) implies condition
(14) can be demonstrated in a similar manner and hence this
will complete the proof.

The optimality condition in (13) is equivalent to the following
three conditions for i = 1, . . . ,N:

zi−Hixi− ε < 0⇒ u+
i = 0 , (15)

zi−Hixi− ε = 0⇒ u+
i ∈ [0,1] , (16)

zi−Hixi− ε > 0⇒ u+
i = 1 . (17)

Hence it will suffice to show that the conditions (11) imply the
three conditions above. We divide this demonstration into the
three cases corresponding to the three conditions above:

(1) Suppose that zi−Hixi− ε < 0: It follows from (11) that
q+

i > 0 and u+
i = 0. Hence (15) holds.

(2) Suppose that zi−Hixi− ε = 0: It follows from (11) that
u+

i ∈ [0,1]. Hence (16) holds.
(3) Suppose that zi−Hixi− ε > 0: It follows from (11) that

p+
i > 0, s+

i = 0, and u+
i = 0. Hence (17) holds.

This completes the proof of this lemma. 2

We minimize (9) using an interior point method (see Kojima
et al. (1991); Nemirovskii and Nesterov (1994)). The main idea
is to relax the complementarity conditions in (11) and (12)
to obtain (18) below, and solve this system using a damped
Newton’s method. The relaxation parameter µ is driven to 0,
yielding the unique solution to (9). All of the implementation
details are given below.

Define 1N ∈ RN to be the vector with all of its components
equal to one. Given a v+ ∈ RN

+ ( v− ∈ RN
+ ) define V+ ∈ RN×N

+
( V− ∈ RN×N

+ ) to be the diagonal matrix with with diagonal
v+ ∈ RN

+ ( v− ∈ RN
+ ). This is correspondence between lower

case and upper case letters applies only to vectors with the
superscript plus or minus. Fix a relaxation parameter µ and
define Fµ : R8N+nN → R8N+nN by

Fµ



p+

q+

u+

s+

p−
q−
u−
s−
x


=



p+−q+− z+Hx+ ε1N
Q+U+1N−µ1N

u+ + s+−1N
P+S+1N−µ1N

p−−q−+ z−Hx+ ε1N
Q−U−1N−µ1N

u−+ s−−1N
P−S−1N−µ1N

Σ
−1x−HT(u+−u−)


:=



r1
r2
r3
r4
r5
r6
r7
r8
r9


. (18)

The last line in the definition of Fµ is the residual equation (10).
Expressions r2,r4,r6 and r8 in the definition of Fµ are µ-relaxed
versions of the residuals in the first two equations of (11) and
(12), while r1,r3,r5, and r7 are the residuals in the last two
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equations of (11) and (12). Thus if u+, u− s+, s− p+, p− q+,
q− are all in RN

+, and

F0(p+,q+,u+,s+, p−,q−,u−,s−,x) = 0,

then x is the unique minimizer of (9). Solutions to the equation
Fµ = 0 in (18) can be obtained via a damped Newton’s method
by solving

I −I 0 0 0 0 0 0 H
0 U+ Q+ 0 0 0 0 0 0
0 0 I I 0 0 0 0 0

S+ 0 0 P+ 0 0 0 0 0
0 0 0 0 I −I 0 0 −H
0 0 0 0 0 U− Q− 0 0
0 0 0 0 0 0 I I 0
0 0 0 0 S− 0 0 P− 0
0 0 −HT 0 0 0 HT 0 Σ

−1





∆p+

∆q+

∆u+

∆s+

∆p−
∆q−
∆u−
∆s−
∆x


=−



r1
r2
r3
r4
r5
r6
r7
r8
r9


,

(19)
where the matrix on the left hand side of (19) is F(1)

µ .

Lemma 3.2. We are given values for the variables p+, q+, u+,
s+, p−, q−, u−, s−, all in RN

+, x ∈ RnN , and the parameters
µ ∈ R+, ε ∈ R+, z ∈ RN , H ∈ RN×nN , and Σ−1 ∈ RnN×nN .

The algorithm (20) given below computes the values ∆p+, ∆q+,
∆u+, ∆s+, ∆p−, ∆q−, ∆u−, ∆s−, all in RN and ∆x ∈ RnN that
solve equation (19). Note {ri}, i = 1, . . . ,9, are defined in (18).

T+ = S−1
+ P+ +U−1

+ Q+
T− = S−1

− P−+U−1
− Q−

r̂4 = S−1
+ r4− r1−U−1

+ r2 +U−1
+ Q+r3

r̂8 = S−1
− r8− r5−U−1

− (r6−Q−r7)
r̂9 = r9 +HT(r3−T−1

+ r̂4− r7 +T−1
− r̂8)

∆x = [Σ−1 +HT(T−1
+ +T−1

− )H]−1r̂9
∆s− = T−1

− (r̂8−H∆x)
∆u− = r7−∆s−

∆q− = U−1
− (r6−Q−∆u−)

∆p− = r5 +∆q−+H∆x
∆s+ = T−1

+ (r̂4 +H∆x)
∆u+ = r3−∆s+

∆q+ = U−1
+ (r2−Q+∆u+)

∆p+ = r1 +∆q+ +H∆x .

(20)

Proof: We now provide row operations necessary to reduce the
matrix F(1)

µ to block upper triangular form. In addition, we track
the changes to the right hand side in (19). Note that only rows 4,
8, and 9 of F(1)

µ need to be modified to implement the reduction.
To save space, after a series of row operations, we present the
final row and corresponding right hand side. We use the symbol
← to indicate assignment:

row4← row4−S+row1

row4← row4−S+U−1
+ row2

row4← row4 +S+U−1
+ Q+row3

row4← S−1
+ row4.

The final result for row4 and the corresponding right hand side,
which we label r̂4, are given by

row4 = [0 0 0 T+ 0 0 0 0 −H]

r̂4 = S−1
+ r4− r1−U−1

+ r2 +U−1
+ Q+r3,

where T+ ∈ RN×N is defined by T+ = S−1
+ P+ +U−1

+ Q+.

The reduction of row 8 is analogous:

row8← row8−S−row5

row8← row8−S−U−1
− row6

row8← row8 +S−U−1
− Q−row7

row8← S−1
− row8.

The final form for row8 and the corresponding right hand side,
which we label r̂8, are given by

row8 = [0 0 0 0 0 0 0 T− H]

r̂8 = S−1
− r8− r5−U−1

− r6 +U−1
− Q−r7,

where T− ∈ RN×N is defined by T− = S−1
− P−+U−1

− Q−.

The final modifications are to row 9:

row9← row9 +HTrow3

row9← row9−HTT−1
+ row4

row9← row9−HTrow7

row9← row9 +HTT−1
− row8.

The final forms of row9 and the corresponding right hand side,
which we label r̂9, are given by

row9 =
[
0 0 0 0 0 0 0 0 [Σ−1 +HT(T−1

− +T−1
+ )H]

]
r̂9 = r9 +HTr3−HTT−1

+ r̂4−HTr7 +HTT−1
− r̂8.

We now have a block upper triangular system which is equiv-
alent to (19). In the remaining steps, we solve this system
for ∆x,∆s−,∆u−,∆q−,∆p−,∆s+,∆u+,∆q+,∆p+. These calcu-
lations, together with definitions of r1 : r9 in (19) and the
definitions of T +,T−, r̂4, r̂8, r̂9 provided above comprise the
algorithm (20).

This completes the proof of the lemma. 2

The corresponding system of equations is block upper triangu-
lar, and its solution depends on inversion of the matrices U+,
U−, S+ , S−, T+, T−, and Σ−1 +HT(T−1

+ +T−1
− )H.

The relaxed complementarity conditions in (18) are
Q+U+1N = µ1N , P+S+1N = µ1N ,
Q−U−1N = µ1N , P−S−1N = µ1N .

For µ > 0, solutions of the equation above are strictly positive;
i.e., the solutions satisfy

(p+,q+,u+,s+, p−,q−,u−,s−) > 0.

Primal-dual interior point methods use predictor and corrector
steps to follow the solution of Fµ = 0 as µ > 0 descends to
zero. These methods keep the vectors u+, u−, s+, and s− strictly
positive. Hence the diagonal matrices U+, U−, S+ and S− can be
easily inverted. The vectors p+, and q+ are also strictly positive,
so the diagonal matrix

T+ = S−1
+ P+ +U−1

+ Q+

can be easily inverted. In addition, the vectors p− and q− are
strictly positive, so the diagonal matrix

T− = S−1
− P−+U−1

− Q−
can be easily inverted. Finally, consider inverting the matrix

T = Σ
−1 +HT(T−1

+ +T−1
− )H.
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The nN × nN matrix Σ−1 is block tridiagonal with blocks of
size n×n. It can be inverted in O(n3N) operations using (Bell,
2000, Lemma 6). Furthermore, the nN×nN matrix HT(T−1

+ +
T−1
− )H is block diagonal with positive semi-definite blocks of

size n× n. It follows that T can also be inverted in O(n3N)
operations using (Bell, 2000, Lemma 6). Thus, notably, the
computational complexity of the Vapnik based smoother is
linear in the number of time steps, as that of the classical
Kalman smoother that relies upon quadratic losses.

4. NUMERICAL EXAMPLE

In this section we test the new Kalman smoother that incorpo-
rates the Vapnik’s loss via a simulated example. The unknown
function, taken from (Dinuzzo et al., 2007), is given by

f (t) = esin(8t)

and has to be reconstructed from 2000 noisy samples collected
uniformly over the unit interval. The measurement noise vk was
generated using a mixture of two normals with p = 0.1 denoting
the fraction from each normal; i.e.,

vk ∼ (1− p)N(0,0.25)+ pN(0,25).
Data are displayed as dots in Fig. 2. Note that the purpose of the
second component of the normal mixture is to simulate outliers
in output data. Note also that any points exceeding vertical axis
limits are plotted at Fig. 2 to improve readability.
The initial condition f (0) = 1 is assumed to be known, while
the difference of the unknown function from the initial con-
dition (i.e. f (·) − 1) is the second component of the two-
dimensional state vector x(t) and corresponds to the integral
of the first state component, which is modeled as Brownian
motion. To be more specific, letting ∆t = 1/2000, the process
model for the mean of xk given xk−1 is

Fk(xk−1) =
[

1 0
∆t 1

]
xk−1 ,

while the autocovariance of xk given xk−1 is

Qk = λ
2
[

∆t ∆t2/2
∆t2/2 ∆t3/3

]
,

(Jazwinski, 1970; Oksendal, 2005), where λ 2 is an unknown
scale factor to be estimated from the data. It corresponds to the
inverse of the regularization parameter γ that appears in (1). The
measurement model for the mean of zk given xk is

hk(xk) = (0,1)xk = x2,k ,

where x2,k denotes the second component of xk.
In order to estimate the two unknown parameters λ and ε

characterizing the Vapnik loss, the 2000 measurements were
randomly split into training and validation sets of 1300 and 700
data points, respectively. For each value of λ 2 and ε contained
in a 10× 20 grid on [0.01,10000]× [0,1], with λ 2 logarith-
mically spaced, the function estimate was rapidly obtained by
the new smoother applied to the training set. Then, the relative
average prediction error on the validation set was computed,
see Fig. 3. The parameters leading to the best prediction were
λ 2 = 2.15e3 and ε = 0.45, which give a sparse solution defined
by less of 400 support vectors. For the sake of comparison, we
also derived the solution of (1) using a quadratic loss function
(by implementing a classical Kalman smoother) with γ esti-
mated following the same validation strategy described above.
Differently from the Vapnik penalty, the quadratic loss does not
induce any sparsity, so that, in this case, the number of support
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Fig. 3. Estimation of the smoothing filter parameters using the
Vapnik loss. Average prediction error on the validation
data set as a function of the variance process λ 2 and ε

vectors equals the size of the training set.
The left and right panels of Fig. 2 report the function esti-
mate adopting the quadratic and the Vapnik loss, respectively.
It is clear that the Gaussian estimate is heavily affected by
the outliers. In contrast, the estimate coming from the Vapnik
based smoother performs well over the entire time period, being
virtually unaffected by the presence of large outliers.

5. CONCLUSIONS

We have described an approach to solve a large class of machine
learning, named state space kernel machines, and have focused
on the non-smooth Vapnik penalty as the loss function of
interest. In practise, the Vapnik loss function has two desirable
features illustrated in the numerical experiment: robustness
to outliers in the measurement data, and sparsity in the final
representation of the reconstructed function. The interior point
approach we use, together with Proposition 2.4, allows the
development of learning machine algorithms for such losses
with a time complexity that scales linearly with the number
of samples. In the near future, we plan to extend the obtained
results to more general losses, such as the soft ε-insensitive and
the Huber’s one.
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