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In 2001, Burke and Overton showed that the abscissa mapping on polynomials is
subdifferentially regular on the monic polynomials of degree n. We extend this result to
the class of max polynomial root functions which includes both the polynomial abscissa
and the polynomial radius mappings. The approach to the computation of the subgradient
simplifies that given by Burke and Overton and provides new insight into the variational
properties of these functions.
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1. Introduction

Let P n denote the linear space of polynomials over C of degree n or less. The abscissa and radius mappings on P n are
given by

a(p) = max{Re(λ) | λ ∈ R(p)} and r(p) = max{|λ| | λ ∈ R(p)},

respectively, where R(p) = {λ | p(λ) = 0}. When composed with the characteristic polynomial of the n × n matrix A, the
resulting mappings are called the spectral abscissa and the spectral radius, respectively. These mappings characterize the
asymptotic stability of solutions to linear dynamical systems, and so understanding their variational properties assists in
understanding the variational behavior of stability [1]. In [2], Burke and Overton use techniques from variational analysis
[3–5] to give formulas for the subdifferential of the abscissa mapping a and establish its subdifferential regularity on the
affine set of monic polynomials of degree n. The proof of subdifferential regularity has three challenging steps. The first
uses a technique developed by Levantovskii in [6] to characterize the tangent cone to the epigraph of the abscissa mapping
a at the polynomial (λ − λ0)

n. This step requires several pages of dense computation. The tangent cone representation is
then used to provide a formula for the subderivative of a at (λ − λ0)

n. In the second step, the set of regular normals to the
epigraph is computed for a general monic polynomial. The representation for the regular normal cone yields a formula for
the regular subdifferential of a on themonics. In the third and final step, the set of limiting regular normals is computed and
subdifferential regularity is established.

In [7] it is shown that the Gauss–Lucas Theorem [8] can be applied to dramatically simplify the first step; the computation
of the tangent cone to the epigraph of the abscissamapping a at (λ−λ0)

n. The Gauss–Lucas technique is used in [9] to extend
these variational results to a much broader class of functions of the roots of polynomials which we callmax polynomial root
functions. This class includes both the abscissa and radius mappings, and so opens the door to a deeper understanding of
the variational behavior of a large class of important functions of the roots of polynomials. However, the results in [9] do
not address steps 2 and 3 of [2]. Following the work in [10], these steps are addressed here with the goal of extending the
results of [2] to the class of max polynomial root functions. Although we rely on the underlying factorization space structure
developed in [2], our approach differs significantly since we do not use epigraphical normal cones to compute subgradients.
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Ratherwe go directly from the subderivative to the regular subdifferential and then on to the (limiting) subdifferential, short
circuiting the normal cone computations. The key to the newderivation is to first establish, and then exploit, the sublinearity
of the subderivative. This allows us to directly compute the regular subdifferential using well-known properties of support
functionals.

We begin in Section 2 by recalling and slightly refining the notation used in [2,9]. The classes of functions under
investigation are precisely defined, factorization spaces are introduced, and extensions are given to the basic results in [2]
concerning the epigraphical tangent cones. In Section 3, we use the tangent cone results to develop formulas for the
subderivatives. These results differ from those of [2,9] since we also show that the subderivatives are sublinear. This key
difference sets the stage for a direct and simplified derivation of the regular subdifferential using elementary properties
of support functions. In Section 4, we prepare for the subdifferential analysis by building inner products compatible with
the linear mappings between P n, the factorization spaces, and Cn+1. With these Euclidean structures in place, we derive
formulas for the regular subdifferential in Section 5. Finally, in Section 6 we establish the subdifferential regularity of max
polynomial root functions generated by convex functions that are either quadratic or whose Hessian is positive definite at
all active roots. This result is used in Section 7 to establish the subdifferential regularity of the radius mapping on the set of
monic polynomials of degree n.

As noted above, we use the methods of variational analysis as developed in [3–5]. To assist the reader we catalog some
of the key tools and notation from these references. Let E be a Euclidean space, i.e. a finite dimensional real inner product
space. In this paper, the scalar field is always C, and all inner products can be represented as the real part of a Hermitian
inner product on the underlying Euclidean space E. Let C be a nonempty subset of E. The tangent cone to C at a point x ∈ C
is given by

TC (x) = {d | ∃{xν} ⊂ C, {tν} ⊂ R+ such that xν → x, tν ↓ 0 and t−1
ν (xν − x) → d}.

The tangent cone is a closed subset of E [5, Proposition 6.2]. A tangent vector d ∈ TC (x) is said to be derivable if there is a
trajectory γ : [0, ε] → C with ε > 0 such that γ (0) = x and γ ′(0) = d. The set C is said to be geometrically derivable at
x if every tangent direction to C at x is derivable. The polar of C is the set C◦

= {w | ⟨w, v⟩ ≤ 1 for all v ∈ C}. The set C◦

is always closed and convex, and if C is closed and convex, then (C◦)◦ = C . In general, (C◦)◦ is the closed convex hull of
C , cl(con(C)). If C is a cone, then C◦

= {w| ⟨w, v⟩ ≤ 0 for all v ∈ C}. The regular normal cone to a point x ∈ C is the setNC (x) = (TC (x))◦ = {z | ⟨z, v⟩ ≤ 0 for all v ∈ TC (x)}. The horizon cone of C (also known as the asymptotic cone [11,12]) is
the set

C∞
= {z ∈ E | ∃{xν} ⊂ C, {tν} ⊂ R+ s.t. tν ↓ 0 and tνxν → z}.

The horizon cone is always a closed cone. If C is convex, it can be shown that C∞ is the usual recession cone from convex
analysis. The support function of C is given by

σC (v) = sup
z∈C

⟨z, v⟩ .

A function is said to be proper if there is a point in its domain space where it takes a finite value. By [5, Theorem 8.24], there
is a one-to-one correspondence between sublinear, lower semi-continuous (lsc) proper functions ϕ and nonempty, closed,
convex subsets C of E such that σC (x) = ϕ(x) for all x ∈ E.

Let h : E → R = R ∪ {+∞}. The essential domain of h is dom(h) = {x ∈ E | h(x) < ∞}. In particular, h is proper if its
essential domain is nonempty. The epigraph of h is given by epi(h) = {(x, β) ∈ E × R | h(x) ≤ β}. The subderivative of h is
the map dh(x) : E → R given by

dh(x)(v̄) = lim inf
t↓0,v→v̄

h(x + tv)− h(x)
t

.

It generalizes the notion of directional derivative to nondifferentiable functions. The tangent cone to the epigraph and the
subderivative are related by the formula

epi(dh(x)) = Tepi(h)(x, h(x)) (1)

[5, Theorem 8.2]. In particular, dh(x)(v) = inf{η | (v, η) ∈ Tepi(h)(x, h(x))}. The regular subdifferential of h at x ∈ dom(h) is
the set of regular subgradients:

∂̂h(x) = {v | h(y) ≥ h(x)+ ⟨v, y − x⟩ + o(‖y − x‖) ∀y ∈ E}.

The regular subdifferential is always a closed and convex subset of E. The subderivative and regular subdifferential are
related by ∂̂h(x) = {z | ⟨z, v⟩ ≤ dh(x)(v) ∀v ∈ E} [5, Exercise 8.4]. In particular, we have σ∂̂h(x)(v) ≤ dh(x)(v) for all v ∈ E.
Therefore,

if ∂̂h(x) ≠ ∅ and dh(x) is sublinear, lsc and proper, then σ∂̂h(x) = dh(x). (2)

We can obtain the regular normal cone to a point in epi(h) from the regular subdifferential and vise versa by the relationships
below [5, Theorem 8.9]:Nepi(h)(x, h(x)) = {t(z,−1) | z ∈ ∂̂h(x), t > 0} ∪ {(z, 0) | z ∈ ∂̂h(x)∞}, (3)
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and ∂̂h(x) = {z | (z,−1) ∈ Nepi(h)(x, h(x))}. If h is proper and convex, then the subderivative reduces to the usual notion of
directional derivative, h′(x; ·) = dh(x)(·) = σ∂h(x)(·)with the regular subgradients corresponding to the usual subgradients
of convex analysis. The general subdifferential of h at x is given by

∂h(x) =


z
∃xν → x, xν ∈ dom(h),
∃zν ∈ ∂̂h(xν)with h(xν) → h(x) and zν → z


,

and the horizon subdifferential to h at x is given by

∂∞h(x) =

z


∃ xν → x,
zν ∈ ∂̂h(xν), βν ↓ 0
with h(xν) → h(x) and βνzν → z

 .
The function h is said to be subdifferentially regular at x if ∂h(x) = ∂̂h(x) and ∂∞h(x) = ∂̂h(x)∞. Subdifferential regularity
is important for many reasons, but, in particular, it allows the development of a rich subdifferential calculus.

Let f : C → R. DefineΘ : R2
→ C byΘ(x1, x2) = x1 + ix2 and f̃ : R2

→ R by f̃ = f ◦Θ . We say that f is differentiable
in the real sense if f̃ is differentiable, and f is twice differentiable in the real sense if f̃ is twice differentiable. The chain rule
gives f ′(ζ ) = Θ∇ f̃ (Θ−1ζ ) and f ′′(ζ )δ = Θ∇

2 f̃ (Θ−1ζ )Θ−1δ. Differentiability in the real sense is the only notion of
differentiability used in this paper, so we will simply say f is differentiable to mean f is differentiable in the real sense.
Let ⟨·, ·⟩ denote the standard real inner product on C : ⟨u, v⟩ = Re[ūv]. Then the directional derivative of f in the direction
δ is given by f ′(ζ ; δ) =


f ′(ζ ), δ


, and the second derivative is given by f ′′(ζ ;ω, δ) =


ω, f ′′(ζ )δ


. We say that f is quadratic

if f ′′(ζ ) is constant in ζ . For example, the function r2(ζ ) =
1
2 |ζ |

2 studied in Section 7 is quadratic with f ′(ζ ) = ζ and
f ′′(ζ ) = I .

Finally, we define the elementary polynomials e(l,λ0) ∈ P n by e(l,λ0)(λ) = (λ−λ0)
l, l = 0, . . . , n, and recall that, for each

fixed value of λ0 ∈ C, these polynomials form a basis for the linear space P n.

2. Polynomial root functions

A max polynomial root functions is any function of the form

f(p) = max{f (λ) | λ ∈ R(p)}, (4)

where it is assumed that f : C → R is proper, convex, and lsc. We say that f : C → R generates the max polynomial
root function f : P n

→ R. Two examples of max polynomial root functions are the abscissa (f (ζ ) = a(ζ ) = ⟨1, ·⟩) and
radius (f (ζ ) = r(ζ ) = |ζ |) mappings on P n. In [9], the Gauss–Lucas Theorem is used to compute the tangent cone to the
epigraph of f at the polynomial (λ− λ0)

n. We extend this result by computing the tangent and normal cone to the epigraph
at arbitrary monic polynomials and establish the subdifferential regularity of f under general conditions on the generating
function f . In this section, we review the fundamentals required for our development.

Let P n denote the linear space of polynomials over C of degree less than or equal to n,P n,k
⊂ P n be the subspace of

polynomials of degree at most k, and Mn,k
⊂ P n be the subset of polynomials of degree k, for k = 0, 1, 2, . . . , n. Note that

Mn,k
⊂ P n,k, and by P n,k

\ Mn,k wemean the relative complement with respect to P n,k. With this notation, P n,n
= P n. In

the relative topology, the set Mn,k is a relatively open dense subset of P n,k for each k, and P n,0
⊂ P n,1

⊂ · · · ⊂ P n,n. For
each k = 0, 1, 2, . . . , n, let Mn,k

1 be the set of monic degree k polynomials. The collection {Mn,0,Mn,1, . . . ,Mn,n
} forms a

partition of P n. When k = n, we simplify the notation by setting Mn
= Mn,n and Mn

1 = Mn,n
1 .

A weak polynomial root function (weak prf ) h : P n
→ R is a proper function that is invariant under multiplication by

nonzero complex numbers, that is, h(p) = h(κp) for all p ∈ P n and for all κ ∈ C \ {0}. We say that h is factor-dominating at
p ∈ dom(h) if h(q) ≤ h(p) whenever q divides p and deg(q) ≥ 1. If h is factor-dominating at every p ∈ P n

\ Mn,0, we say
h is factor-dominating. Max polynomial root functions are examples of factor-dominating weak polynomial root functions.

Example 1 (Root Product Functions). For p ∈ P n
\Mn,0, letλ1, λ2, . . . , λdeg(p) be the roots of pordered bydecreasingmodulus

and repeated according to multiplicity. Define h : P n
→ R by

h(p) = max
deg(p)∏
i=1

|λi|.

Then h is a weak prf. Moreover, h is factor-dominating at every polynomial whose roots lie in the complement of the open
unit disk. This function is not factor-dominating in general, e.g. consider p = (λ − 1/2)2, then h(p) = 1/4 < h(λ − 1/2)
= 1/2.

Although most of the prf’s of interest are continuous on Mn,k relative to P n,k for k = 1, 2, . . . , n, they are not Lipschitz
continuous there, nor are they bounded in the neighborhood of any point on the boundary of Mn,k relative to P n,k for any
k. Indeed, this is the case for the polynomial abscissa map a. For example, if pε(λ) = λn − ε, then a(pε) = n

√
ε is not
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Lipschitz continuous at ε = 0. In addition, given q ∈ P n,n−1
\ Mn,0, define pε(λ) = (1 − ελ)q so that pε → q as ε ↓ 0. But

a((1 − ελ)q) = max{1/ε, a(q)} → ∞ as ε ↓ 0.
Let h1 : P n

→ R be given by h1 = h + δMn
1
,where

δMn
1
(p) =


0 if p ∈ Mn

1,
+∞ otherwise,

is the convex indicator function of Mn
1 . Note that dom(h1) = dom(h)∩Mn

1 . We now extend [9, Lemma 1] to weak prf’s and
arbitrary polynomials in Mn

∩ dom(h).

Lemma 2.1. Let h be a weak prf and let h1 be as above. Then

Mn
∩ dom(h) = {κq | κ ∈ C \ {0}, q ∈ Mn

1 ∩ dom(h1)}. (5)

Moreover, for q ∈ Mn
1 ∩ dom(h1), κ ∈ C \ {0}, and p = κq,

Tepi(h)(p,h(p)) = {(ζp + κṽ, η) | ζ ∈ C, (ṽ, η) ∈ Tepi(h1)(q,h1(q))} (6)

and

Tepi(h1)(q,h1(q)) =


(κ−1(v − ωq), η) |

(v, η) ∈ Tepi(h)(p,h(p)) and ω is the unique element of C
such that v − ωp ∈ P n−1


. (7)

Proof. Observe that, for r ∈ Mn
1 and γ ∈ C \ {0}, we have h(γ r) = h1(r), and consequently, (r, τ ) ∈ epi(h1) if and only if

(γ r, τ ) ∈ epi(h) for all γ ∈ C \ {0}. This proves (5).
It is easily shown that the identities (6) and (7) are equivalent, and sowe only prove (6). Given p inMn

∩dom(h), suppose
(v, η) ∈ P n

× R is such that (v, η) ∈ Tepi(h)(p,h(p)). Then there exists ξi ↓ 0 such that

(p + ξiv + o(ξi), h(p)+ ξiη + o(ξi)) ∈ epi(h). (8)

Let (q, κ) be the unique pair in Mn
1 × (C\{0}) for which p = κq andω ∈ C be the unique element such that v−ωp ∈ P n−1.

Set ṽ = κ−1(v − ωp) so that v = ωp + κṽ. We now show that (ṽ, η) ∈ Tepi(h1)(q,h1(q))which implies that Tepi(h)(p,h(p))
is contained in the set on the right-hand side of (6). To this end let ô(ξ) be such that õ(ξi) = o(ξi)− ô(ξi)p ∈ P n−1. Then (8)
becomes

(κ(1 + ωξi + ô(ξi))q + κξiṽ + õ(ξi), h(p)+ ξiη + o(ξi)) ∈ epi(h),

where κξiṽ + õ(ξi) ∈ P n−1. This implies

(q + ξiṽ/(1 + ωξi + ô(ξi))+ õ(ξi)/κ(1 + ωξi + ô(ξi)), h1(q)+ ξiη + o(ξi)) ∈ epi(h1)

for all i sufficiently large. Since (1 + ξiω + ô(ξi))−1
= 1 + O(ξi), we have (ṽ, η) ∈ Tepi(h1)(q,h1(q)).

For the reverse inclusion, suppose (ṽ, η) ∈ Tepi(h1)(q,h1(q)), let ζ ∈ C, and define v = ζp + κṽ. By the definition of the
tangent cone, there exists ξi ↓ 0 such that

(q + ξiṽ + o(ξi), h1(q)+ ξiη + o(ξi)) ∈ epi(h1).

Substituting ṽ = κ−1(v − ζp) gives

(q + ξiκ
−1(v − ζp)+ o(ξi), h1(q)+ ξiη + o(ξi)) ∈ epi(h1),

that is,

((1 − ξiζ )q + κ−1ξiv + o(ξi), h1(q)+ ξiη + o(ξi)) ∈ epi(h1).

Multiplying by κ gives

((1 − ξiζ )p + ξiv + o(ξi), h(p)+ ξiη + o(ξi)) ∈ epi(h).

Since (1 − ξiζ ) ≠ 0 for i sufficiently large, this implies

(p + ξiv/(1 − ξiζ )+ o(ξi), h(p)+ ξiη + o(ξi)) ∈ epi(h).

Thus, (v, η) ∈ Tepi(h)(p,h(p)), which concludes the proof of (6). �

In light of the equivalences (6) and (7), we need only compute a representation for the tangent cone Tepi(h1)(q,h1(q)) in
order to obtain one for Tepi(h)(p,h(p)). This simplifies the derivations since it allows us to restrict the analysis to the affine
manifold Mn

1 .
We now provide a formal definition for polynomial root functions. Let ≼ denote the lexicographical order on C where for

zs = xs + iys, xs, ys ∈ R, s = 1, 2, we have z1 ≼ z2 if and only if either x1 < x2 or (x1 = x2 and y1 ≤ y2). For a polynomial
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p ∈ P n
\ Mn,0 of degree k, we label its roots λ1, λ2, . . . , λk according to the lexicographic ordering and repeated according

to multiplicity. Next define the family of maps ζk : P k
→ Ck k = 0, 1, . . . , n by

ζk(p) = (λ1, λ2, . . . , λk)
T

when k = deg(p) ≥ 1 and ζ0(p) = 0 when deg(p) = 0. We write ζ (p) to mean ζdeg(p)(p) and suppress the subscript deg(p).
Consider a family of functions hk : Ck

→ R, k = 0, 1, 2, . . . , n, such that each hk is invariant under permutations of its
arguments and h0 : {0} → R is identically +∞. We define the associated family hk : Mn,k

→ R by hk = hk ◦ ζk, and
h : P n

→ R by h(p) = hk(p), where k = deg(p). More simply, we write h = h ◦ ζ , where we suppress the subscripts and
the choice of the family {h0, h1, . . . , hn}. We call h a polynomial root function or prf. A polynomial root function is always
a weak polynomial root function. All of the polynomial root functions h : P n

→ R we consider have the property that
h|Mn,k∩dom(h) is continuous for k = 1, 2, . . . , n.

2.1. Factorization spaces

Factorization spaces [9] are used to extend facts about polynomials of the form (λ − λ0)
n to general polynomials. Let

(n1, n2, . . . , nm) be a partition of n and let pj ∈ M
nj
1 , i = 1, . . . ,m be relatively prime as elements of P n. Define the

factorization space for the polynomials

π = (p1, p2, . . . , pm) (9)

to be the product space

Sπ = C × P n1−1
× P n2−1

× · · · × P nm−1. (10)

The component indexing for elements of Sπ starts with zero so that the jth component is an element of P nj−1. If π =

(e(n1,λ1), . . . , e(nm,λm)) is the prime factorization for p ∈ Mn
1 , where

p =

m∏
j=1

e(nj,λj), (11)

with λ1, λ2, . . . , λm the distinct roots of p ordered lexicographically, then we write

Sp = C × P n1−1
× P n2−1

× · · · × P nm−1. (12)

The spaces P n and Sπ are related through the mapping Fπ : Sπ → P n given by

Fπ (q0, q1, q2, . . . , qm) = (1 + q0)
m∏
j=1

(pj + qj). (13)

Note that Fπ (0) =
∏m

j=1 pj, and since the polynomials in (9) are relatively prime, [2, Lemma 1.4] tells us that there exist
neighborhoods U of 0 in Sπ and V of

∏m
j=1 pj in P n such that Fπ |U : U → V is a diffeomorphism. Thus, ∇Fπ (0) : Sπ → P n,

given by

∇Fπ (0)(ω0, w1, w2, . . . , wm) = ω0

m∏
j=1

pj +
m−
j=1

rjwj,

is an isomorphism, where rj =
∏

s≠j ps for j = 1, 2, . . . ,m.
Let

h1 = h + δMn
1

(14)

and define h[1,nj] : P nj → R by

h[1,nj](q) =


h(q) if q ∈ M

nj
1

+∞ otherwise.
(15)

Following the approach taken in [2] for the abscissa mapping, we show that if h is a factor-dominating prf, then the tangent
cone

Tepi(h1)


m∏
j=1

pj,h1


m∏
j=1

pj


can be decomposed into a kind of product of the tangent cones Tepi(h[1,nj])

(pj,h1(pj)).
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Theorem 2.2. Let h be a factor-dominating prf, let h1 andh[1,nj] be as in (14) and (15), let π = (p1, p2, . . . , pm) be as in (9)with∏m
j=1 pj ∈ dom(h) ∩ Mn

1 , and let Sπ be as in (10). If

(v, η) ∈ Tepi(h1)


m∏
j=1

pj,h


m∏
j=1

pj


,

then there exists (0, w1, w2, . . . , wm) ∈ Sπ such that v =
∑m

j=1 rjwj, with

(wj, η) ∈ Tepi(h[1,nj])


pj,h


m∏
j=1

pj


,

for j = 1, 2, . . . ,m.
Proof. Set p =

∏m
j=1 pj. Let (v, η) ∈ Tepi(h1) (p,h1(p))with v ≠ 0. Then there exist ξk ↓ 0 and sequences {o1k} ⊂ P n−1 and

{o2k} ⊂ C such that o1k/ξk → 0, o2k/ξk → 0, and

(p + ξkv + o1k, h(p)+ ξkη + o2k) ∈ epi(h1), k = 1, 2, . . . .

Set qk = p+ ξkv+ o1k, k = 1, 2 . . . . Since dom(h) ⊂ Mn and Fπ is a local diffeomorphism at the origin, there is a constant
K > ‖∇(F−1

π (0))‖ and a sequence {(0, u1k, u2k, . . . , umk)} ⊂ Sπ such that qk = p + ξkv + o1k =
∏m

k=1(pj + ujk), with
‖(0, u1k, u2k, . . . , umk)‖ ≤ K‖qk − p‖ ≤ K(ξk‖v‖+‖o1k‖). Hence, by passing to a subsequence if necessary, we can assume
with no loss in generality that there exist (0, w1, w2, . . . , wm) ∈ Sπ such that

ξ−1
k (0, u1k, u2k, . . . , umk) → (0, w1, w2, . . . , wm),

or equivalently,

(0, u1k, u2k, . . . , umk) = ξk(0, w1, w2, . . . , wm)+ o3k,

where o3k/ξk → 0 and o3k = (0, o3k1, . . . , o3km). But, since h is factor-dominating, so is h1, giving

(pj + ujk,h(p)+ ξη + o2k) ∈ epi(h[1,nj]) for all j = 1, . . . ,m and k = 1, 2, . . . .

Consequently, for j = 1, 2, . . . ,m, (wj, η) ∈ Tepi(h[1,nj])
(pj,h(p)). In addition,

p + ξkv + o1k =

m∏
k=1

(pj + ξkwj + o3kj) = p + ξk

m−
k=1

wjrj + ok,

where ok/ξk → 0. Therefore, v =
∑m

k=1wjrj which proves the result. �

3. Subderivative and tangent cone

We now focus our attention on the max polynomial root functions f defined in (4). We begin with the formula for the
subderivative df(e(n,λ0)) given in [9, Theorem 6]. This result, as well as many of those that follow, makes use of one or the
other of the following two assumptions:
(A) f is twice continuously differentiable at λ and f ′′(λ; ·, ·) is positive definite or f is quadratic,
(B) rspan (∂ f (λ)) = C,

where rspan (∂ f (λ)) = {τζ | τ ∈ R, ζ ∈ ∂ f (λ)} is the real linear span of the set ∂ f (λ).

Theorem 3.1 ([9, Theorem 6]). Let λ0 ∈ dom(∂ f ) be such that ∂ f (λ0) ≠ {0}, and let v ∈ P n be such that v =
∑n

k=0 ωke(k,λ0).
If any one of the conditions

0 =

g,

√
−ω2


for all g ∈ ∂ f (λ0), (16)

ωk = 0 for all k = 3, . . . , n, (17)

is not satisfied, then df(e(n,λ0))(v) = +∞; otherwise,

df(e(n,λ0))(v) ≥ f ′(λ0; −ω1)/n, (18)

with equality holding if (B) is satisfied with λ = λ0. If f satisfies (A) at λ = λ0, then

df(e(n,λ0))(v) = (f ′(λ0; −ω1)+ f ′′(λ0;
√

−ω2,
√

−ω2))/n, (19)

whenever (16) and (17) hold. Moreover, if either (A) or (B) is satisfied, then the subderivative df(e(n,λ0)) is proper, sublinear,
and lsc.

Remark 1. The requirement that ∂ f (λ0) ≠ {0} is used to obtain the conditions (17).
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Remark 2. Under the convention that

f ′′(λ0; ·, ·) = 0 whenever f ′′(λ0) does not exist, (20)

equality in (18) under (B) is equivalent to (19).

Proof. Conditions (18) and (19) follow from [9, Theorem 6]. Since λ0 ∈ dom(f ), we have that (0, 1) ∈ Tepi(f1)(e(n,λ0), f (λ0)).
Therefore, df1(e(n,λ0))(0) = 0, so the subderivative is proper. The subderivative is always positively homogeneous, so we
need only show it is subadditive. Let

vk =

n−
s=1

ωk
s e(n−s,λ0), k = 1, 2, so that v1 + v2 =

n−
s=1

(ω1
s + ω2

s )e(n−s,λ0).

Clearly df1(e(n,λ0))(v
1

+ v2) ≤ df1(e(n,λ0))(v
1) + df1(e(n,λ0))(v

2) if either v1 or v2 violates either (16) or (17) since then
df1(e(n,λ0))(v

1)+ df1(e(n,λ0))(v
2) = +∞. Therefore, we assume that both v1 and v2 satisfy (16) and (17). It is easily verified

that given a, b ∈ C,

a,

√
−b

= 0 if and only if either a = 0 or b = ta2 for some t ≥ 0. Hence, given g ∈ ∂ f (λ0), condition

(16) implies that either g = 0 or there exists t1, t2 ≥ 0 such that ωk
2 = tkg2, k = 1, 2. Therefore, ω1

2 +ω2
2 = (t1 + t2)g2 and

⟨g,


−(ω1
2 + ω2

2)⟩ =
√
t1 + t2Re(i|g|2) = 0, that is, v1 + v2 also satisfies (16). Hence,

n df1(e(n,λ0))(v
1
+ v2) = f ′(λ0; −(ω1

1 + ω2
1))+ f ′′(λ0;


−(ω1

2 + ω2
2),


−(ω1

2 + ω2
2)),

where the first term on the right-hand side is sublinear since f is convex and the second term is sublinear from [9, Lemma
5] (here we use the convention (20)). �

The final statement of Theorem 3.1 concerning the sublinearity of the subderivative df1(e(n,λ0)) does not appear in
[9, Theorem 6]. This addition is the cornerstone to our derivation of the subderivative df1(p) for general monic polynomials
p. The sublinearity of df1(e(n,λ0)) in conjunction with (2) implies that a representation for the regular subdifferential can
be obtained by representing the right-hand side of (19) as a support function. This is the first step in the derivation of the
regular subdifferential in Section 5. In the remainder of this section we extend Theorem 3.1 to general polynomials in Mn

1 .
Suppose p ∈ Mn

1 has prime factorization (11). In [2, Theorem 1.6], the factorization space Sp (12) is used to decompose
the tangent cone at (p, f(p)) into a kind of product of the tangent cones of the form Tepi(f[1,nj])(e(nj,λj), f(p)), where f[1,nj] :

P nj → R is given as in (15) by

f[1,nj](q) =


f(q) if q ∈ M

nj
1

+∞ otherwise.
(21)

Theorem 2.2 gives necessary conditions for (v, η) ∈ Tepi(f1)(p, f(p)) in terms of the prime factorization (11). In the following
result we use assumptions (A) and (B) to show that these conditions are also sufficient.

Theorem 3.2. Let f be proper, lsc and convex. Let p ∈ dom(f) ∩ Mn
1 be as in (11) and define I(p) = {j | f(p) = f (λj), j =

1, . . . ,m}. If (v, η) ∈ Tepi(f1)(p, f(p)), then there exists a point (ω0, w1, . . . , wm) ∈ Sp satisfying

ω0 = 0 (22)

v = ∇Fp(0)(ω0, w1, . . . , wm) =

m−
j=1

rjwj, where rj =

∏
k≠j

e(nk,λk) (23)

(wj, η) ∈ Tepi(f[1,nj])(e(nj,λj), f (λj)) for j ∈ I(p), (24)

(wj, η) ∈ Tepi(f[1,nj])(e(nj,λj), f(p)) for j ∉ I(p). (25)

These conditions are sufficient for (v, η) to be an element of Tepi(f1)(p, f(p)) if ∂ f (λj) ≠ {0} and f satisfies either (A) or (B) at
λ = λj for every λj ∈ I(p). In this case, epi(f1) is geometrically derivable at p.

Proof. That (22)–(25) are necessary for (v, η) ∈ Tepi(f1)(p, f(p)) follows from Theorem 2.2. So we need only establish
the sufficiency of (22)–(25). Let (v, η) ∈ P n−1

× R be such that v =
∑m

j=1 rjwj satisfies (24)–(25). As in the proof of
[9, Theorem 6], we use a carefully chosen trajectory of polynomials, γ (ξ) = (pξ , f(pξ )), satisfying γ ′(0) = (v, η) showing
that (v, η) ∈ Tepi(f1)(p, f(p)) and that epi (f1) is geometrically derivable. The trajectory is built up from factors of the form

q(λ; λ0, ξ , ϕ, k, l, w) =


λ− (λ0 − (ξ/k)(ω1 − ϕ/(2l))+


−ω2ξ/l)

l
×


λ− (λ0 − (ξ/k)(ω1 − ϕ/(2l))−


−ω2ξ/l)

l
= (λ− λ0)

2l
+ (2lξ/k)(ω1 − ϕ/(2l))(λ− λ0)

2l−1
+ ω2ξ(λ− λ0)

2l−2
+ o(ξ),
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where λ0 ∈ C, ξ > 0, ϕ ∈ C, k ∈ {1, . . . , n}, l ∈ {1, . . . , k/2}, and w =
∑k

s=1 ωse(k−s,λ0) ∈ P k−1, one for each of the
polynomials pj, j = 1, . . . ,m.

Let j ∈ I(p). By [9, Theorem 7] (or, equivalently, by combining (1) and Theorem 3.1),

wj(λ) = ωj1(λ− λj)
nj−1

+ ωj2(λ− λj)
nj−2,

where ωj1, ωj2 ∈ C (with ωj2 = 0 if nj = 1) satisfy

η ≥ (1/nj)[f ′(λj; −ωj1)+ f ′′(λj;


−ωj2,


−ωj2)] and (26)

0 =

f ′(λj),


−ωj2


, (27)

with f ′′(λ0;
√

−ωj2,
√

−ωj2) = 0 if assumption (B) holds.
First consider the case where λj satisfies assumption (A). There are two sub-cases to consider: nj is even and nj is odd.
If nj is even set lj = nj/2. For ξ > 0, define pξ,j(λ) = q(λ; λj, ξ , 0, nj, lj, wj). The roots of pξ,j are λj − (ξ/nj)ωj1

±


−ωj2ξ/lj, and so

f[1,nj](pξ,j) = max

f (λj − (ωj1/nj)ξ +


−ωj2ξ/lj), f (λj − (ωj1/nj)ξ −


−ωj2ξ/lj)


.

Using the second-order Taylor expansion of f about λj and (27), these roots yield

f[1,nj](pξ,j) = f (λj)+ (ξ/nj)[f ′(λj; −ωj1)+ f ′′(λj;


−ωj2,


−ωj2)] + oj(ξ). (28)

If nj is odd let lj be such that nj = 2lj + 1, and define

ϕj = −
f ′′

λj;

√
−ωj2,

√
−ωj2


f ′(λj)

.

The scalars ϕj are well defined since we have assumed that f ′(λj) ≠ 0 for every j ∈ I(p). For ξ > 0 set pξ,j(λ) =

q(λ; λj, ξ , ϕj, nj, lj, wj). The roots of pξ,j are

λj − (ξ/nj)(ωj1 + ϕj) and λj − (ξ/nj)

ωj1 − ϕj/(2lj)


±


−ωj2ξ/lj,

and so

f[1,nj](pξ,j) = max

f (λj − (ξ/nj)(ωj1 + ϕj)), f (λj − (ξ/nj)


ωj1 − ϕj/(2lj)


+


−ωj2ξ/lj, ),

f (λj − (ξ/nj)

ωj1 − ϕj/(2lj)


−


−ωj2ξ/lj, )

.

Again, by taking the second-order Taylor expansion of f at λj and using (27) with the definition of ϕj, these roots yield the
equivalence (28).

Next, suppose j ∈ I(p) is such that λj satisfies assumption (B) instead of (A). In this case define pξ,j(λ) = (λ − (λj −

ξω1j/nj))
nj . Using (27) and convention (20), again gives the equivalence (28).

Therefore, (28) holds for all j ∈ I(p). Consequently, pξ,j ∈ dom(f) for all j ∈ I(p) and ξ sufficiently small, with

f[1,nj](pξ,j) = f (λj)+ (ξ/nj)[f ′(λj; −ωj1)+ f ′′(λj;


−ωj2,


−ωj2)] + o(ξ) ≤ f (λj)+ ξη + oj(ξ),

where the inequality follows from (26).
If j ∉ I(p) define pξ,j(λ) = (λ − λj)

nj + ξwj and set pξ =
∏m

j=1 pξ,j. By the continuity of f on M
n,nj
1 , we have that

pξ,j ∈ dom(f[1,nj]), which implies that pξ ∈ dom(f) and for each j0 = 1, 2, . . . ,m,

f[1,nj0 ](pξ,j0) ≤ max
j∈I(p)

{f[1,nj](pξ,j)} ≤ max
j∈I(p)

{f (λj)+ ξη + oj(ξ)}

for ξ sufficiently small. Set βξ = maxj∈I(p){f (λj)+ηξ + oj(ξ)}. Then for small ξ, (pξ , βξ ) ∈ epi(f1). That (βξ − f(p))/ξ → η
as ξ ↓ 0 follows immediately from the definition of the sequence βξ . Also,

(pξ − p)/ξ = (Fp(0)+ ξ∇F(0)(0, w1, w2, . . . , wm)+ o(ξ)− Fp(0))/ξ
= ∇Fp(0, w1, . . . , wm)+ o(ξ)/ξ
→ ∇Fp(0, w1, . . . , wm) = v as ξ ↓ 0.

Therefore, (v, η) ∈ Tepi(f1)(p, f(p)). �

We now describe the subderivative of f at p ∈ Mn.
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Theorem 3.3. Suppose f is proper, convex and lsc. Let p ∈ dom(f) ∩ Mn
1 be as in (11) with ∂ f (λj) ≠ {0} for all j ∈ I(p). If

v = ∇Fp(0)(ω0, w1, . . . , wm) withwj =
∑nj

s=1 ωjse(nj−s,λj)(λ) for j = 1, 2, . . . ,m satisfies

0 =

g,


−ωj2


for all g ∈ ∂ f (λj), j ∈ I(p), (29)

and 0 = ωjk, k = 3, . . . , nj for all j ∈ I(p), (30)

then

df(p)(v) ≥ max
j∈I(p)

{f ′(λj; −ωj1)/nj}; (31)

otherwise, df(p)(v) = +∞. If, in addition, f satisfies either (A) or (B) at λ = λj for all j ∈ I(p), then

df(p)(v) = max
j∈I(p)

{[f ′(λj; −ωj1)+ f ′′(λj;


−ωj2,


−ωj2)]/nj}, (32)

whenever (ω0, w1, . . . , wm) satisfy (29) and (30) for all j ∈ I(p), where we use the convention (20) if (B) holds. In this case,
df(p) is proper, lsc, and sublinear.

Proof. Inequality (31) follows directly fromTheorems 3.1 and 3.2, sowe only discuss equality (32). Note that (v, df(p)(v)) =

(v, η) for some (v, η) ∈ Tepi(f)(p, f(p)). By (26),

df(p)(v) ≥ max
j∈I(p)

{(1/nj)[f ′(λj; −ωj1)+ f ′′(λj;


−ωj2,


−ωj2)]}.

Let pξ,j, pξ =
∏m

j=1 pξ,j be as in the proof of Theorem 3.2. We have pξ = p + ξv + o(ξ). Provided limξ↓0(f(pξ ) − f(p))/ξ
exists, we have df(p)(v) = lim infξ↓0,q→v(f(p + ξq)− f(p))/ξ ≤ limξ↓0(f(pξ )− f(p))/ξ . By (28),

f(pξ ) = max
j=1,2,...,m

{f (λj)+ ξ(1/nj)[f ′(λj; −ωj1)+ f ′′(λj;


−ωj2,


−ωj2)] + o(ξ)}.

Since ξ > 0, (f(pξ )− f(p))/ξ equals

max{{(1/nj)[f ′(λj; −ωj1)+ f ′′(λj;


−ωj2,


−ωj2)] + o(ξ)/ξ}j∈I(p),

{(f (λj)− f(p))/ξ + (1/nj)[f ′(λj; −ωj1)+ f ′′(λj;


−ωj2,


−ωj2)] + o(ξ)/ξ}j∉I(p)}.

Furthermore, {(1/nj)f ′(λj; −ωj1)}j=1,2,...,m and {(1/nj)f ′′(λj;
√

−ωj2,
√

−ωj2)}j=1,2,...,m are bounded, and (f (λj)− f(p))/ξ is
strictly negative and bounded away from zero for all j ∉ I(p). So for small ξ ,

(f(pξ )− f(p))/ξ = max
j∈I(p)

{[f ′(λj; −ωj1)+ f ′′(λj;


−ωj2,


−ωj2)]/nj + o(ξ)/ξ}.

Therefore, limξ↓0(f(pξ )−f(p))/ξ = maxj∈I(p){(1/nj)[f ′(λj; −ωj1)+f ′′(λj;
√

−ωj2,
√

−ωj2)]}, which implies that df(p)(v) ≤

maxj∈I(p){(1/nj)[f ′(λj; −ωj1)+ f ′′(λj;
√

−ωj2,
√

−ωj2)]}. By Theorem 3.1, each term in the maximum in the above display
is proper, sublinear and lsc. Therefore df(p)(·) is proper, sublinear and lsc. �

When df(p) is sublinear and lsc, it is the support function of the regular subdifferential. This is the key to a simplified
derivation of the regular subdifferential of f. In the next section, we specify suitable inner products for expressing the regular
subdifferential using the support function relationship.

4. Inner products

Our derivation of the subdifferential is based on Theorem 3.3 and the relation (2). For this we need to choose inner
products on both P n and Sp that are compatible with ∇Fp(0). The following elementary lemma guides us in these choices.
It is the key to both simplifying and clarifying the analysis given in [2]. We leave its proof to the reader. Recall that if L is
a linear transformation between the real inner product spaces X and Y , then the adjoint of L, denoted as L∗, is the unique
linear transformation from Y to X defined by

L∗y, x

X = ⟨y, Lx⟩Y ∀ y ∈ Y and x ∈ X .

Lemma 4.1. Let X and Y be finite dimensional vector spaces, and let L : X → Y be a linear isomorphism.

(i) Suppose Y has real inner product ⟨·, ·⟩Y making Y a Euclidean space. Then the bilinear functional B : X × X → R given by
B(x1, x2) = ⟨Lx1, Lx2⟩Y is an inner product on X, say ⟨·, ·⟩X,L. Moreover, the adjoint L∗

: Y → X with respect to the inner
products ⟨·, ·⟩X,L and ⟨·, ·⟩Y equals L−1.

(ii) If X and Y are Euclidean spaces with inner products ⟨·, ·⟩X and ⟨·, ·⟩Y , respectively, which satisfy ⟨x1, x2⟩X = ⟨Lx1, Lx2⟩Y
for all x1, x2 ∈ X, then L∗

= L−1 with respect to these inner products.
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Consider the standard real inner product on Ck+1 given by

⟨(a0, a1, . . . , ak), (b0, b1, . . . , bk)⟩Ck+1 =

k−
l=0

⟨al, bl⟩ =

k−
l=0

Re(ālbl),

for all (a0, a1, . . . , ak), (b0, b1, . . . , bk) ∈ Ck+1. This inner product induces an inner product on P k via Lemma 4.1 with the
aid of the Taylor maps τ(k,λ0) : P k

→ Ck+1 defined for each λ0 ∈ C and k = 1, 2, . . . , n by

τ(k,λ0)(q) = [q(k)(λ0)/k!, q(k−1)(λ0)/(k − 1)!, . . . , q(0)(λ0)], (33)

where q(l) denotes the lth derivative of q. The mappings τ(k,λ0) take a polynomial to its Taylor coefficients at λ0, and, for each
pair (k, λ0), τ(k,λ0) is a bijective linear transformation between P k and Ck+1. Hence, by Lemma 4.1, τ(k,λ0) induces an inner
product on P k given by

q, q̃

(k,λ0)

=

τ(k,λ0)(q), τ(k,λ0)(q̃)


Ck+1 , (34)

for all q, q̃ ∈ P k; moreover, τ ∗

(k,λ0)
= τ−1

(k,λ0)
with respect to these inner products. For future reference, observe that the

mapping on P k
× P k

× C given by (q, q̃, λ) →

q, q̃


(k,λ0)

is continuous since the map τ̃k : P k
× C → Ck+1 given by

τ̃k(q, λ) = τ(k,λ)(q) is continuous in q and λ [2].
The Taylor maps can be concatenated to build a linear isomorphism between the factorization space Sp and Cn+1 as

follows: define Tp : Sp → Cn+1 by

Tp(u) = Tp(µ0, u1, u2, . . . , um)

= [µ0, τ(n1−1,λ1)(u1), τ(n2−1,λ2)(u2), . . . , τ(nm−1,λm)(um)]

= [µ0, (µ11, . . . , µ1,nj), . . . , (µm1, . . . , µmnm)], (35)

where

u = (µ0, u1, u2, . . . , um), uj =

nj−
s=1

µjse(nj−s,λj), and µ0, µjs ∈ C, (36)

for all s = 1, 2, . . . , nj and j = 1, 2, . . . ,m. By Lemma 4.1, Tp induces an inner product ⟨·, ·⟩Sp on Sp by

⟨u, w⟩Sp =

Tp(u), Tp(w)


Cn+1 , (37)

for all u, w ∈ Sp, and that with respect to these inner products T ∗
p = T −1

p . It is useful to observe that

⟨u, w⟩Sp =

Tp(u), Tp(w)


Cn+1 = Re[µ0ω0] +

m−
j=1


uj, wj


(nj,λj)

,

where u satisfies (36) and, similarly,

w = (ω0, w1, w2, . . . , wm), wj =

nj−
s=1

ωjse(nj−s,λj), and ω0, ωjs ∈ C. (38)

Let p be as in (11). We use the mapping Fp : Sp → P n (13) to construct and inner product on P n relative to p. Recall that
Fp is a local diffeomorphism at 0, and so the map ∇Fp(0) : Sp → P n, given by

∇Fp(0)(q0, q1, q2, . . . , qm) = q0p +

m−
j=1

rjqj, (39)

where rj =
∏

i≠j e(ni,λi) = p/e(nj,λj), is an isomorphism. Hence, for every z, v ∈ P n, there exists u ∈ Sp and w ∈ Sp having
representations (36) and (38), respectively, such that

z = ∇Fp(0)(µ0, u1, u2, . . . , um) and v = ∇Fp(0)(ω0, w1, w2, . . . , wm). (40)

Again, Lemma 4.1 implies that ∇Fp(0)−1 induces an inner product on P n based on the inner product ⟨·, ·⟩Sp by setting

⟨z, v⟩(P n,p) =

∇Fp(0)−1z, ∇Fp(0)−1v


Sp

= ⟨(µ0, u1, u2, . . . , um), (ω0, w1, w2, . . . , wm)⟩Sp

= Re(µ̄0ω0)+

m−
j=1

nj−
s=1

Re(µ̄jsωjs),
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where z and v are as in (40) and u and w satisfy (36) and (38). Moreover, with respect to these inner products, ∇Fp(0)∗ =

∇Fp(0)−1.
Now consider the composition τp : P n

→ Cn+1 given by

τp = Tp ◦ ∇Fp(0)−1, (41)

where Tp is as in (35) and ∇Fp(0) is as in (39). For u, w ∈ Sp as in (36) and (38) and z, v ∈ P n as in (40), we have

⟨z, v⟩(P n,p) =

∇Fp(0)−1(z), ∇Fp(0)−1(v)


Sp

= ⟨u, w⟩Sp

= Re[µ0ω0] +

m−
j=1

nj−
s=1

Re[µjsωjs]

=

τp(z), τp(v)


Cn+1 . (42)

Again by Lemma 4.1, τ−1
p = τ ∗

p = ∇Fp(0)◦T −1
p with respect to these inner products. The relationship between these spaces

is summarized in the diagram below.

[Sp, ⟨·, ·⟩Sp ]

∇Fp(0)

��

Tp

((QQQQQQQQQQQQQ

[P n, ⟨·, ·⟩(P n,p)]
τp // [Cn+1, ⟨·, ·⟩Cn+1 ]

5. Regular subdifferential and regular normal cone

Theorem 3.1 tells us that df(e(n,λ0)) is proper, lsc, and sublinear under both (A) and (B) when ∂ f (λ0) ≠ {0}. Lemma 6
in [9] shows that the expression on the right-hand side of (19) can be written as the support functional for the set

∆(n, λ0) = {0} ×


−1
n
∂ f (λ0)


× K(n, λ0)× Cn−2, (43)

where

K(n, λ0) =


K(0, λ0), if f ′′(λ0) does not exist,
{θ |


θ, f ′(λ0)

2
≤

if ′(λ0), f ′′(λ0)(if ′(λ0))


/n}, otherwise, (44)

with

K(0, λ0) = −cone(∂ f (λ0)2)+ i

rspan (∂ f (λ0)2)


.

That is,

σ∆(n,λ0)(w) =


(f ′(λ0;ω1)+ f ′′(λ0;

√
−ω2,

√
−ω2))/n, if (16) and (17) hold,

+∞, otherwise, (45)

where we use the convention (20) when (B) holds at λ0. This gives the following characterization of the regular
subdifferential in the one root case.

Theorem 5.1 ([9, Theorem 8]). Let λ0 ∈ dom(∂ f ) be such that ∂ f (λ0) ≠ {0}. Then, relative to the inner product ⟨·, ·⟩(n,λ0)
in (34),

∂̂f(e(n,λ0)) ⊃ τ ∗

(n,λ0)(∆0(n, λ0)),

where

∆0(n, λ0) = {0} ×


−1
n
∂ f (λ0)


× (K(0, λ0))× Cn−2

and τ(n,λ0) is defined in (33). If either (A) or (B) holds at λ = λ0, then

df(e(n,λ0))(v) = σ∂̂f(e(n,λ0))
(v) ∀ v ∈ P n, with ∂̂f(e(n,λ0)) = τ ∗

(n,λ0)(∆(n, λ0)),

and

df1(e(n,λ0)) = σ∂̂f1(e(n,λ0))
(v) ∀ v ∈ P n, with ∂̂f1(e(n,λ0)) = τ ∗

(n,λ0)(∆1(n, λ0)),
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where

∆1(n, λ0) = C ×


−1
n
∂ f (λ0)


× K(n, λ0)× Cn−2.

Let v = ∇Fp(0)(ω0, w1, . . . , wm) for (ω0, w1, . . . , wm) ∈ Sp. Recall from Theorem 3.3 that if p ∈ Mn has prime
factorization (11), then

df(p)(v) ≥ max
j∈I(p)

{f ′(λj; −ωj1)/nj}

whenever (ω0, w1, . . . , wm) satisfies (29) and (30) for all j ∈ I(p); otherwise, df(p)(v) = +∞. If, in addition, f satisfies
either (A) or (B) at λ = λj for all j ∈ I(p), then

df(p)(v) = max
j∈I(p)

{[f ′(λj; −ωj1)+ f ′′(λj;


−ωj2,


−ωj2)]/nj}, (46)

whenever (ω0, w1, . . . , wm) satisfies (29) and (30) for all j ∈ I(p), where we use the convention (20) if (B) holds. By
Theorem 5.1, each term appearing in themaximum in the right-hand side of (46) is df[1,nj](e(nj,λj))(wj), where f[1,nj] : P nj →

R is defined in (21). Therefore, if f satisfies either (A) or (B) at λj for each λj with j ∈ I(p), then

df(p)(v) = max
j∈I(p)

df[1,nj](e(nj,λj))(wj) = max
j∈I(p)

σ(wj | ∂̂f[1,nj](e(nj,λj))), (47)

where we think of eachwj as an element of P nj,(nj−1) rather than P nj−1 so that the domain requirements for df[1,nj](e(nj,λj))
are satisfied (note that dom(df[1,nj](e(nj,λj))) ⊂ P nj,(nj−1)). Moreover, again by Theorem 5.1,

∂̂f[1,nj](e(nj,λj)) = τ ∗

(nj,λj)(∆1(nj, λj)).

Therefore, it seems that a formula for the subdifferential of f at p can be obtained as a straightforward consequence the
following elementary fact from convex analysis.

Proposition 5.2 ([13, Theorem C.3.3.2(ii)]). Let E be a Euclidean space and I an arbitrary index set. Let C i
⊂ E be closed and

nonempty for all i ∈ I. Then

max
i∈I

σC i(v) = σ(v | conv(∪i∈I C i))

for all v ∈ E.

However, (47) is deficient since the argument on the left-hand side is v, whereas the argument in each term in the
maximum on the right-hand side is wj. We correct this problem by slightly modifying the definitions of the sets ∆0(nj, λj)
and∆(nj, λj), and then extending them to Sp. Let K(nj, λj) be as in (43), τp as in (41), and set

∆̂(nj, λj) =


−1
nj
∂ f (λj)


× K(nj, λj)× Cnj−2,

∆̂0(nj, λj) =


−1
nj
∂ f (λj)


× K(0, λj)× Cnj−2,

Dj
= T ∗

p (0, . . . , 0, ∆̂(nj, λj), 0, . . . , 0), and

Dj
0 = T ∗

p (0, . . . , 0, ∆̂0(nj, λj), 0, . . . , 0),

where in both Dj and Dj
0, for j = 1, . . . ,m, the nonzero entries occur in the jth component with the component indexing

starting from zero so that the first component is always the scalar zero. The sets Dj and Dj
0 all lie in Sp. Finally, set

D(p) = conv∪j∈I(p) Dj, and D0(p) = conv∪j∈I(p) D
j
0.

Let ⟨·, ·⟩P n be a given inner product on P n (not necessarily the inner product ⟨·, ·⟩(P n,p)), and let ∇Fp(0)∗ denote the
adjoint of ∇Fp(0)with respect to the inner products ⟨·, ·⟩P n and ⟨·, ·⟩Sp .

Theorem 5.3. Let f : C → R be proper, convex and lsc, and let p ∈ dom(f) ∩ Mn
1 have prime factorization (11) where

∂ f (λj) ≠ {0} for each j ∈ I(p). Then, with respect to the inner product ⟨·, ·⟩P n ,

∂̂f(p) ⊃ {z | ∇Fp(0)∗z ∈ D0(p)}. (48)

If f satisfies either (A) or (B) at λj, for each j ∈ I(p), then

∂̂f(p) = {z | ∇Fp(0)∗z ∈ D(p)} and df(p)(v) = σ∂̂f(p)(v). (49)

In particular, if ⟨·, ·⟩P n is chosen to be ⟨·, ·⟩(P n,p), then ∂̂f(p) = ∇Fp(0)D(p).
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Remark 3. The representation ∂̂f(p) = ∇Fp(0)D(p)under inner product ⟨·, ·⟩(P n,p) is neweven in the case of the polynomial
abscissa mapping. It can be used to simplify the representation of the regular subdifferential for the abscissa mapping given
in [2, Theorem 2.2]. We use it in the final section of this paper to represent the subdifferential of the polynomial radius
mapping r.

Proof. Let v ∈ P n and (ω0, w1, . . . , wm) ∈ Sp be such that

v = ∇Fp(0)(ω0, w1, . . . , wm). (50)

The proof of (48) is nearly identical to that of (49) if one uses Theorem 3.3 and (45) to observe that

df(p)(v) ≥ max
j∈I(p)

{f ′(λj; −ωj1)/nj} = max
j∈I(p)

σ(τ(nj−1,λj)(wj) | ∆̂0(nj, λj))

= max
j∈I(p)

σ(wj | τ ∗

(nj−1,λj)(∆̂0(nj, λj))).

Therefore, we only prove (49). Suppose that f satisfies either (A) or (B) at λj, for all j ∈ I(p). Since each of the setsDj is closed,
convex and nonempty, the result will follow from (47) and Proposition 5.2 if we show that σDj(v) = df[1,nj](e(nj,λj))(wj),
where v andw satisfy (50).

First note that for each dj ∈ Dj there exists uj ∈ ∆̂(nj, λj) such that

∇Fp(0)∗dj = T ∗

p (0, . . . , 0, uj, 0, . . . , 0) = (0, . . . , 0, τ ∗

(nj−1,λj)(uj), 0, . . . , 0).

Let v ∈ P n andw = (ω0, w1, . . . , wm) ∈ Sp be as in (50). Then

σDj(v) = sup
∇Fp(0)∗dj∈Dj


dj, v


P n = sup

∇Fp(0)∗dj∈Dj


dj, ∇Fp(0)w


P n

= sup
∇Fp(0)∗dj∈Dj


∇Fp(0)∗dj, (ω0, w1, . . . , wm)


Sp

= sup
uj∈∆̂(nj,λj)


T ∗

p (0, . . . , 0, uj, 0, . . . , 0), (ω0, w1, . . . , wm)

Sp

= sup
uj∈∆̂(nj,λj)


τ ∗

(nj−1,λj)(uj), wj


(nj−1,λj)

= sup
uj∈∆̂(nj,λj)


uj, τ(nj−1,λj)(wj)


Cnj = sup

uj∈∆(nj,λj)


uj, τ(nj,λj)(wj)


Cnj+1

= sup
uj∈∆(nj,λj)


τ ∗

(nj,λj)(uj), wj


(nj,λj)

= sup
rj∈τ∗

(nj,λj)
(∆(nj,λj))


rj, wj


(nj,λj)

= σ(wj | τ ∗

(nj,λj)(∆(nj, λj))) = df[1,nj](e(nj,λj))(wj),

where the fifth line follows since the first component of∆(nj, λj) is zero (see (43)).
The final statement of the theorem follows since ∇Fp(0)∗ = ∇Fp(0)−1 when the inner product on P n is given by

⟨·, ·⟩(P n,p). �

The formulas for the subderivative and subdifferential for any p ∈ dom(f)∩Mn can be obtained by applying the following
elementary lemma.

Lemma 5.4. Let h : P n
→ R be a weak prf. Given p ∈ dom(h) and κ ∈ C \ {0}, we have

κp ∈ dom(h) and dh(κp)(v) = dh(p)(κ−1v) ∀v ∈ P n.

Moreover, if dh(p) = σ∂̂h(p), then ∂̂h(κp) = κ̄−1∂̂h(p).

Proof. The domain property follows immediately from the definition of a weak prf. The subderivative equivalence follows
from the definitions of weak prf and the subderivative. The final equivalence follows since

dh(κp)(v) = dh(p)(κ−1v) = sup
u∈∂̂h(p)


u, κ−1v


P n = sup

u∈κ̄−1 ∂̂h(p)
⟨u, v⟩P n . �

Given p ∈ P n having factorization (11), Theorem 5.3 in conjunction with the relationship (3) can be used to obtain a
representation for the regular normal cone to epi(f). The only obstacle to this being a straightforward computation is the
absence of a formula for the recession cone {z | ∇Fp(0)∗z ∈ D(p)}∞. This is provided in the following proposition.
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Proposition 5.5. Let p, f ,D, and ⟨·, ·⟩P n be as in the statement of Theorem 5.3. Then

{z | ∇Fp(0)∗z ∈ D(p)}∞ = {z | ∇Fp(0)∗z ∈ conv∪j∈I(p)(Dj)∞},

where (Dj)∞ = T ∗
p (0, . . . , 0, ∆̂(nj, λj)

∞, 0, . . . , 0) and

∆̂(nj, λj)
∞

=
−1
nj
∂ f (λj)∞ × K(0, λj)× Cnj−2.

That is, z ∈ {w | ∇Fp(0)∗w ∈ D(p)}∞ if and only if there exists a point (µ0, u1, . . . , um) ∈ Sp such that ∇Fp(0)∗(z) =

(µ0, u1, . . . , um), with uj =
∑nj

s=1 µjse(nj−s,λj) for j = 1, . . . ,m, and µ0, µjs ∈ C for s = 1, . . . , nj, j = 1, . . . ,m, satisfying

µ0 = 0, uj = 0 for j ∉ I(p), and
µj1 ∈ −∂ f (λj)∞ and µj2 ∈ K(0, λj) ∀j ∈ I(p).

Proof. Well-known properties of the horizon cone give

{z | ∇Fp(0)∗z ∈ D(p)}∞ = {z | ∇Fp(0)∗z ∈ D(p)∞} [12, Proposition 2.1.11]

as well as

D(p)∞ = conv


∪j∈I(p)(Dj)
∞

[12, Lemma 2.3.2]

= conv∪j∈I(p)

(Dj)∞


[12, Proposition 2.1.9]

= conv∪j∈I(p) T
∗

p [(0, . . . , 0, ∆̂(nj, λj), 0, . . . , 0)∞] [12, Corollary 2.3.2]

= conv∪j∈I(p) T
∗

p (0, . . . , 0, ∆̂(nj, λj)
∞, 0, . . . , 0) [12, Proposition 2.1.10],

with

∆̂(nj, λj)
∞

=


−1
nj
∂ f (λj)∞


× K(nj, λj)

∞
× Cnj−2 [12, Proposition 2.1.10].

Finally, the equivalence K(nj, λj)
∞

= K(0, λj) follows from [9, Equation (49)] which proves the result. �

6. Subdifferential regularity

The derivation of formulas for general and horizon subgradients of f at a polynomial p requires taking limits of regular
subgradients gν ∈ ∂̂f(pν) where pν

ν
→ p. The formulas for regular subgradients given in Theorem 5.3 depend on

the factorization space Sp and the choice of an inner product ⟨·, ·⟩P n on P n. Therefore, the limiting behavior of regular
subgradients is tied to the limiting behavior of the factorization spaces Sp as well as the mappings ∇Fpν (0)∗ and Tpν along
sequences {pν} converging to p. One of the difficulties associatedwith these limits is that although themappings∇Fpν (0) are
invertible for each ν, the limit of these transformations is typically not invertible. Much of the machinery we use to handle
these kinds of sequences is developed in [2]. We first review this material and then augment it with ideas from Section 4.
We begin with the spaces Spν .

Let p ∈ Mn
∩ dom(f) have factorization (11), and consider pν

ν
→ p with {pν} ⊂ dom(f) ∩ Mn. By Lemma 2.1, we can

assume {pν} ⊂ Mn
1 . Moreover, since pν

ν
→ p, Lemma 1.4 in [2] tells us that we can write

pν =

m∏
j=1

qνj and qνj =

lνj∏
s=1

e(nνjs,λνjs),

where

deg(qνj ) = nj, qνj
ν

→ e(nj,λj),
lνj−

s=1

nνjs = nj, λνjs
ν

→ λjs, λjs = λj,

and λνjs ≠ λνit if either j = i and s ≠ t or j ≠ i, for s = 1, . . . , lj and j = 1, . . . ,m. Since there are only finitely many partitions
of n, by going to a subsequence if necessary, we can assume that

lνj = lj and nνjs = njs for all ν = 1, 2, . . . .

Define the factorization space S̃ by
S̃ = C × Ŝπ1 × Ŝπ1 × · · · × Ŝπm ,

where
Ŝπj = P nj1−1

× · · · × P
njlj−1 and πj = (nj1, . . . , njlj) j = 1, . . . ,m.
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The factorization spaces Spν and S̃ coincide up to a permutation of the components, for all ν = 1, 2, . . . . We suppress this
permutation and simply write Spν = S̃ for all ν = 1, 2, . . . .

Next consider the mappings ∇Fpν (0) : S̃ → P n given by

∇Fpν (0)(ω0, (w11, . . . , w1l1), . . . , (wm1, . . . wmlm)) = rν0ω0 +

m−
j=1

rνj

 lj−
s=1

r̂νjswjs


(51)

where

rνj =

∏
i≠j

li∏
s=1

e(nis,λνis) = pν/qνj , r̂νjs =

lj∏
t≠s

e(njt ,λνjt ) = qνj /e(njs,λνjs), and rν0 = pν .

The representation (51) shows that the mappings ∇Fpν (0) can be written in factored form as

∇Fpν (0) = Γν ◦ Ψν,

where Γν : Sp → P n and Ψν : S̃ → Sp are given by

Γν(µ0, u1, . . . , um) = rν0µ0 +

m−
j=1

rνj uj and Ψν = [I, ψν,1, . . . , ψν,m],

with ψν,j : Ŝπj → P nj−1 given by

ψν,j(wj1, . . . , wjlj) =

lj−
s=1

r̂νjswjs j = 1, . . . ,m.

These mappings have well-defined limits as ν → ∞. Indeed, if, for j = 1, . . . ,m, we define the mappings ψ(πj,λj) : Ŝπj →

P nj−1 by

ψ(πj,λj)(aj1, aj2, . . . , ajlj) =

lj−
s=1

e(nj−njs,λj)ajs,

then

Γν
ν

→ ∇Fp(0), Ψν
ν

→ Ψ = [I, ψ(π1,λ1), ψ(π2,λ2), . . . , ψ(πm,λm)], and

∇Fpν (0)
ν

→ ∇Fp(0) ◦ Ψ = Ξ ,

where convergence is with respect to any choice of norms on P n, Sp, and S̃. The operators also allow us to compute limits
of the operators ∇Fp(0)∗ which is necessary for computing the limits of regular subgradients. For this we will again need a
suitable choice of inner products on the various spaces. The following lemma provides the key.

Lemma 6.1 ([2, Lemma 3.1]). For each j = 1, . . . ,m, the inner products


(uj1, . . . , ujlj), (wj1, . . . , wjlj)


(ν,Ŝπj )

=

lj−
s=1


ujs, wjs


(njs−1,λνjs)

converge pointwise to the inner product


(uj1, . . . , ujlj), (wj1, . . . , wjlj)


(∞,Ŝπj )

=

lj−
s=1


ujs, wjs


(njs−1,λj)

.

Moreover, for each j = 1, . . . ,m, the adjoint transformations ψ∗

ν,j : P nj−1
→ Ŝπj , with respect to the Euclidean

spaces [Ŝπj , ⟨·, ·⟩(ν,Ŝπj )
] and [P nj−1, ⟨·, ·⟩(nj−1,λj)], converge to the adjoint ψ∗

(πj,λj)
with respect to the Euclidean spaces [Ŝπj ,

⟨·, ·⟩(∞,Ŝπj )
] and [P nj−1, ⟨·, ·⟩(nj−1,λj)] with

ψ∗

(πj,λj)

 nj−
s=1

βse(nj−s,λj)


=

 nj1−
s=1

βse(nj1−s,λj), . . . ,

njlj−
s=1

βse(njlj−s,λj)

 .
Proof. The convergence of the inner products follows immediately from the continuity of themapping τ̃k : P k

×C → Ck+1

given by τ̃k(q, λ) = τ(k,λ)(q). The convergence of the adjoints follows from the convergence of the inner products and the
definition of the adjoint. The representation for ψ∗

(πj,λj)
is proved in [2, Lemma 3.1]. �
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Since Γν
ν

→ ∇Fp(0), we have that Γ ∗
ν

ν
→ ∇Fp(0)∗, where all of these adjoints are taken with respect to the Euclidean

spaces [Sp, ⟨·, ·⟩Sp ] and [P n, ⟨·, ·⟩P n ], where ⟨·, ·⟩Sp is defined in (37). It is important that these inner products are fixed

and do not change with ν. Lemma 6.1 implies that Ψ ∗
ν

ν
→ Ψ ∗ where Ψ ∗ is the adjoint with respect to the Euclidean spaces

[S̃, ⟨·, ·⟩(∞,S̃)] and [Sp, ⟨·, ·⟩Sp ] with

⟨u, w⟩(∞,S̃) = Re(µ̄0ω0)+

m−
j=1


uj, wj


(∞,Ŝπj )

,

and each Ψ ∗
ν is the adjoint with respect to the Euclidean spaces [S̃, ⟨·, ·⟩(ν,S̃)] and [Sp, ⟨·, ·⟩Sp ] with

⟨u, w⟩(ν,S̃) = Re(µ̄0ω0)+

m−
j=1


uj, wj


(ν,Ŝπj )

.

Therefore ∇Fpν (0)∗
ν

→ Ψ ∗
◦ ∇Fp(0)∗ = Ξ∗.

We summarize the relationships between the mappings and inner product spaces in the diagram below.

[S̃, ⟨·, ·⟩(ν,S̃)]

∇Fpν (0)

��

Ψν // [Sp, ⟨·, ·⟩Sp ]

Γνvvnnnnnnnnnnnn

ν→∞ // [S̃, ⟨·, ·⟩(∞,S̃)]

Ξ

��

Ψ // [Sp, ⟨·, ·⟩Sp ]

∇Fp(0)vvnnnnnnnnnnnn

[P n, ⟨·, ·⟩P n ] [P n, ⟨·, ·⟩P n ]

We are now ready to establish the subdifferential regularity of f.

Theorem 6.2. Let f : C → R be convex and let p ∈ dom(f) ∩ Mn
1 as in (11) be such that f is twice continuously

differentiable at λj with f ′(λj) ≠ 0 and satisfying (A) at λ = λj for all j ∈ I(p). Then f is subdifferentially regular at p,
that is, ∂f(p) = ∂̂f(p) and ∂∞f(p) = ∂̂f(p)∞.

Proof. It is always the case that ∂f(p) ⊃ ∂̂f(p) and ∂∞f(p) ⊃ ∂̂f(p)∞, so we need only show the reverse inclusions.
The proofs in both cases are nearly identical and so we only provide a proof for the somewhat more difficult inclusion
∂f(p) ⊂ ∂̂f(p).

Since f is twice continuously differentiable at each λj for j ∈ I(p), there is a neighborhood U of p such that for all q ∈ U
we have I(q) ⊂ I(p) and for all λ ∈ R(q) with f (λ) = f(q) it must be the case that f ′(λ) ≠ 0 and (A) is satisfied at λ.
Therefore, on U , the regular subdifferential of f is given by Theorem 5.3. Let pν

ν
→ p and zν

ν
→ z with zν ∈ ∂̂f(pν) for all

ν = 1, 2, . . . . We need to show that z ∈ ∂̂f(p). With no loss in generality, we can assume that {pν} ⊂ U so that ∂̂f(pν) is
given by Theorem 5.3 for all ν = 1, 2, . . . . By Lemma 5.4, we can also assume with no loss in generality that {pν} ⊂ Mn

1 . Set

wν = Γ ∗

ν z
ν and uν = Ψ ∗

ν w
ν so that uν = Ψ ∗

ν Γ
∗

ν z
ν, (52)

and, using Theorem 5.3, for all ν = 1, 2, . . . , write

wν = (ων0, w
ν
1 , . . . , w

ν
m) ∈ Sp withwνj ∈ P nj−1, 1 ≤ j ≤ m, (53)

uν = (µν0, u
ν
1, . . . , u

ν
m) ∈ S̃, (54)

uνj = (uνj1, . . . , u
ν
jlj) ∈ Ŝπj , 1 ≤ j ≤ m, with (55)

uνjs = γ νjs

njs−
t=1

µνjste(njs−t,λνjs)
∈ P njs−1, 1 ≤ j ≤ m, 1 ≤ s ≤ lj, (56)

where, for 1 ≤ j ≤ m, 1 ≤ s ≤ lj,

γ νjs ≥ 0 with γ νjs = 0 if (j, s) ∉ Iν = {(j, s) | f(pν) = f (λνjs)},
m−
j=1

lj−
s=1

γ νjs = 1, (57)

and, for (j, s) ∈ Iν ,

µνjs1 =
1
njs

f ′(λνjs), µνjs2 ∈ K(njs, λ
ν
js), and µνjst ∈ C, 3 ≤ t ≤ njs. (58)

The continuity of the roots of a polynomial (including multiplicities) on Mn implies that λνjs
ν

→ λj for 1 ≤ j ≤ m and
1 ≤ s ≤ njs. Since there are only finitely many possibilities for the index set Iν , we can assume with no loss in generality
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that there is an index set Ĩ such that Iν = Ĩ for all ν = 1, 2, . . . . Moreover, by continuity, it must be the case that
{j | ∃ s such that (j, s) ∈ Ĩ} ⊂ I(p). Since Ĩ is fixed, the compactness of the set of possible γ νjs ’s implies that we can

also assume with no loss in generality that there exist γjs such that γ νjs
ν

→ γjs for 1 ≤ j ≤ m, 1 ≤ s ≤ lj and (57) holds with

the sequential index ν removed where we define λjs = λj since λνjs
ν

→ λj for 1 ≤ j ≤ m and 1 ≤ s ≤ lj.
Consequently, the same must be true for all of the sequences described in (52)–(58) where we denote their limits by

removing the sequential index ν. Moreover, due to the continuity of f ′ and f ′′, all of these limits satisfy (52)–(58) with the
sequential index ν removed.

Set

I = {(j, s) | γjs > 0} and Î = {j | (j, s) ∈ I}, (59)

and note that Î ⊂ I(p). Set γj =
∑njs

s=1 γjs, 1 ≤ j ≤ m, so that

m−
j=1

γj = 1 with γj > 0 for j ∈ Î (60)

and γj = 0 otherwise. Write

wj =

nj−
s=1

ωjse(nj−s,λj), 1 ≤ j ≤ m.

Since u = Ψ ∗w, we have ψ∗

(πj,λj)
wj = (uj1, . . . , ujlj), 1 ≤ j ≤ m, or equivalently,

njs−
t=1

ωjte(njt−t,λj) =

njs−
t=1

γjsµjste(njs−t,λj), 1 ≤ j ≤ m, 1 ≤ s ≤ lj.

Therefore,

ωjt = γjsµjst , 1 ≤ j ≤ m, 1 ≤ s ≤ lj, 1 ≤ t ≤ njs. (61)

For t = 1, the first condition in (58) and the fact that γjs = 0 for (j, s) ∉ I, gives

ωj1 = γjsµjs1 =
γjs

njs
f ′(λj) 1 ≤ j ≤ m, 1 ≤ s ≤ lj. (62)

Since f ′(λj) ≠ 0 for j ∈ I(p), this gives γjs/njs = τj1 for some τj1 ∈ C, j ∈ I(p), 1 ≤ s ≤ lj. Therefore,
γjs = τj1njs, j ∈ I(p), 1 ≤ s ≤ lj. Summing over s gives

γj =

lj−
s=1

γjs =

lj−
s=1

τj1njs = τj1nj, j ∈ I(p),

that is, τj1 =
γj
nj
, j ∈ I(p). Hence, (62) implies that

ωj1 =
γj

nj
f ′(λj), 1 ≤ j ≤ m, (63)

since γjs = 0 = γj for j ∉ I ⊂ I(p).
For t = 2, (61) tells us that ωj2 = γjsµjs2, 1 ≤ j ≤ m, 1 ≤ s ≤ lj. Multiplying each of these expressions by njs and then

summing over s gives

njωj2 =

lj−
s=1

njsωj2 =

lj−
s=1

njsγjsµjs2, 1 ≤ j ≤ m.

Combining this with the second condition in (58) for each j ∈ Î, where Î is defined in (59), and using the definition of the
sets K(njs, λj) in (44), gives

nj

ωj2, f ′(λj)

2
=

lj−
s=1

njsγjs

µjs2, f ′(λj)

2
≤

lj−
s=1

γjs

if ′(λj), f ′′(λj)(if ′(λj))


= γj


if ′(λj), f ′′(λj)(if ′(λj))


for 1 ≤ j ≤ m.
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Setting ω̂j2 = γ−1
j ωj2 for j ∈ Î gives


ω̂j2, f ′(λj)

2

≤

if ′(λj), f ′′(λj)(if ′(λj))


/nj, or equivalently,

ω̂j2 ∈ K(nj, λj) with ωj2 = γjω̂j2 for 1 ≤ j ≤ m, (64)

since γj = 0 = γjs for (j, s) ∉ I so that ωj2 = 0 for j ∉ Î by (61). Therefore, (60), (63) and (64) combine to imply that
w ∈ D(p) giving z ∈ ∂̂f(p). �

7. The radius mapping for polynomials

Formulas for the subdifferential of the abscissamapping a as well as its subdifferential regularity are established in [2]. In
this sectionwe provide similar results for the radiusmapping r, defined in the introduction, using the results of the previous
sections as well as the techniques and subdifferential formulas for ∂̂r(e(n,λ0)) established in [9].

The modulus function r(ζ ) = |ζ | is convex on C and twice continuously differentiable on C \ {0}, but r ′′ is not positive
definite onC\{0}. Therefore, the results of the previous sections do not directly apply except at the origin. In [9] this problem
is overcome by introducing the quadratic function

r2(p) =
1
2
r(p)2 = max


1
2
|λ|2

 λ ∈ R(p)

,

and establishing a relationship between the variational properties of r2 and those of r.

Lemma 7.1 ([9, Lemma 7]). Let p ∈ P n be any polynomial for which r(p) > 0. Then

Tepi(r)(p, µ) =


v,
η

µ


| (v, η) ∈ Tepi(r2)


p,

1
2
µ2


and

Nepi(r)(p, µ) =


(w,µτ) | (w, τ) ∈ Nepi(r2)


p,

1
2
µ2


.

This lemma enables the following characterization of the regular subdifferential in the one root case.

Theorem 7.2 ([9, Theorem 12]). Given λ ∈ C set p = e(n,λ) and define

Kr2(n, λ) = {θ |

θ, λ2


≤ |λ|2/n},

∆r2(n, λ) = 0 × {−λ/n} × Kr2(n, λ)× Cn−2, and

∆r(n, λ) =


0 ×


1
n

B


× Cn−1 if λ = 0,

1
|λ|
∆r2(n, λ) otherwise,

where B is the closed unit ball in C. Then ∂̂r(p) = τ ∗

(n,λ)∆r(n, λ) and, if λ ≠ 0, then

τ ∗

(n,λ)∆r2(n, λ) = ∂̂r2(p) = r(p)∂̂r(e(n,λ)).

Moreover, dr(e(n,λ)) = σ∂̂r(e(n,λ))
, that is, givenw =

∑n
s=0 ωse(n−s,λ),

dr(e(n,λ))(w) =


1
n
|ω1| if λ = 0,
1

n|λ|
[|ω2| − ⟨λ, ω1⟩] otherwise,

whenever

λ,

√
−ω2


= 0 and ωs = 0, s = 3, . . . , n, with dr(e(n,λ))(w) = +∞ otherwise.

By combining Theorems 5.3 and 7.2 with Lemma 7.1 one can derive representations for all of the variational objects
studied in the previous sections for the radius mapping r. We give one such result for the subdifferential. As in Theorem 5.3,
we make use of the following sets: for r(p) > 0 and 1 ≤ j ≤ m, set

Kr(nj, λj) = {θ |

θ, λ2j


≤ |λj|/nj}

∆̂r(nj, λj) =


−

1
nj

λj

|λj|


× Kr(nj, λj)× Cnj−2

Dj
r(p) = T ∗

p (0, . . . , 0, ∆̂r(nj, λj), 0, . . . , 0)

D(p) = conv∪j∈I(p) Dj
r
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and, for r(p) = 0,

D(p) = {0} ×
1
n

B × Cn−1.

Theorem 7.3. The radius mapping r is subdifferentially regular onMn. Moreover, for κ ∈ C\{0} and p ∈ Mn
1 the subdifferential

of q = κp is given by ∂r(q) = κ̄−1∂r(p) where ∂r(p) = {z | ∇Fp(0)∗D(p)}. In particular, if the inner product on P n is given by
⟨·, ·⟩(P n,p) defined in (42), then

∂r(p) =


z



z =

m−
j=1

rj
nj−
s=1

µjse(nj−s,λj), where µjs = 0 ∀j ∉ I(p),

∃{γj}j∈I(p) ⊂ [0, 1] with
−
j∈I(p)

γj = 1

such that µj1 = −
γj

nj

λj

|λj|
and Re


λ2j µj2


≤
γj

nj
|λj| ∀j ∈ I(p)


when r(p) > 0; otherwise, ∂r(p) = {

µ

n e(n−1,0) + q | |µ| ≤ 1, q ∈ P n−2
}.

Proof. By Theorem 6.2, r2 is subdifferentially regular on Mn
\ {e(n,0)} and Theorem 5.3 provides the formula (49) for ∂r2(p).

The representation for the regular normal cone for epi(r2) given in Lemma 7.1 combined with the relation (3) implies that
r inherits the subdifferential regularity of r2 on Mn

\ {e(n,0)} with its subdifferential given by the formulas as stated via
Theorem 5.3. At the polynomial p = e(n,0) the expression for ∂r(e(n,0)) given above is precisely the expression for ∂̂r(e(n,0))
as given by Theorem 5.3 since ∂r(0) = B. Therefore, it only remains to establish the subdifferential regularity of r at e(n,0).
For this we make use of a limiting argument similar to the one given in the proof of Theorem 6.2.

Let pν
ν

→ e(n,0) and zν
ν

→ z with zν ∈ ∂̂r(pν) for all ν = 1, 2, . . . . We need to show that z ∈ ∂̂r(e(n,0)). By Lemma 5.4,
we can assume with no loss in generality that {pν} ⊂ Mn

1 . If p
ν

= e(n,0) for some infinite subsequence ν ∈ J ⊂ {1, 2, . . .},
then we are done. Therefore, we can assume with no loss in generality that

r(pν) > 0 for all ν = 1, 2, . . . . (65)

Taking p = e(n,0), f = r , and f = r, we have that the entire development (52) through (58) holds true with m = 1 and
n1 = n. By (65), we have f ′(λν1s) = r ′(λν1s) = λν1s/|λ

ν
1s| for all (1, s) ∈ Iν and ν = 1, 2, . . . . The compactness of B implies

that we can assume with no loss in generality that there exist φs ∈ B such that λν1s/|λ
ν
1s| → φs ∈ B for all (1, s) ∈ Iν .

Set φs = 0 for (1, s) ∉ Iν . Since there are only finitely many possibilities for the index set Iν , we can assume with no loss
in generality that there is an index set Ĩ such that Iν = Ĩ for all ν = 1, 2, . . . . Since Ĩ is fixed, the compactness of the
set of possible γ ν1s’s implies that we can also assume with no loss in generality that there exist γ1s such that γ ν1s → γ1s for
1 ≤ s ≤ l1 with

∑l1
s=1 γ1s = 1. Therefore, all of the sequences defined in (52)–(58) have limits whichwe denote by removing

the sequential index ν in all but (58) where we now have

µν1s1
ν

→ µ1s1 =
1
n1s
φs, µν1st

ν
→ µ1st ∈ C, 2 ≤ t ≤ n1s, 1 ≤ s ≤ l1, (66)

and λ1s = 0 for 1 ≤ s ≤ l1. As in the proof of Theorem 6.2, write w1 =
∑n1

s=1 ω1se(n1−s,0). Since u = Ψ ∗w, we have
ψ∗

(π1,0)
w1 = (u11, . . . , u1l1), or equivalently,

n1s−
t=1

ω1te(n1s−t,0) =

n1s−
t=1

γ1sµ1ste(n1s−t,0), 1 ≤ s ≤ l1.

Therefore, ω1t = γ1sµ1st , 1 ≤ s ≤ l1, 1 ≤ t ≤ n1s. For t = 1, the first condition in (66) and the fact that γ1s = 0 = φs
for (1, s) ∉ I, gives ω11 = γ1sµ1s1 =

γ1s
n1s
φs, 1 ≤ s ≤ lj. Multiplying this expression through by n1s and summing over s

gives nω11 = n1ω11 =
∑l1

s=1 γ1sφs, or equivalently, ω11 =
1
n

∑l1
s=1 γ1sφs ∈

1
nB, since

∑l1
s=1 γ1s = 1 and B is convex. That is,

z ∈ ∂̂r(e(n,0)). �
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