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Nonsmooth regression and state estimation
using piecewise quadratic log-concave densities

Aleksandr Y. Aravkin, James V. Burke and Gianluigi Pillonetto

Abstract— We demonstrate that many robust, sparse and
nonsmooth identification and Kalman smoothing problems
can be studied using a unified statistical framework. This
framework is built on a broad sub-class of log-concave densities,
which we call PLQ densities, that include many popular models
for regression and state estimation, e.g. ¢, ¢,, Vapnik and Hu-
ber penalties. Using the dual representation for PLQ penalties,
we review conditions that permit interpreting them as negative
logs of true probability densities. This allows construction of
non-smooth multivariate distributions with specified means and
variances from simple scalar building blocks. The result is a
flexible statistical modelling framework for a variety of iden-
tification and learning applications, comprising models whose
solutions can be computed using interior point (IP) methods.
For the special case of Kalman smoothing, the complexity of
this method scales linearly with the number of time-points,
exactly as in the quadratic (Gaussian) case.

Index Terms—robust and sparse estimation; statistical mod-
eling; nonsmooth optimization; Kalman smoothing; interior
point methods

I. INTRODUCTION

Consider the following classical Bayesian parametric re-
gression problem [14], [21]. The unknown x is a random
vector! with prior distribution specified by

u=Gx+w, (L.1)

where u and the invertible matrix G € R"*" are known, while
the random vector w is zero-mean with covariance Q. We
would like to define an estimator for x using the measure-
ments vector z that corresponds to a linear transformation of
x contaminated with additive noise v. In particular, we have

z=Hx+v, (1.2)

where H € R™" is a known matrix while v is zero-mean,
with covariance R and independent of x. It is well known
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that, under Gaussian assumptions on w and v, the minimum
variance estimator of x is given by

argmin  (z—Hx)TR™ ' (z—Hx) + (1 — Gx)TQ ' (u — Gx) .

* (L3)
Notably, (I.3) also includes estimation problems related to
discrete-time state-space dynamic linear systems [1], [4]. To
see this, it is sufficient to think of x as partitioned into
N subvectors {x;}, where each x; represents the hidden
system state at time instant k. For known data z, the classical
Kalman smoother exploits the special structure of the matri-
ces H,G,Q and R to solve (1.3) in O(N) operations [10].
In many circumstances, the performance of the estimator
(I.3) is not satisfactory. For instance, quadratic penalization
on model deviation is not robust with respect to the presence
of outliers in the data [13], [9], [2], [8] or may have
difficulties in reconstructing fast system dynamics, e.g. jumps
in the state values [16]. Furthermore, quadratic penalties
do not induce sparse solutions while it is often desirable
to extract a small subset from a large measurement or
parameter vector having greatest impact on the predictive
capability of the estimate. This sparsity principle is present in
many recently developed machine learning techniques, such
as variable selection, selective shrinkage, and compressed
sensing [11], [6], [5]. For these reasons, in place of (I.3), the
following more general estimator is often used:

argmin (L.4)

X

V (Hx—z;R)+W (Gx—u;0) ,

where the loss V may be the ¢;-norm, the Huber penalty
[13], Vapnik’s €-insensitive loss (leading to support vector
regression [25], [12]) or the hinge loss (defining support
vector classifiers [7], [18], [22]). The regularizer W may be
e.g. the ¢>-norm, the ¢;-norm (as in the LASSO [23]), or
a weighted combination of the two, yielding the elastic net
procedure [27].

The robust and sparse approaches mentioned above can often
be given a Bayesian interpretation specifying non-Gaussian
priors on w (or directly on x) and on the noise v. Indeed,
the stochastic interpretation of (I.4) has been much studied
recently [15], [24], [26]. A description of non-Gaussian
model errors and priors defining a great variety of loss and
penalty functions are also discussed in [17] using convex-
type representations, and integral-type variational represen-
tations related to Gaussian scale mixtures.

In contrast to the above approaches, as initiated in [3], in
this paper we consider estimators containing penalty terms
induced by a wide class of piecewise linear-quadratic (PLQ)
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functions starting from their dual representation [20]. This
class includes, among others, ¢, ¢, hinge loss, Huber and
Vapnik losses. We review the conditions which allow these
losses to be viewed as negative logs of true probability
densities. This ensures that the vectors w and v come from
true distributions and allows us to interpret the solution to the
problem (1.4) as a MAP estimator when the loss functions V
and W come from this subclass of PLQ penalties. Then, we
show that this viewpoint allows statistical modelling using
non-smooth penalties, and in particular how multivariate den-
sities with prescribed means and variances can be constructed
using scalar PLQ penalties as building blocks.

In the second part of the paper, the Karush-Kuhn-Tucker
(KKT) system for problem (I.4) as well as interior point
(IP) methods to solve it are introduced. This allows a fun-
damentally smooth approach to many (non smooth) robust
and sparse problems of interest to practitioners. Furthermore,
we report a theorem showing that IP methods solve (I1.4)
when the noises v and w have PLQ densities, subject to
sufficient additional hypotheses. The specialization of the
result to the case of Kalman smoothing treated in [3] is also
briefly reviewed.

The paper is organized as follows. In Section II we review the
class of PLQ convex functions, and the sufficient conditions
that allow us to interpret these functions as the negative logs
of associated probability densities. In Section III we illustrate
how to construct multivariate densities with prescribed means
and variances using scalar building blocks. In Section IV we
present the KKT system for PLQ penalties from [20], and
report a theorem that guarantees convergence of IP methods
under appropriate hypotheses. The Kalman smoothing dy-
namic case already described in [3] is also briefly reviewed.
Conclusions are presented in Section V.

II. PIECEWISE LINEAR QUADRATIC PENALTIES AND
DENSITIES

A. Preliminaries

We recall a few definitions from convex analysis, required
to specify the domains of PLQ penalties. The reader is
referred to [19], [20] for more detailed reading.

o (Affine hull) Define the affine hull of any set C C R”,
denoted by aff(C), as the smallest affine set (translated
subspace) that contains C.

¢ (Cone) For any set C C R", denote by cone C the set
{trlre C,r e R} }.

« (Domain) For f(x):R" — R = {RUoc}, dom(f) = {x:
f(x) <eo}.

¢ (Polar cone) For any cone K C R™, the polar of K is
defined to be

K°:={r|{rd) <0VdeK}.
¢ (Horizon cone). Let C C R"” be a nonempty convex set.

The horizon cone C* is the convex cone of ‘unbounded
directions’ for C, i.e. d € C* if C+d CC.

B. PLQ Densities

Building a correspondence between penalties and densities
allows us to establish a statistical and a computational frame-
work for many estimation problems. Kalman smoothing
provides a key example — the process and measurement
covariance matrices are often known, and this information
can be incorporated into the estimation problem through this
correspondence. For PLQ penalties, the key to understanding
their corresponding densities is their dual representation [20].

Definition 2.1 (extended PLQ penalties [20]): Define
p(U,M,b,B;-) :R" = R as

(UMb Biy) = sup{ (wb+85) = S (whi b (L)
ucl 2

where U C R™ is a nonempty polyhedral set, M € R™*™"
is a symmetric positive semidefinite matrix, and b+ By is
an injective affine transformation, with B € R™*", so, in
particular, m < n and null(B) = {0}.

|
The following result is taken from [3] and characterizes the
effective domain of p.

Theorem 2.2 (effective domain of p [3]): Let p denote
p(U,M,B,b;y), and K denote U Nnull(M). Suppose U C
R™ is a polyhedral set, y € R", b € K°, M € R™*™ is positive
semidefinite, and B € R™" is injective. Then (BTK)° C
dom(p) and [BT(K N —K)]* = aff[dom(p)].

|
All the notable examples previously cited can be represented
using an extended PLQ penalty p, as shown below.

Remark 2.3 (scalar examples): {,, {1, elastic net, Huber,
hinge, and Vapnik penalties are all representable using the
notation of Definition 2.1.

1) bp: Take U=R, M =1, b=0, and B= 1. We obtain

p(y) = sup {uy—u’/2} .
SN
The function inside the sup is maximized at u =y,
hence p(y) = %yz, see first left panel of Fig. 1.
2) {;: Take U =[-1,1], M=0, =0, and B=1. We
obtain

sup {uy}
ue[—1,1]

p(y) =

The function inside the sup is maximized by u =
sign(y), hence p(y) = |y|, see second panel of Fig. 1.
3) Elastic net, £, + A¢;. This is a weighted sum of the
previous two examples, and so must be in the class.

Take
0 1 0 1
v-rxa o= [ =]} 9 ).
This construction reveals the general calculus of PLQ
addition.

4) Huber: Take U = [k, k], M=1,b=0,and B=1. We
obtain p(y) = sup {uy — u?/ 2} . We have the following
uelU
cases:

a) If y < —x, take u = —k to obtain —xy — %Kz.
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Fig. 1.

b) If —x <y <k, take u =y to obtain %yz.
) If y > k, take u = Kk to obtain ky— k.
This is the Huber penalty, see third panel of Fig. 1.
5) Hinge loss: Taking B=1,b=—¢, M =0and U = [0, 1]
we have
p(y) =sup{(y—€u} = (y—¢)+.
uclU
In fact, note that if y < €, u* = 0; otherwise u* = 1.
6) Vapnik loss is given by (y— &)y + (—y—¢€)1. We
immediately obtain its PLQ representation by taking

B—[_ll],b—[ﬂ,M—{g 8},U—[0,1}X[O71]

to yield

po)=sup{ (|25 )} =-ere+ (r-e..

The Vapnik penalty is in the fourth panel of Fig. 1.

|

From the above examples, note that the Vapnik penalty
and the elastic net are obtained by summing together simpler
PLQ penalties. These constructions are examples of a general
pattern, as seen in the following remark.

Remark 2.4: Let p1(y) and pa(y) be two PLQ penalties
specified by U;, M;, b;, B;, for i = 1,2. Then the sum p(y) =
p1(y) + p2(y) is also a PLQ penalty, with

By
A

U=U xUy, M = {Ml 0},1; [bl],B
[

0 M by
To interpret PLQ penalties as negative logs of probability
density functions, the integrability of said density functions
has to be guaranteed. As discussed in [3], coercivity2 is the
key property to ensure integrability.

Theorem 2.5 (Coercivity [3]): A PLQ function p is coer-
cive if and only if [BTcone(U)]° = {0}.

Theorem 2.6 (PLQ integrability [3]): Suppose p(y) is
coercive. Then the function exp[—p(y)] is integrable
on aff[dom(p)] with respect to the dim(aff[dom(p)])-
dimensional Lebesgue measure.

|
We can use Theorem 2.5 to show the coercivity of familiar
penalties.

2The function p(y) is said to be coercive if limyy oo p(y) = o0

V(z) =2

——=-V@)=—r—-¢ < —
- == V) =kl m <ok —V(2)=0; —e<a<e

Scalar ¢, (first panel), ¢; (second panel), Huber (third panel) and Vapnik (fourth panel) Penalties

Corollary 2.7: The penalties ¢, ¢, elastic net, Vapnik,
and Huber are all coercive.

Proof: We show all of these penalties satisfy the
hypothesis of Theorem 2.5.

6: U=Rand B=1, so [BTcone(U)]O =R° ={0}.
0: U=1]-1,1], so cone(U) =R, and B=1.

Elastic Net: In this case, cone(U) =R? and B= [1].
Huber: U = [—k, k], so cone(U) =R, and B=1.
Vapnik: U = [0,1] x [0, 1], so cone(U) =R3. B=[ ],
so BTcone(U) = R.

The coercivity of the above examples can also be proved
using their primal representations. However, our main ob-
jective is to establish a modeling framework where multi-
dimensional penalties can be constructed from simple build-
ing blocks and then solved by a uniform approach, exploiting
the dual representations alone.

We are now in a position to define a family of distributions
on R”" interpreting PLQ penalties p as negative logs of
corresponding densities. For this purpose, recall that the
support of the distributions is always contained in the affine
set aff(dom p), characterized in Th. 2.2.

Definition 2.8: (PLQ densities). Let p(U,M,B,b;y) be
any coercive extended PLQ penalty on R”". Define p(y) to
be the following density on R":

11.2)

clexp[— € dom
””:{o pl-p(»)] yEdomp
else,

where

c= (/yedomp exp[—p(¥)] dy) ;

and the integral is with respect to the dim(aff[dom(p)])-
dimensional Lebesgue measure.

[ |
Thus, PLQ densities are true densities on the affine hull

of the domain of p. In addition, Theorem 2.6 can be easily
extended to show that they have moments of all orders.
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III. CONSTRUCTING PLQ DENSITIES

Given a sequence of column vectors {ry} = {r,...,rn}
and matrices {X;} = {X1,...,Zn}, let
" Y 0 - 0
. 0 X
vec({r}) = Jdiag({))=| | 7
: .0
'N 0 0 Xy

In Definition 2.8, the PLQ densities are defined over R”.
The moments of these densities depend in a nontrivial way
on the choice of parameters b, B,U, M. In practice, our aim is
to construct densities having prescribed means and variances.
We now illustrate how to do this using scalar PLQ random
variables as the building blocks. Suppose y = vec({y;}) is a
vector of independent (but not necessarily identical) PLQ
random variables having mean 0 and variance 1. Denote
by by, By, Uy, My the specification for the densities of y;. To
obtain the density of y, we just need to take

U:U1><U2><“~><UN7 M:dlag({Mk})
B =diag({B:}), b=vec({b}) .

For example, the Gaussian distribution is specified by U =
R", M =1, b=0, B=1, while the standard ¢;-Laplace (see
[2]) is specified by U = [~1,1]", M =0, b=0, B=+/2I.
The random vector 5= Q'/2 (y+u) has mean y and variance
Q. Letting ¢ be the normalizing constant for the density of
y, cdet(Q)'/? is the normalizing constant for the density of
y.

To construct scalar building blocks with mean 0 and variance
1, we must be able to compute normalizing constants for any
PLQ penalty. To this aim, if p(y) is a scalar PLQ penalty

symmetric about 0, we would like p(y) = exp[—p(c2y)] /ci

to be a true density with unit variance, that is,

o ReXp[—P(czy dy=1, /y exp[—p(c2y)]dy = 1.
(IL.1)

After u-substitution, these equations become

c1c = /exp

Solving this system yields

= \//yexp dy//exp
— - [expl-play

These expressions can be used to obtain the normalizing
constants for any particular p using simple integrals. The
Vapnik case is reported below.

y)]dy and clcz—/y exp[—p(y)]dy.

A. Vapnik Density

The scalar Vapnik density is constructed as follows. Set

1
o exp [—pv(c2y)] , (TI1.2)

1

pv(y) =

where the normalizing constants ¢; and ¢, can be obtained
from

[expl=pv]dy=2(e+1)
/ y exp[—py (y)]dy =

using the results in Section IIl. Taking U = [0,1]*", the
multivariate Vapnik distribution with mean y and variance

Qis

2
583 +2(2—-2e+¢€%),

exp [_ SUP,cu {<02BQ7]/2 (y - l'L) - 812"7 M>}]
de(Q7?)

pv(y) =

(1I1.3)
where B is block diagonal with each block of the form B =
[!}], and 15, is a column vector of 1’s of length 2n.

IV. OPTIMIZATION WITH PLQ PENALTIES
A. General Case

We now return to the estimation problem (I.4) where
the functions V and W are to be taken from the class of
PLQ penalties. In the previous sections, we showed how to
construct PLQ densities with given moments to inform the
optimization problem (I.4). We now show that the resulting
problem can be solved with high accuracy for the entire class
using standard techniques from numerical optimization. We
exploit the dual representation for the class of PLQ penalties
[20] to explicitly construct the Karush-Kuhn-Tucker (KKT)
conditions for a wide variety of model problems of the form
(1.4). Working with these systems opens the door to using
a wide variety of numerical methods for convex quadratic
programming to solve (1.4).

Let p(Uy,M,,b,,B,;y) and p(U,,M,,by,B,;y) be two
PLQ penalties and define

V(v;R) := p(Uy, My, by, B,;R™ /%) av.n
and
W (w; Q) := p (U, My, by, B; O~ ?w). (IV.2)
Then (1.4) becomes
)Igﬁ{r}lp(U M,b,B;y), (IV.3)
where
—1/2
U:=U,x Uy, M:= Fg Aﬂ b= (bif:g:gl//i),
and

_ [B,R'2H
Bi= [Ble/zc} '

Moreover, the hypotheses in (I.1), (I.2), (I.4), and (II.1) imply
that the matrix B in (IV.3) is injective. Indeed, By = 0 if and
only if B,Q~'/2Gy =0, but, since G is nonsingular and B,,
is injective, this implies that y = 0. That is, null(B) = {0}.
Consequently, the objective in (IV.3) takes the form of a
PLQ penalty function (II.1). In particular, if (IV.1) and (IV.2)
arise from PLQ densities (definition 2.8), then the solution to
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problem (IV.3) is the MAP estimator in the statistical model
I1.1)-1.2).

To simplify the notational burden, in the remainder of this
section we work with (IV.3) directly and assume that the
defining objects in (IV.3) have the dimensions specified in
IL1);

UcR" McR™™ becR™, and Bc R™". aIv.4)
The Lagrangian [20][Example 11.47] for problem (IV.3)
is given by
1
L(y,u) =b"u— EuTMqu u'By .

By assumption U is polyhedral, and so can be specified to
take the form

U={u:A"u<a}, (IV.5)

where A € R”*‘. Using this reprsentation for U, the opti-
mality conditions for (IV.3) [19], [20] are

0=B"w, O0=b+By—Mu—A
. Y K (IV.6)
0=Au+s—a, O0=gqs, q,s>0,
where i = 1,...,¢ and the non-negative slack variable s is

defined by the third equation in (IV.6). The non-negativity
of s implies that u € U. The equations 0 =g¢;s; i=1,...,¢
in (IV.6) are known as the complementarity conditions.
By convexity, solving the problem (IV.3) is equivalent to
satisfying (IV.6). There is a vast optimization literature on
working directly with the KKT system. Now, we show the
general development for the entire PLQ class.

Let U,M,b,B, and A be as defined in (II.1) and (IV.5), and
let T € (0,+o0]. We define %, (1), the T slice of the strict
feasibility region for (IV.6), to be the set

0<s, 0<gq, sTg<t, and
(s7 q7 u7y) S - 3 b
,q,u,y satisfy the affine eq. in (IV.6)
and the %, the central path for (IV.6), to be the set
{qu]

For simplicity, we define .% := .%, (4-o0). The basic strategy
of a primal-dual IP method is to follow the central path to a
solution of (IV.6) as v 0 by applying a predictor-corrector
damped Newton method to the function mapping R’ x R x
R™ x R" to itself given by

0<s,0<gq, y=gqisi i=1,...,¢, and
s,q,u,y satisfy the affine eq. in (IV.6)

s+ATu—a
D(g)D(s)1-71
By—Mu—Aq+b| "’
BTu

F’)’(saQ7uay) = (IV7)

where D(g) and D(s) are diagonal matrices with vectors g, s
on the diagonal.

Theorem 4.1: Let U,M,b,B, and A be as defined in (II.1)
and (IV.5). Given 7 >0, let .7, %, (1), and € be as defined

above. If
F.#0 and null(M)Nnull(AT) = {0}, (IV.8)

then the following statements hold.

(1) F}El)(s,q,u,y) is invertible for all (s,q,u,y) € Z4.
(ii) Define

Zi={(5,q) |3(u,y) ER" xR" st. (s,q,u,y) € F }

Then for each (s,q) € g‘i there exists a unique (u,y) €
R™ x R" such that (s,q,u,y) € F,.
(iii) The set .#,(7) is bounded for every T > 0.

(iv) For every g € R?H, there is a unique (s,q,u,y) € .F4
such that g = (s1q1,52q2,---,5¢q¢)".

(v) For every 7y > 0, there is a unique solution
57),a(7),u(1).y(¥)] o the equation Fy(s,q,u,y) = 0.
Moreover, these points form a differentiable trajectory
in RY x RY x R™ x R”. In particular, we may write

¢ ={ls(1),q(7),u(v),3(1)] [Y>0} .

(vi) The set of cluster points of the central path as 7| 0 is

non-empty, and every such cluster point solves (IV.6).

|

The proof is omitted due to space constraints. Theorem 4.1

shows that if the conditions (IV.8) hold, then IP techniques

can be applied to solve the problem (IV.3). In all of the

applications we consider, the condition null(M)Nnull(AT) =

{0} is easily verified. For example, in the setting of (IV.3)
with

U={ulAu<a,} and U,={u|Au<b,} (IV9)

this condition reduces to

null(M,)Nnull(AT) = {0} and null(M,,)Nnull(AT) = {0}.
(IV.10)

Corollary 4.2: The densities corresponding to ¢;,¢,, Hu-
ber, and Vapnik penalties all satisfy hypothesis (IV.10).
Proof: We verify that null(M) Nnull(AT) = 0 for each
of the four penalties. In the ¢, case, M has full rank. For the
¢1, Huber, and Vapnik penalties, the respective sets U are
bounded, so U” = {0}. |
On the other hand, the condition %, # 0 is typically more
difficult to verify, but it can be proved to be satisfied for all
the popular losses, e.g. in the Vapnik and the Huber case.
Details will be reported in future work

B. Kalman Smoothing with PLQ Penalties

The PLQ Kalman smoothing algorithm described in [3]
can now be seen a special case of the theory described in
the previous subsection. This is briefly reviewed below.
Consider a dynamic scenario, where the system state xj
evolves according to x; = xo +wy, with xo known, and the
following stochastic discrete-time linear model

k=2,3,....N
k=1,2,....N

X = Grxp—1 +wy, av.i1)

% = Hix + v,
where z; is the m-dimensional subvector of z containing
the noisy output samples collected at instant k, Gy and Hj
are known matrices. Further, {w;} and {v;} are mutually
independent zero-mean random variables. They can come
from any of the densities introduced in the previous section
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and have positive definite covariance matrices denoted by
{0k} and {Ry}, respectively. In particular, one can write

) —-1/2
pOwe) o oxp | —p (U, My b} B2 0, P

)} Iv.12)
P(vk) o« exp |—p (U} M. b B Ry, o)

The following key result is then obtained (see [3]).

Theorem 4.3: (PLQ Kalman Smoother Theorem) Suppose
that all w; and v in the Kalman smoothing model (IV.11)
come from PLQ densities that satisfy

null(M}") Nnull((A})T) = {0},

(IV.13)
null(M}) Nnull((A})") = {0}, Vk .

i.e. their corresponding penalties are finite-valued. Suppose
further that the corresponding set .%, from Theorem 4.1 is
nonempty. Then, the MAP estimates of the states {x; } can be
solved using an IP method, with computational complexity
O[N(n 4+m3 4-1)], where [ is the largest column dimension
of the matrices {A) } and {A}’} that define {U}"} and {U}'},
respectively.

]
The main contribution of the result in the dynamical system
context is the computational complexity: using IP methods
the architecture of the MAP estimator preserves the key
block tridiagonal structure of the standard smoother. If the
number of IP iterations is fixed (10 — 20 are typically used in
practice), general smoothing estimates can thus be computed
in O[N(n* +m? +1)] time.

V. CONCLUSIONS

In this paper, we have complemented the theory initiated in
[3] for robust and sparse estimation using nonsmooth PLQ
penalties. Using the dual representation of PLQ functions,
we first reviewed conditions allowing their interpretation as
negative logs of true probability densities, thus establishing
a statistical modelling framework. In the second part of the
paper, we presented a broad computational approach to solv-
ing estimation problems (I.4) using interior point methods.
Conditions that guarantee the successful implementation of
such techniques, for solving (I.4) when x and v come from
PLQ densities, have been derived. A theorem characterizing
the convergence of IP methods for this class has been also
stated. The key condition required for the successful execu-
tion of IP iterations was a requirement on PLQ penalties
to be finite valued, which implies non-degeneracy of the
corresponding statistical distribution (the support cannot be
contained in a lower-dimensional subspace). Thus, the sta-
tistical interpretation is strongly linked to the computational
procedure. The specialization of this result for estimating
states of discrete-time dynamic systems, subject to noises
modeled by PLQ densities, has been also reviewed. In this
context, our key result is that PLQ Kalman smoothing can
always be performed with a number of operations linear in
the length of the time series, as in the quadratic case.

The computational framework presented here allows the

broad application of IP methods to a wide class of regression
and Kalman smoothing problems of interest to practitioners.
The powerful algorithmic scheme designed here, together
with the statistical framework underlying it, underscores the
practical utility and flexibility of this approach, making it
suitable for many applications in the years ahead.
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