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Abstract: It has been recently argued that linear system identification can be tackled in a
Bayesian framework provided a suitable class of priors is considered. These priors essentially
encode stability of the system but have to be flexible enough to adapt to a wide range
of situations. Part of this flexibility is achieved introducing hyperparameters in the prior
distribution which have to be estimated from data. In this paper we study the properties of
a class of empirical Bayes estimators in terms of their Mean Squared Error. We do so in a
simplified scenario which however captures some of the essential features arising in system
identification.

1. INTRODUCTION

Bayesian methods for system identification, whose origins
can be perhaps traced back to the seventies and eighties
[Doan et al., 1984, Kitagawa and Gersh, 1984], have
been subject of significant progress in the last few years
[Pillonetto and De Nicolao, 2010, Pillonetto et al., 2011a,b,
Chen et al., 2011].

A common feature of these methods is the selection of
a prior distribution for the unknown parameters 1 , which
often takes a preassigned form (e.g. the covariance called
stable spline Kernel in [Pillonetto and De Nicolao, 2010,
Pillonetto et al., 2011a]) but depends on a few hyperpa-
rameters 2 that have to be estimated from data. Then, the
estimated prior is used in the Bayesian estimator. This
approach is rather common in Bayesian statistic and goes
under the name of Empirical Bayes method [Maritz and
Lwin, 1989].

In [Pillonetto and De Nicolao, 2010, Pillonetto et al.,
2011a,b] the hyperparameters are estimated using the
so called marginal likelihood, where the dependence on
the unknown parameters has been integrated out. This
marginalization naturally takes into account the effect
of uncertainty in the estimated parameters, which is de-
scribed by their posterior distribution given the data.

In order to get more insight into this estimation procedure
we have decided to simplify the problem assuming that
the “unknown” system is linear and described by a finite
number of parameters (e.g. an FIR as in [Chen et al.,

1 For simplicity of exposition we refer to the system to be estimated
with the term “unknown parameters” even though it might be
infinite dimensional.
2 The word hyperparameters is used to denote the the parameters
which describe the prior distribution.

2011]) and, in addition, their prior distribution is taken
to be zero mean Gaussian with a covariance which is
proportional to the identity matrix. This simplified setup
still captures the essential features which we want to study.

In this paper we focus on the single input case. We shall
see that in the asymptotic regime (as the number of
measurements tend to infinity) maximizing the marginal
likelihood is equivalent to minimizing a weighted version
of the Mean Squared Error (MSE) on the parameters.

Note that studies of Bayes estimators under a squared loss
criterion can be found in early papers such as [Efron and
Morris, 1973] and are of course related to the so called
“James-Stein” estimators [James and Stein, 1961], [Stein,
1981].

The structure of the paper is as follows: Section 2 intro-
duces the class of estimators we consider, in Section 3
we report the main result which provides a link between
marginal likelihood maximization and the Mean Squared
Error. Then Section 4 discusses the relation between esti-
mation of hyperparameters based on either marginal likeli-
hood maximization or minimization of (weighted versions
of) the MSE. Simulations are reported in Section 5 and
conclusions end the paper.

2. EMPIRICAL BAYES ESTIMATORS BASED ON
MARGINAL LIKELIHOOD OPTIMIZATION

We consider a linear measurement model of the form
y = Gθ + v y ∈ Rn θ ∈ Rm (1)

where v is the vector whose components are white noise of
known variance σ2.

In the system identification scenario one can think of θ as
the coefficients of an FIR system and of G as the Hankel
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matrix containing the input samples; note that (1) may
describe a MISO model. In fact, as explained in [Aravkin
et al., 2011b] the explanatory factors G used to predict y
can be grouped, where the groups correspond to different
inputs. As such θ can be partitioned into p sub-vectors
θ(i), i = 1, . . . , p, so that

θ = [θ(1)> θ(2)> . . . θ(p)>]>. (2)

In the paper [Aravkin et al., 2011a], with an eye to the
problem of input selection, we study the MSE properties
of these Bayes estimators with particular attention to the
tradeoffs between sparsity and shrinking.

Hereafter, for the sake of exposition, we consider the case
p = 1 and consider a class of Bayes estimators defined as
follows. Let λ be a random variable, independent of the
measurement noise, which is given an improper prior on
R+ that includes information only on its positivity. Then,
we model θ (conditionally on λ) as a zero-mean Gaussian
vector with covariance 3

θ|λ ∼ N(0, λIm) (3)

In order to find an estimator of θ one first optimizes the
marginal density of λ, and then again using an empirical
Bayes approach, the minimum variance estimate of θ is
computed with λ taken as known and set to its estimate.
This is described in the following theorem.
Theorem 1. Consider the Bayesian prior in (3) and the
measurement model given by (1). Define

λ̂ = arg max
λ∈R+

∫
Rm

p(θ, λ|y)dθ (4)

Then, λ̂ is given by

arg min
λ∈R+

1
2

log det(Σy(λ)) +
1
2
y>Σ−1

y (λ)y (5)

where
Σy(λ) := λGG> + σ2I (6)

In addition, the estimate of θ, denoted θ̂, is given by setting
λ = λ̂ in the function

θ(λ) := E[θ|y, λ] = λG>(Σy(λ))−1y. (7)

�

The derivation of this estimate can be found in [Aravkin
et al., 2011b] and is omitted for reasons of space.

Let the vector µ denote the dual vector for the constraint
λ ≥ 0. Then the Lagrangian for the problem (5) is given
by

L(λ, µ) :=
1
2

log det(Σy(λ)) +
1
2
y>Σy(λ)−1y − µλ (8)

Using the fact that

∂λL(λ, µ) =
1
2

tr
(
G>Σy(λ)−1G

)
− 1

2
y>Σy(λ)−1GG>Σy(λ)−1y − µ,

we obtain the following KKT conditions for (5).

3 The results in this paper can be easily extended to priors of the
form θ|λ ∼ N(0, λQ); however for sake of exposition we prefer to
work with Q = Im.

Proposition 2. The necessary conditions for λ to be a
solution of (5) are

Σy = σ2I + λGG>

WΣy = I
tr
(
G>WG

)
− ‖G>Wy‖22 − 2µ = 0,

µλ = 0,
0 ≤ µ, λ and 0 �W,Σy

(9)

It is interesting to observe that one has
E
[
θ(λ)θ(λ)>

∣∣ λ] = λ2G>WG. (10)
In addition

‖θ(λ)‖2 = λ2‖G>Wy‖22,
Equation (9) indicates that when tuning λ there should be
a link between the “norm” of the actual estimator ‖θ̂(λ)‖2
to its a priori second moments (10). In particular, when
the nonnegativity constraint is not active, i.e. µ = 0, one
finds that the optimal value of λ makes the norm of the
estimator equal to (the trace of) its a priori matrix of
second moments.
Remark 3. If the parameter vector θ were assumed to have
a covariance of the form λQ then one should use the
weighted norm ‖x‖2Q := x>Q−1x instead. Analogously,
if the parameter θ is an infinite dimensional object in
the Reproducing Kernel Hilbert Space (RKHS hereafter,
Wahba [1990]) H, which is of interest in the system
identification scenario in which θ is an impulse response
Pillonetto and De Nicolao [2010], Pillonetto et al. [2011a],
Chiuso and Pillonetto [2011], then the 2-norm has to be
replaced with the norm in the RKHS.

3. MEAN SQUARED ERROR PROPERTIES OF
EMPIRICAL BAYES ESTIMATORS BASED ON

MARGINAL LIKELIHOOD OPTIMIZATION

Our aim is to evaluate the performance of an estimator
θ̂ using its Mean Squared Error (MSE) i.e. its expected
quadratic loss

tr
[
E
[(
θ̂ − θ̄

)(
θ̂ − θ̄

)> ∣∣∣∣ λ, θ = θ̄

]]
,

where θ̄ is the “true” but unknown value of θ. When we
speak about “Bayes estimators” we think of estimators of
the form θ̂(λ) := E [θ | y, λ] computed using the probabilis-
tic model (3).

We begin by deriving an expression for the MSE of the
Bayes estimators θ̂(λ) := E [θ | y, λ]. In this section, it is
convenient to introduce the following notation
Ev[ · ] := E[ · |λ, θ = θ̄] and Varv[ · ] := E[ · |λ, θ = θ̄].

Proposition 4. Consider the model (1) under the proba-
bilistic model described by (3). The Mean Squared Error
of the Bayes estimator θ̂(λ) := E [θ|y, λ] given λ, when
θ = θ̄, is

MSE(λ) = tr
[
Ev
[
(θ̂(λ)− θ̄)(θ̂(λ)− θ̄)>

]]
= tr

[
σ2R−1(λ)P (λ, θ̄)R−1(λ)

]
. (11)

where
R(λ) := G>G+ σ2λ−1, P (λ, θ̄) := G>G+ σ2λ−2θ̄θ̄>.
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Proof. See [Aravkin et al., 2011b].

In the sequel with think ofG in (1) as the non deterministic
regressor matrix Gn(ω), independent of the noise v, de-
fined on the complete probability space (Ω,B,P) with ω a
generic element of Ω and B the sigma field of Borel regular
measures. In particular, the rows of Gn are independent 4

realizations from a zero-mean random vector with covari-
ance Ψ having strictly positive and distinct eigenvalues
denoted by {d2

k}mk=1 (dk > 0, k = 1, . . . ,m). We will also
assume that the (mild) assumptions for the almost sure
convergence of G>nGn/n to Ψ, as n goes to∞, are satisfied,
see e.g. [Loève, 1963].
Remark 5. Under the stated assumptions, the MSE in (11)
is a random variable which depends on n, therefore we shall
denote it as MSEn(λ). This implies that also its minimizer

λ̂n := arg min
λ∈R+

MSEn(λ)

is a random variable that depends on n.

To simplify the notation, hereafter the dependence on ω
is omitted. The SVD of Gn/

√
n is denoted by UnDnV

>
n

where Dn := diag{dk,n} and the columns of Un are
restricted to be of unit length with one entry in each
of its columns constrained to be positive. This, together
with the assumption of distinct eigenvalues, ensures that
the decomposition is unique 5 , e.g. see the discussion in
Section 4 of [Bauer, 2005].
The measurement model can now be rewritten as follows

zk,n = dk,nηk,n + ek,n, k = 1, . . . ,m (12)
where {dk,n}mk=1 are the singular values of Gn/

√
n,

zk,n and ηk,n are the k-th entry of the vectors zn =
(U>n yn)/

√
n and ηn = V >n θ, respectively, while en =

[e1,n . . . em,n]> is white Gaussian noise of variance
σ2/n.

Note that λ and θ are seen as parameters, and the “true”
value of θ is θ̄ with ‖θ̄‖ > 0. Hence, all the randomness
present in the next formulas comes only from Gn and the
measurement noise.
Define η̄n = V >n θ̄ for all n. After simple computations,
from (11) one finds that MSE(λ) relative to η̄n is the
following random variable whose statistics depend on n
(with all the randomness due to Gn):

MSEn(λ) =
σ2

n

m∑
k=1

d2
k,nλ

2 + η̄2
k,nσ

2/n

(d2
k,nλ+ σ2/n)2

=
σ2

n

m∑
k=1

d−2
k,n

λ2 + η̄2
k,nwk,n

(λ+ wk,n)2
, (13)

where wk,n := σ2/(nd2
k,n) for all k and n. Let λwoptn denote

the minimizer of the following weighted version of the
MSEn(λ):

λwoptn = arg min
λ∈R+

m∑
k=1

d2
k,n

λ2 + η̄2
k,nwk,n

(λ+ wk,n)2
.

4 The independence assumption can be removed and replaced by
mixing conditions.
5 The hypothesis of distinct eigenvalues is made just to simplify
the exposition. The case of repeated values would just require
the introduction of more complicated constraints to ensure the
uniqueness of the SVD

Defining Σn := λD2
n+(σ2/n)Im, we find from (5) that our

estimator for λ is given by

λ̂n = arg min
λ∈R+

1
2
z>n Σ−1

n zn +
1
2

log det(Σn)

= arg min
λ∈R+

1
2

m∑
k=1

[
ζ2
k,n

λ+ wk,n
+ log(λ+ wk,n)

]
where ζk,n := zk,n/dk,n and, again, wk,n := σ2/(nd2

k,n) for
all k and n.
Theorem 6. For almost all ω, it holds that

lim
n 7→∞

λwoptn =
‖θ̄‖2

m
= lim
n7→∞

λ̂n .

Proof. As noted above, the SVD given above is uniquely
defined under the assumptions on Ψ and Gn. Moreover,
under these assumptions, the almost sure convergence of
sample covariances (see [Loève, 1963]) combined with a
perturbation result for the Singular Value Decomposition
of symmetric matrices (such as Theorem 1 in [Bauer,
2005], see also [Chatelin, 1983]), implies that Vn and
each dk,n converge almost surely to V and dk, respec-
tively. Consequently, (η̄n, ζn, wn) converges almost surely
to (V T θ̄, V T θ̄, 0).

Assuming λwoptn > 0, the first-order optimality conditions
for λwoptn can be written as f(λ,wn, ηn) = 0, where f : R×
Rp × Rp → R is given by

f(λ,w, η) :=
m∑
k=1

λ− η2
k

(λ+ wk)3
.

Similarly, assuming λ̂n > 0, the first-order optimality
conditions for λ̂n can be written as f0(λ,wn, ζn) = 0,
where f0 : R× Rp × Rp → R is given by

f0(λ,w, ζ) :=
m∑
k=1

λ+ wk − ζ2
k

(λ+ wk)2
.

Since ‖θ̄‖ = ‖V θ̄‖, we have

f

(
‖θ̄‖2

m
, 0, V θ̄

)
= 0 and f0

(
‖θ̄‖2

m
, 0, V θ̄

)
= 0 ,

with
∂

∂λ
f

(
‖θ̄‖2

m
, 0, V θ̄

)
=

m4

‖θ̄‖6
∂

∂λ
f0

(
‖θ̄‖2

m
, 0, V θ̄

)
=

m3

‖θ̄‖4
.

Applying the Implicit Function Theorem to both f and
f0 at

(
‖θ̄‖2
m , 0, V θ̄

)
yields the existence neighborhoods U

of (0, V θ̄) and W of ‖θ̄‖2/m as well as uniquely defined
continuously differentiable functions φ : U → W and
φ0 : U → W such that

f(φ(w, η), w, η) = 0
f0(φ0(w, η), w, η) = 0 ∀ (w, η) ∈ U .

In particular, φ(0, V θ̄) = ‖θ̄‖2/m = φ0(0, V θ̄). Since
(wn, V >n θ̄) and (wn, ζn) both converge to (0, V >θ̄) almost
surely, we know that for almost all ω both (wn, V >n θ̄) and
(wn, ζn) are in U for all n sufficiently large. Therefore, for
almost all ω,
λwoptn = φ(wn, V >n θ̄) > 0 and λ̂n = φ0(wn, ζn) > 0

since ‖θ̄‖2/m > 0 by assumption. Hence, both λwoptn and
λ̂n almost surely converge to ‖θ̄‖2/m proving the result.
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4. COMPARISON BETWEEN MARGINAL
LIKELIHOOD MAXIMIZATION AND MINIMUM MSE

ESTIMATORS

In the previous Sections we have seen that the empirical
Bayes estimator based on maximizing the marginal like-
lihood possesses some interesting properties in terms of
achieved MSE on estimated parameters.

In particular Theorem 6 implies that the estimator of λ
based on maximization of the marginal likelihood con-
verges to the estimator of λ which would be obtained
minimizing a weighted version of the MSE. Note that
this latter estimator would require knowledge of “true”
parameter θ̄.

The following questions arise quite naturally:

(1) which is the meaning of this “weighted” MSE?
(2) what if instead of maximizing the marginal likelihood,

one finds an estimate of λ minimizing and estimate
of the MSE (or of a weighted version of the MSE)?

As for point 1 above, it is useful to provide also the con-
nection between the weighted MSE version introduced in
the previous section and the MSE of the output prediction.
This is done in the following proposition.
Proposition 7. Let us consider the linear measurement
model (1), where we make explicit the dependence on the
data length n

yn = Gnθ + vn
and consider the Mean Squared Error on the output
prediction:
MSEyn(λ) = Ev

[
(yn − ŷn(λ))>(yn − ŷn(λ))

]
= Ev

[
(yn −Gnθ̂(λ))>(yn −Gnθ̂(λ))

]
= tr

{
Ev
[
Gn(θ̂(λ)− θ̄)(θ̂(λ)− θ̄)G>n

]}
+

+σ2n
(14)

as well as its weighted version:
MSEWn (λ) = Ev

[
(yn − ŷn(λ))>GnG>n (yn − ŷn(λ))

]
= Ev

[
(yn −Gnθ̂(λ))>GnG>n (yn −Gnθ̂(λ))

]
= tr

{
Ev
[
(G>nGn)2(θ̂(λ)− θ̄)(θ̂(λ)− θ̄)

]}
+

+σ2tr(GnG>n )
(15)

Then

MSEyn(λ) =
σ2

n

m∑
k=1

λ2 + η̄2
k,nwk,n

(λ+ wk,n)2
(16)

and

MSEWn (λ) =
σ2

n

m∑
k=1

d2
k,n

λ2 + η̄2
k,nwk,n

(λ+ wk,n)2
(17)

The proof follows the same argument as the derivation of
(13) and is therefore omitted. 3

Hence, the maximum marginal likelihood estimator asymp-
totically minimizes the weighted version of the output
Mean Squared Error MSEWn (λ).

As far as the second question above, the answer is not
entirely trivial. First of all it is not clear which estimate

of the MSE one should consider. For instance if m > n
one cannot even estimate, say in the least squares sense,
θ. Somewhat arbitrarily, in the following we shall make the
following assumptions:

(i) n > m and G>nGn is of full rank so that the Least
Squares estimator is θ̂LSn := (G>nGn)−1G>n yn;

(ii) one find estimators

M̂SEn(λ), M̂SE
y

n(λ), M̂SE
W

n (λ) (18)
replacing the “true” but unknown value θ̄ in (11) with
the Least Square Estimator θ̂LSn .

Some discussion is now in order: since the marginal like-
lihood is written in terms of yn − Gnθ̂ where θ has been
integrated out, it would seem quite natural that its maxi-
mization would involve a measure of how well the estima-
tor θ(λ̂) would perform (on average) on output data. Thus
one may be tempted to conjecture that maximizing the
marginal likelihood is related to minimizing the “output”
Mean Squared Error MSEyn(λ). As we have seen this is not
so and one has to add some extra weighting (MSEWn (λ))
to establish the relation (Theorem 6) between marginal
likelihood maximization and MSE. However one has to
keep in mind that the Mean Squared error is not available
and, at best, only its estimate could be minimized. Of
course estimating the MSE induces uncertainty also in the
estimate. Ideally, when estimating the MSE, one should
also introduce some form of “weighting” accounting for
how well θ has been estimated. When the coefficients dk,n
do not satisfy dk,n = cn (which happens if G>nGn ∝ In) the
components of the estimators for θ have different uncer-
tainties and this have to be accounted for. Unfortunately a
sharp argument giving solid grounds to these conjectures
is out of reach at the moment. For this reason we shall
resort to some simulation experiments to investigate how
estimators based on marginal likelihood maximization and
MSE (eventually weighted) minimization compare.

In particular we shall consider the following four estima-
tors:

(1) θ̂(λ̂n) where λ̂n maximizes the marginal likelihood;
(2) θ̂(λ̂woptn ) where λ̂woptn minimizes

M̂SE
W

n (λ) in (7);
(3) θ̂(λ̂yn) where λ̂yn minimizes M̂SE

y

n(λ) in (7);
(4) θ̂(λ̂θn) where λ̂θn minimizes M̂SEn(λ) in (7);

These estimators are then compared using both MSEn
and MSEyn as criterions (one may be interested in esti-
mating either θ or the output y).

The simulation results are reported in the next Section.

5. SIMULATION RESULTS

As anticipated in the previous Section we now report re-
sults comparing Empirical Bayes estimators using different
estimators for the prior hyperparameter λ. We consider
two different experimental setups:

(1) The true value θ̄ ∈ R10 has all components equal to
1. The matrix Gn ∈ R10×10 is taken as a diagonal
matrix with elements logarithmically spaced between
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10−1 and 10 and the noise standard deviation is fixed
to σ = 0.1.

(2) The true value of θ is fixed to θ̄ = [1 2 10 0 −3 −1 0 −
5 0 1]. The matrix Gn ∈ R10×10 is taken as a diagonal
matrix with elements logarithmically spaced between
10−1 and 10 and the noise standard deviation is fixed
to σ = 1.

For each of these we perform 1000 Montecarlo experiments
randomizing the noise realization; for each of these Mon-
tecarlo runs we estimated the parameter θ as described
above. The histograms of the achieved MSE are reported
in Figures 1 and 2.

The experimental results suggest that utilizing the marginal
likelihood provides a smaller sensitivity to noise: in fact the
histograms of achieved MSE are much more concentrated.
Of course there is price to pay; in fact in both examples 3
and 4 the maximization of the marginal likelihood never
reaches the minimum of the MSE which could be attained
with knowledge of the true θ̄. It is also worth stressing
that for values of θ̄ different from those here employed
the performance of ML could get worse and estimating λ
optimizing M̂SE

y

n(λ) or M̂SEn(λ) could lead to better
results. This point will deserve future investigation in the
future.

6. CONCLUSIONS

We have presented an analysis of the asymptotic prop-
erties of marginal likelihood maximization in terms of
MSE of the resulting empirical Bayes estimators. It has
been shown that maximizing the marginal likelihood corre-
sponds, asymptotically, to minimizing a weighted version
of the MSE. We have also compared through numerical
simulations different strategies for hyperparameter esti-
mation via minimization of the (weighted) MSE. Future
work will concentrate on (i) more general prior description
possibly including Stable Spline Kernels [Pillonetto and De
Nicolao, 2010, Pillonetto et al., 2011a] and (ii) on providing
solid theoretical grounds for the simulation results.
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M. Loève. Probability Theory. Van Nostrand Reinhold,
1963.

J. S. Maritz and T. Lwin. Empirical Bayes Method.
Chapman and Hall, 1989.

G. Pillonetto and G. De Nicolao. A new kernel-based
approach for linear system identification. Automatica,
46(1):81–93, 2010.

G. Pillonetto, A. Chiuso, and G. De Nicolao. Prediction
error identification of linear systems: a nonparametric
Gaussian regression approach. Automatica, 45(2):291–
305, 2011a.

G. Pillonetto, M.H. Quang, and A. Chiuso. A new
kernel-based approach for nonlinear system identifica-
tion. IEEE Transactions on Automatic Control, 2011b.

C.M. Stein. Estimation of the mean of a multivariate
normal distribution. The Annalso of Statistics, 9(6):
1135–1151, 1981.

G. Wahba. Spline models for observational data. SIAM,
Philadelphia, 1990.

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

129



Fig. 1. Example #1: histogram of MSEn (left) and MSEyn (right). Top to bottom: (a) using λ̂n from maximizing

marginal likelihood; (b) using λ̂woptn which minimizes M̂SE
W

n (λ); (c) using λ̂yn which minimizes M̂SE
y

n(λ); (d)
using λ̂θn which minimizes M̂SEn(λ).

Fig. 2. Example #2: histogram of MSEn (left) and MSEyn (right). Top to bottom: (a) using λ̂n from maximizing

marginal likelihood; (b) using λ̂woptn which minimizes M̂SE
W

n (λ); (c) using λ̂yn which minimizes M̂SE
y

n(λ); (d)
using λ̂θn which minimizes M̂SEn(λ).
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