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Abstract: Kalman smoothers reconstruct the state of a dynamical system starting from
noisy output samples. While the classical estimator relies on quadratic penalization of process
deviations and measurement errors, extensions that exploit Piecewise Linear Quadratic (PLQ)
penalties have been recently proposed in the literature. These new formulations include
smoothers robust with respect to outliers in the data, and smoothers that keep better track
of fast system dynamics, e.g. jumps in the state values. In addition to L2, well known examples
of PLQ penalties include the L1, Huber and Vapnik losses. In this paper, we use a dual
representation for PLQ penalties to build a statistical modeling framework and a computational
theory for Kalman smoothing.
We develop a statistical framework by establishing conditions required to interpret PLQ
penalties as negative logs of true probability densities. Then, we present a computational
framework, based on interior-point methods, that solves the Kalman smoothing problem with
PLQ penalties and maintains the linear complexity in the size of the time series, just as in the
L2 case. The framework presented extends the computational efficiency of the Mayne-Fraser
and Rauch-Tung-Striebel algorithms to a much broader non-smooth setting, and includes many
known robust and sparse smoothers as special cases.

Keywords: Piecewise linear quadratic penalties; nonsmooth optimization; L1/Huber/Vapnik
loss functions; interior point methods

1. INTRODUCTION

Consider the following discrete-time linear state-space
model

x1 = x0 + w1

xk = Gkxk−1 + wk, k = 2, 3, . . . , N
zk = Hkxk + vk, k = 1, 2, . . . , N

(1.1)

where xk ∈ Rn is the state, x0 is known, zk ∈ Rm contains
noisy output samples, Gk and Hk are known matrices.
Further, {wk} and {vk} are mutually independent zero-
mean random variables with covariances given by {Qk}
and {Rk}, respectively.
The classical fixed-interval Kalman smoothing problem is
to obtain the (unconditional) minimum variance linear
estimator of the states {xk}Nk=1 as a function of {zk}Nk=1. It
is well known that the structure of this estimator is related
to the following optimization problem

min
{xk}

N∑
k=1

‖zk −Hkxk‖2R−1
k

+ ‖xk −Gkxk−1‖2Q−1
k

(1.2)

where G1 denotes the identity matrix and ‖a‖2Σ := a>Σa
for every column vector a. When data become available,
the solution can be computed by the classical Kalman
smoother with the number of operations linear in N . This

procedure also provides the minimum variance estimate of
the states when all the system noises are assumed to be
Gaussian.
In many circumstances, linear estimators that rely on
quadratic penalization of model deviation, such as (1.2),
lead to unsatisfactory results. For instance, they are not
robust with respect to the presence of outliers in the
data [Huber, 1981, Aravkin et al., 2011a, Farahmand
et al., 2011] and may have difficulties in reconstructing fast
system dynamics, e.g. jumps in the state values [Ohlsson
et al., 2011]. In addition, sparsity-promoting regularization
is often used in order to extract from a large measurement
or parameter vector a small subset having greatest impact
on the predictive capability of the estimate for future
data. This sparsity principle permeates many well known
techniques in machine learning and signal processing, such
as feature selection, selective shrinkage, and compressed
sensing [Hastie and Tibshirani, 1990, Efron et al., 2004,
Donoho, 2006]. In many circumstances, when smoothing is
considered, it can be interpreted as a sparse non Gaussian
prior distribution on the noises entering the system. In
these cases, the estimator (1.2) is often replaced by

N∑
k=1

V (zk −Hkxk;Rk) + J (xk −Gkxk−1;Qk) (1.3)
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where, for example, V can be the Huber or the Vapnik’s ε-
insensitive loss, used in support vector regression [Vapnik,
1998, Evgeniou et al., 2000], while J may be the `1-norm,
as in the LASSO procedure [Tibshirani, 1996].
The interpretation of problems such as (1.3) in terms
of Bayesian estimation has been extensively studied in
the statistical and machine learning literature in recent
years and probabilistic approaches used in the analysis of
estimation and learning algorithms can be found e.g. in
[Mackay, 1994, Tipping, 2001, Wipf et al., 2011]. Non-
Gaussian model errors and priors leading to a great va-
riety of loss and penalty functions are also reviewed in
[Palmer et al., 2006] using convex-type and integral-type
variational representations, with the latter being related to
Gaussian scale mixtures. The fundamental novelty in this
work is that, rather than taking this approach, we start
with a particular class of losses, called PLQ penalties, well
known from optimization literature [Rockafellar and Wets,
1998]. We establish conditions which allow these losses to
be viewed as negative logs of true densities, ensuring that
wk and vk in (1.1) come from true distributions. This in
turn allows us to interpret the solution to the problem
(1.3) as a MAP estimator when the loss functions V and
J come from this subclass of PLQ penalties. We will show
that this subclass includes the four key examples, the L2,
L1, Huber, and Vapnik penalties.
The density characterization of PLQ penalties is achieved
using a dual representation, which also underlies the devel-
opment of algorithms for fitting models of the form (1.3).
In particular, in the second part of the paper we derive the
conditions, complimentary to those needed to set up the
statistical framework, that allow the development of new
and computationally efficient Kalman smoothers designed
using non-smooth penalties on the process and measure-
ment deviations. Amazingly, it turns out that the interior
point method used in [Aravkin et al., 2011a] generalizes
perfectly to the entire class of PLQ densities under a
simple verifiable non-degeneracy condition. Hence, the so-
lutions of all the PLQ Kalman smoothers can be computed
with a number of operations that scales linearly in N , as in
the quadratic case. Such theoretical foundation generalizes
the results recently obtained in [Aravkin et al., 2011a,b,
Farahmand et al., 2011, Ohlsson et al., 2011], framing them
as particular cases of the framework presented here.
The paper is organized as follows. In Section 2 we in-
troduce the class of PLQ convex functions, and provide
the conditions under which they can be interpreted as
negative logs of corresponding densities. In Section 3 we
present a new PLQ Kalman smoother theorem that gen-
eralizes the well known Mayne-Fraser two-filter and the
Rauch-Tung-Striebel algorithm [Gelb, 1974] to nonsmooth
formulations. This theorem is obtained by solving the
Karush-Kuhn-Tucker (KKT) system for PLQ penalties
using interior point methods, and exploiting the state
space structure to obtain the solution in linear time. The
necessary results and proofs supporting the main theorems
appear in the Appendix. We end the paper with a few
concluding remarks.

2. PIECEWISE LINEAR QUADRATIC PENALTIES
AND DENSITIES

2.1 Preliminaries

We recall a few definitions from convex analysis.

• (Affine hull) Define the affine hull of any set S,
denoted by aff S, as the smallest affine set that
contains S.

• (Cone) For any set S, denote by cone S the set
{ts|s ∈ S, t ∈ R+}.

• (Polar Cone) For any cone K ⊂ Rm, the polar of K
is defined to be

K◦ := {v|〈v, w〉 ≤ 0 ∀ w ∈ K}.
• (Horizon cone). The (convex) Horizon cone C∞ is the

set of ‘unbounded directions’ for C, i.e. d ∈ C∞ if for
any point w̄ ∈ C we have {d|w̄ + τd ∈ cl C ∀ τ ≥ 0}.

2.2 PLQ densities

We now introduce the PLQ penalties and densities that
are the focus of this paper.

Definition 2.1. (piecewise linear-quadratic penalties) [Rock-
afellar and Wets, 1998]. For a nonempty polyhedral set
U ⊂ Rm and a symmetric positive-semidefinite matrix
M ∈ Rm×m (possibly M = 0), the function θU,M : Rm →
R defined by

θU,M (w) := sup
u∈U

{
〈u,w〉 − 1

2
〈u,Mu〉

}
(2.1)

is proper, convex, and piecewise linear-quadratic. When
M = 0, it is piecewise linear; θU,0 = σU , the support
function of U . The effective domain of θU,M , denoted by
dom(θU,M ), is the set of w ∈ Rm where θU,M (w) <∞, and
is given by (U∞ ∩Null(M))◦. �

In order to capture the full class of penalties of interest,
we consider injective affine transformations into Rm of the
form b+By. The requirements on B therefore are m ≥ n
and Null(B) = {0}. The final technical requirement we
impose is that b ∈ dom θU,M .

Definition 2.2. (PLQ penalties with shifts and trans-
forms) Using (2.1), define ρ : Rn → R as θU,M (b+By):

ρU,M,b,B(y) := sup
u∈U

{
〈u, b+By〉 − 1

2
〈u,Mu〉

}
(2.2)

�

The following result characterizes the effective domain of
ρ (see Appendix for proof).

Theorem 2.3. Let ρ denote ρU,M,B,b(y), and K denote
U∞ ∩ Null(M). Suppose U ⊂ Rm is a polyhedral set,
y ∈ Rn, b ∈ K◦, M ∈ Rm×m is positive semidefinite, and
B ∈ Rm×n is injective. Then we have (BTK)◦ ⊂ dom(ρ)
and (BT(K ∩ −K))⊥ = aff(dom(ρ)). �

Note that the functions ρ are still piecewise linear-
quadratic. All of the important examples mentioned before
can be represented in this way, as shown below.

Remark 2.4. (scalar examples). The L2, `1, Huber, and
Vapnik penalties are representable in the notation of
Definition 2.2.
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Fig. 1. Huber (left) and Vapnik (right) Penalties

(1) L2: Take U = R, M = 1, b = 0, and B = 1. We

obtain ρ(y) = sup
u∈R

〈
uy − 1

2
u2

〉
. The function inside

the sup is maximized at u = y, whence ρ(y) = 1
2y

2.
(2) `1: Take U = [−1, 1], M = 0, b = 0, and B = 1.

We obtain ρ(x) = sup
u∈[−1,1]

〈uy〉 . The function inside

the sup is maximized by taking u = sign(y), whence
ρ(x) = |y|.

(3) Huber: Take U = [−K,K], M = 1, b = 0, and B = 1.

We obtain ρ(y) = sup
u∈[−K,K]

〈
uy − 1

2
u2

〉
. Take the

derivative with respect to u and consider the following
cases:
(a) If y < −K, take u = −K to obtain −Ky − 1

2K
2.

(b) If −K ≤ y ≤ K, take u = y to obtain 1
2y

2.
(c) If y > K, take u = K to obtain a contribution of

Ky − 1
2K

2.
This is the Huber penalty with parameter K, shown
in the left panel of Fig. 1.

(4) Vapnik: take U = [0, 1]× [0, 1], M = [ 0 0
0 0 ], B =

[
1
−1

]
,

and b =
[−ε
−ε
]
, for some ε > 0. We obtain ρ(y) =

supu1,u2∈[0,1]

〈[
y − ε
−y − ε

]
,

[
u1

u2

]〉
. We can obtain an

explicit representation by considering three cases:
(a) If |y| < ε, take u1 = u2 = 0. Then ρ(y) = 0.
(b) If y > ε, take u1 = 1 and u2 = 0. Then ρ(y) = y−

ε.
(c) If y < −ε, take u1 = 0 and u2 = 1. Then

ρ(y) = −y − ε.
This is the Vapnik penalty with parameter ε, shown
in the right panel of Fig. 1.

Note that the affine generalization (Definition 2.2) is
already needed to express the Vapnik penalty. �

In order to characterize PLQ penalties as negative logs of
density functions, we need to ensure the integrability of
said density functions. A function ρ(x) is called coercive if
lim‖x‖→∞ ρ(x) =∞, and coercivity turns out to be the key
property to ensure integrability. The proof of this fact, and
the characterization of coercivity for PLQ penalties using
the notation of Def. 2.2, are the subject of the next two
theorems (see Appendix for proofs).

Theorem 2.5. (PLQ Integrability). Suppose ρ(y) is coer-
cive, and let naff denote the dimension of aff(dom ρ). Then
the function f(y) = exp(−ρ(y)) is integrable on aff(dom ρ)
with the naff -dimensional Lebesgue measure. �

Theorem 2.6. (Coercivity of ρ). ρ is coercive if and only if
[BTcone(U)]◦ = {0}. �

Theorem 2.6 can be used to show the coercivity of familiar
penalties.

Corollary 2.7. The penalties L2, L1, Vapnik, and Huber
are all coercive.

Proof: We show all of these penalties satisfy the hypoth-
esis of Theorem 2.6.

(1) L2: U = R and B = 1, so [BTcone(U)]◦ = R◦ = {0}.
(2) `1: U = [−1, 1], so cone(U) = R, and B = 1, so proof

reduces to that case 1.
(3) Huber: U = [−K,K], so cone(U) = R, and B = 1, so

proof reduces to that of case 1.
(4) Vapnik: U = [0, 1] × [0, 1], so cone(U) = R2

+. B =[
1
−1

]
, so BTcone(U) = R, and again we reduce to

case 1. �

We now define a family of distributions on Rn by inter-
preting piecewise linear quadratic functions ρ as negative
logs of corresponding densities. Note that the support
of the distributions is always contained in the affine set
aff(dom ρ), characterized in Th. 2.3.

Definition 2.8. (Piecewise linear quadratic densities). Let
ρ be any coercive piecewise linear quadratic function on
Rn of the form ρU,M,B,b;(y) = θU,M (b + By). Define p(y)
to be the following density on Rn:

p(y) =

{
c−1
1 exp(−ρ(y)) y ∈ dom ρ

0 else,
(2.3)

where

c1 =

(∫
y∈dom ρ

exp(−ρ(y))dy

)
,

and integral is with respect to the Lebesgue measure with

dimension dim
(

aff(dom ρ)
)

. �

PLQ densities are true densities on the affine hull of the
domain of ρ. The proof of Theorem 2.5 can be easily
adapted to show that they have moments of all orders.

3. KALMAN SMOOTHING WITH PLQ PENALTIES

In this section, we consider the model (1.1), but in the
general case where errors wk and vk can come from any
of the densities introduced in the previous section. To this
end, we first formulate the KS problem over the entire
sequence {xk}.
Given a sequence of column vectors {uk} and matrices
{Tk} we use the notation

vec({uk}) =


u1

u2

...
uN

 , diag({Tk}) =


T1 0 · · · 0

0 T2
. . .

...
...

. . .
. . . 0

0 · · · 0 TN

 .

We make the following definitions.

x = vec{x1, · · · , xN} , w = vec{w1, · · · , wK}
v = vec{v1, · · · , vk} , Q = diag{Q1, · · · , QN}
R = diag{R1, · · · , RN} , H = diag{H1, · · · , HN}.

We also introduce the matrices G and H:



G =


I 0

−G2 I
. . .

. . .
. . . 0
−GN I

 , H =


H1 0

0 H2
. . .

. . .
. . . 0
0 HN

 .

With this notation, model (1.1) can be written

x̃0 = Gx+ w
z = Hx+ v ,

(3.1)

where x ∈ RnN is the entire state sequence of interest,
w is corresponding process noise, z is the vector of all
measurements, v is the measurement noise, and x̃0 is a
vector of size nN with the first n-block equal to x0, the
initial state estimate, and the other blocks set to 0.

The general Kalman smoothing problem is described in
the following proposition.

Proposition 3.1. Suppose that the noises w and v in the
model (3.1) are PLQ densities with means 0, variances Q
and R (see Def. 2.8). Then, for suitable Uw,Mw, bw, Bw

and Uv,Mv, bv, Bv we have

p(w) ∝ exp(−θUw,Mw(bw +BwQ−1/2w))

p(v) ∝ exp(−θUv,Mv (bv +BvR−1/2v))
(3.2)

while the MAP estimator of x in the model (3.1) is

arg min
x∈RnN

{
θUw,Mw(bw +BwQ−1/2(Gx− x̃0))

+ θUv,Mv (bv +BvR−1/2(Hx− z))

}
(3.3)

�

Note that since wk and vk are independent, problem (3.3)
is decomposable into a sum of terms analogous to (1.2).
This special structure is manifest in the block diagonal
structure of H,Q,R,Bv, Bw, the bidiagonal structure of
G, and the structure of sets Uw and Uv, and is key in
proving the linear complexity result that will be derived
in the next part of this section.
For our purposes, it is now important to recall that,
when the sets Uw and Uv are polyhedral, (3.3) is an
Extended Linear Quadratic program (ELQP), described
in [Rockafellar and Wets, 1998, Example 11.43]. Rather
than directly solving (3.3), we work with the Karush-
Kuhn-Tucker (KKT) system. We present the system in
the following lemma, and derive it in the Appendix.

Lemma 3.2. Suppose that the sets Uw and Uv are poly-
hedral, i.e. can be written

Uw = {u|(Aw)Tu ≤ aw}, Uv = {u|(Av)Tu ≤ av} .
Then the necessary first-order conditions for optimality
of (3.3) are given by

0 = (Aw)Tuw + sw − aw ; 0 = (Av)Tuv + sv − av
0 = (sw)Tqw ; 0 = (sv)Tqv

0 = b̃w +BwQ−1/2Gd̄−Mwūw −Awqw
0 = b̃v −BvR−1/2Hd̄−Mvūv −Avqv
0 = GTQ−T/2(Bw)Tūw −HTR−T/2(Bv)Tūv

0 ≤ sw, sv, qw, qv.
(3.4)

�

Our approach is to solve (3.4) directly using Interior Point
(IP) methods. IP methods work by applying a damped

Newton iteration to a relaxed version of (3.4), specifically
relaxing the ‘complementarity conditions’:

(sw)Tqw = 0 → QwSw1− µ1 = 0
(sv)Tqv = 0 → QvSv1− µ1 = 0 ,

where Qw, Sw, Qv, Sv are diagonal matrices with diagonals
qw, sw, qv, sv respectively. The parameter µ is aggressively
decreased to 0 as the IP iterations proceed. Typically,
no more than 10 or 20 iterations of the relaxed system
are required to obtain a solution of (3.4), and hence an
optimal solution to (3.3). The following theorem is key
and represents the main result of this section. It shows
that the computational effort required (per IP iteration)
is linear in the number of time steps whatever PLQ density
enters the state space model.

Theorem 3.3. (PLQ Kalman Smoother Theorem) Suppose
that all wk and vk in the Kalman smoothing model
(1.1) come from PLQ densities that satisfy Null(M) ∩
U∞ = {0}, i.e. their corresponding penalties are finite-
valued. Then (3.3) can be solved using an IP method, with
computational complexity O(Nn3 +Nm) time. �

The proof is presented in the Appendix and shows that IP
methods for solving (3.3) preserve the key block tridiago-
nal structure of the standard smoother. General smoothing
estimates can therefore be computed in O(Nn3) time, as
long as the number of IP iterations is fixed (as it usually
is in practice, to 10 or 20).
It is important to observe that the motivating examples
(see Remark 2.4) all satisfy the conditions of Theorem 3.3.

Corollary 3.4. The densities corresponding to L1, L2, Hu-
ber, and Vapnik penalties all satisfy the hypotheses of
Theorem 3.3.

Proof: We verify that Null(M) ∩ Null(AT) = 0 for each
of the four penalties. In the L2 case, M has full rank. For
the L1, Huber, and Vapnik penalties, the respective sets
U are bounded, so U∞ = {0}.

4. CONCLUSIONS

We have presented a new theory for robust and sparse
Kalman smoothing using nonsmooth PLQ penalties ap-
plied to process and measurement deviations. These
smoothers can be designed within a statistical framework
obtained by viewing PLQ penalties as negative logs of
true probability densities, and we have presented necessary
conditions that allow this interpretation. In this regard,
the coercivity condition characterized in Th. 2.6 has been
shown to play a central role. Notice that such a condition
is also a nice example of how the statistical framework
established in the first part of this paper gives an alter-
native viewpoint for an idea useful in machine learning.
In fact, coercivity is also a fundamental prerequisite in
sparse and robust estimation as it precludes directions
for which the loss and the regularizer are insensitive to
large parameter/state changes. Thus, the condition for
a (PLQ) penalty to be a negative log of a true density
also ensures that the problem is well posed and that the
learning machine/smoother can control model complexity.
In the second part of the paper, we have shown that
solutions to PLQ Kalman smoothing formulations can be
computed with a number of operations that is linear in
the length of the time series, as in the quadratic case.



A sufficient condition for the successful execution of IP
iterations is that the PLQ penalties used should be finite
valued, which implies non-degeneracy of the corresponding
statistical distribution (the support cannot be contained
in a lower-dimensional subspace). The statistical inter-
pretation is thus strongly linked to the computational
procedure.
The computational framework presented allows a broad
application of interior point methods to a wide class of
smoothing problems of interest to practitioners. The pow-
erful algorithmic scheme designed here, together with the
breadth and significance of the new statistical framework
presented, underscores the practical utility and flexibility
of this approach. We believe that this perspective on model
development and Kalman smoothing will be useful in a
number of applications in the years ahead.
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APPENDIX

Preliminaries

Definition 4.1. (Horizon cone, specialized to the convex
setting by [Rockafellar and Wets, 1998, Theorem 3.6]). The
Horizon cone C∞ for a convex set C is convex, and for any
point w̄ ∈ C consists of the vectors {d|w̄+τd ∈ cl C ∀ τ ≥
0}.
Definition 4.2. (Lineality). Define the lineality of convex
cone K, denoted lin(K), to be K∩−K. Since K is a convex
cone, lin(K) is the largest subspace contained in K.

Lemma 4.3. (Characterization of lineality, [Rockafellar,
1970, Theorem 14.6]). Let K be any closed set containing
the origin. Then lin(K) = (K◦)⊥.

Definition 4.4. (Affine hull). Define the affine hull of any
set S, denoted by aff S, as the smallest affine set that
contains S.

Corollary 4.5. (Characterization of aff K◦) Taking the
perp of the characterization in Lemma 4.3, the affine
hull of the polar of a closed convex cone K is given by
aff K◦ = lin(K)⊥.

Proof of Theorem 2.3

Lemma 4.6. (Polars, linear transformations, and shifts)
Let K ⊂ Rn be a closed convex cone, b ∈ Rn, and
B ∈ Rn×k. Then we have (BTK)◦ ⊂ B−1(K◦ − b) if
b ∈ K◦.

Proof: Recall that a convex cone is closed under addition.
Then for any b ∈ K◦, we have K◦ + b ⊂ K◦, and hence
K◦ ⊂ K◦ − b. By [Rockafellar, 1970, Corollary 16.3.2] we
get

(BTK)◦ = B−1K◦ ⊂ B−1(K◦ − b) .
�

Corollary 4.7. Let K be a closed convex cone, and B ∈
Rn×k. If b ∈ K◦, then

(
BT(lin(K))

)⊥ ⊂ aff(B−1(K◦−b)).

Proof: By Lemma 4.6, aff(B−1(K◦ − b)) ⊃ aff(BTK)◦ =(
lin(BTK)

)⊥
where the last equality is by Corollary 4.5.

Since BT is a linear transformation, we have lin(BTK) =
BTlin(K).

�
Lemma 4.8. Let K ⊂ Rn be a closed convex cone, b ∈
aff(K)◦, and B ∈ Rn×k. Then aff(B−1(K◦ − b)) ⊂
B−1(lin(K))⊥ ⊂ (B−1aff(K◦ − b)).

Proof: If w ∈ aff
(
B−1(K◦ − b)

)
, for some finite N we

can find sets {λi} ⊂ R and {wi} ⊂ B−1(K◦− b) such that∑N
i=1 λi = 1 and

∑N
i=1 λiwi = w. For each wi, we have

Bwi ∈ K◦ − b, so b+Bwi ∈ K◦. Then

b+Bw =

N∑
i=1

λi(b+Bwi) ∈ aff(K◦) = lin(K)⊥.



Since b ∈ lin(K)⊥ by assumption, we have Bw ∈ lin(K)⊥,
and so w ∈ B−1(lin(K)⊥).

Next, starting with w ∈ B−1(lin(K)⊥) we have Bw ∈
lin(K)⊥ and so b + Bw ∈ lin(K)⊥ since lin(K)⊥ is a

subspace and b ∈ lin(K)⊥. Then for some finite Ñ we can

find sets {λi} ⊂ R and {vi} ⊂ K◦ such that
∑Ñ
i=1 λi = 1

and
∑Ñ
i=1 λivi = b+Bw. Subtracting b from both sides, we

have
∑Ñ
i=1 λi(vi−b) = Bw, so in particular Bw ∈ aff(K◦−

b). Then w ∈ B−1aff(K◦ − b).
�

Theorem 4.9. Let K ⊂ Rn be a closed convex cone,
b ∈ Rn, and B ∈ Rn×k. If b ∈ K◦, then (BTlin(K))⊥ =
aff
(
B−1(K◦ − b)

)
= B−1(lin(K)⊥).

Proof: From Corollary 4.7 and Lemma 4.8, we immedi-
ately have

(BTlin(K))⊥ ⊂ aff
(
B−1(K◦ − b)

)
⊂ B−1(lin(K)⊥).

Note that for any subspace S, S⊥ = S◦. Then by
[Rockafellar, 1970, Corollary 16.3.2], (BTlin(K))⊥ =
B−1(lin(K)⊥).

�

The proof of Theorem 2.3 now follows from Lemma 4.6
and Theorem 4.9.

Proof of Theorem 2.5

Using the characterization of a piecewise quadratic func-
tion from [Rockafellar and Wets, 1998, Definition 10.20],
the effective domain of ρ(y) can be represented as the
union of finitely many polyhedral sets Ui, relative to
each of which ρ(y) is given by an expression of the form
1
2 〈y,Aiy〉 + 〈ai, y〉 + αi for some scalar αi ∈ R, vec-
tor ai ∈ Rn and symmetric positive semidefinite matrix
Ai ∈ Rn×n. Since ρ(y) is coercive, we claim that on each
unbounded Ui there must be some constants Ni and βi > 0
so that for ‖y‖ ≥ Ni we have ρ(y) ≥ βi‖y‖. Otherwise, we
can find an index set J such that ρ(yj) ≤ βj‖yj‖, where
βj ↓ 0 and ‖yj‖ ↑ ∞. Without loss of generality, suppose
yj
‖yj‖converges to ȳ ∈ U∞i , by [Rockafellar, 1970, Theorem

8.2]. By assumption,
ρ(yj)
‖yj‖ ↓ 0, and we have

ρ(yj)

‖yj‖
= ‖yj‖

〈
yj
‖yj‖

, Ai
yj
‖yj‖

〉
+

〈
ai,

yj
‖yj‖

〉
+

αi
‖yj‖

.

Taking the limit of both sides over J we see that

‖yj‖
〈

yj
‖yj‖ , Ai

yj
‖yj‖

〉
must converge to a finite value. But

this is only possible if 〈ȳ, Aiȳ〉 = 0, so in particular we
must have ȳ ∈ Null(Ai). Note also that 〈ai, ȳ〉 ≤ 0, by
taking the limit over J of

ρ(yj)

‖yj‖
≥
〈
ai,

yj
‖yj‖

〉
+

α

‖yi‖
,

so for any x0 ∈ Ui and λ > 0 we have x0 + λȳ ∈ Ui since
ȳ ∈ U∞i and

ρ(x0 + λȳ) ≤ ρ(x0) + αi,

so in particular ρ stays bounded as λ ↑ ∞ and cannot be
coercive.

The integrability of f(y) is now clear. First note that f(y)
is bounded below by 0. Recall that the effective domain of ρ
can be represented as the union of finitely many polyhedral
sets Ui, and for each unbounded such Ui we have shown
f(y) ≤ exp[−βi‖y‖] off of some bounded subset of Ui.
An elementary application of the bounded convergence
theorem shows that f must be integrable.

Proof of Theorem 2.6

First observe that [B−1(cone(U)]◦ = [BTcone(U)]◦ by
[Rockafellar, 1970, Corollary 16.3.2].

Suppose that ŷ ∈ B−1((cone U)◦), and ŷ 6= 0. Then
Bŷ ∈ cone(U), and Bŷ 6= 0 since B is injective, and we
have

ρ(τ ŷ) = sup
u∈U
〈b+ τBŷ, u〉 − 1

2
uTMu

= sup
u∈U
〈b, u〉 − 1

2
uTMu+ τ〈Bŷ, u〉

≤ sup
u∈U
〈b, u〉 − 1

2
uTMu

≤ θU,M (b),

so ρ(τ ŷ) stays bounded even as τ → ∞, and so ρ cannot
be coercive.

Conversely, suppose that ρ is not coercive. Then we can
find a sequence {yk} with ‖yk‖ > k and a constant K so
that ρ(yk) ≤ K for all k > 0. Without loss of generality,
we may assume that yk

‖yk‖ → ȳ.

Then by definition of ρ, we have for all u ∈ U
〈b+Byk, u〉 −

1

2
uTMu ≤ K

〈b+Byk, u〉 ≤ K +
1

2
uTMu

〈b+Byk
‖yk‖

, u〉 ≤ K

‖yk‖
+

1

2‖yk‖
uTMu

Note that ȳ 6= 0, so Bȳ 6= 0. When we take the limit as
k → ∞, we get 〈Bȳ, u〉 ≤ 0. From this inequality we see
that Bȳ ∈ (cone U)◦, and so ȳ ∈ B−1((cone U)◦).

Proof of Lemma 3.2

The Lagrangian for (3.3) for feasible (x, uw, uv) is

L(x, uw, uv) =

〈[
b̃w

b̃v

]
,

[
uw

uv

]〉
− 1

2

[
uw

uv

]T [
Mw 0

0 Mv

] [
uw

uv

]
−
〈[
uw

uv

]
,

[
−BwQ−1/2G

BvR−1/2H

]
x

〉
(4.1)

where b̃w = bw−BwQ−1/2x̃0 and b̃v = bv−BvR−1/2z. The
associated optimality conditions for feasible (x, uw, uv) are
given by

GTQ−T/2(Bw)Tūw −HTR−T/2(Bv)Tūv = 0

b̃w −Mwūw +BwQ−1/2Gx̄ ∈ NUw(ūw)

b̃v −Mvūv −BvR−1/2Hx̄ ∈ NUv (ūv) ,

(4.2)

where NC(x) denotes the normal cone to the set C at the
point x (see Rockafellar [1970] for details).

Since Uw and Uv are polyhedral, we can derive ex-
plicit representations of the normal cones NUw(ūw) and



NUv (ūv). For a polyhedral set U ⊂ Rm and any point
ū ∈ U , the normal cone NU (ū) is polyhedral. Indeed,
relative to any representation

U = {u|ATu ≤ a}
and the active index set I(ū) := {i|〈Ai, ū〉 = ai}, where
Ai denotes the ith column of A, we have

NU (ū) =

{
q1A1 + · · ·+ qmAm | qi ≥ 0 for i ∈ I(ū)

qi = 0 fori 6∈ I(ū)

}
.

(4.3)
Using (4.3), Then we may rewrite the optimality condi-
tions (4.2) more explicitly as

GTQ−T/2(Bw)Tūw −HTR−T/2(Bv)Tūv = 0

b̃w −Mwūw +BwQ−1/2Gd̄ = Awqw

b̃v −Mvūv −BvR−1/2Hd̄ = Avqv

{qv ≥ 0|qvi = 0 for i 6∈ I(ūv)}
{qw ≥ 0|qwi = 0 for i 6∈ I(ūw)}

(4.4)

Define slack variables sw ≥ 0 and sv ≥ 0 as follows:

sw = aw − (Aw)Tuw

sv = av − (Av)Tuv.
(4.5)

Note that we know the entries of qwi and qvi are zero if and
only if the corresponding slack variables svi and swi are
nonzero, respectively. Then we have (qw)Tsw = (qv)Tsv =
0. These equations are known as the complementarity con-
ditions. Together, all of these equations give system (3.4).

4.1 Proof of Theorem 3.3

IP methods apply a damped Newton iteration to find the
solution of the relaxed KKT system Fµ = 0, where

Fµ


sw

sv

qw

qv

uw

uv

x

 =



(Aw)Tuw + sw − aw

(Av)Tuv + sv − av

D(qw)D(sw)1− µ1
D(qv)D(sv)1− µ1

b̃w +BwQ−1/2Gd−Mwuw −Awqw

b̃v −BvR−1/2Hd−Mvuv −Avqv

GTQ−T/2(Bw)Tuw −HTR−T/2(Bv)Tūv

 .

This entails solving the system

F
(1)
µ


sw

sv

qw

qv

uw

uv

d




∆sw

∆sv

∆qw

∆qv

∆uw

∆uv

∆d

 = −Fµ


sw

sv

qw

qv

uw

uv

d

 , (4.6)

where the derivative matrix F
(1)
µ is given by

I 0 0 0 (A
w
)
T

0 0

0 I 0 0 0 (A
v
)
T

0

Q
w

0 S
w

0 0 0 0

0 Q
v

0 S
v

0 0 0

0 0 −Aw
0 −Mw

0 B
w
Q

−1/2
G

0 0 0 −Av
0 −Mv −Bv

R
−1/2

H

0 0 0 0 G
T
Q

−T/2
(B

w
)
T −HT

R
−T/2

(B
v
)
T

0


(4.7)

We now show the row operations necessary to reduce the

matrix F
(1)
µ in (4.7) to upper block triangular form. After

each operation, we show only the row that was modified.

row3 ← row3 −D(qw) row1[
0 0 D(sw) 0 −D(qw)(Aw)T 0 0

]
row4 ← row4 −D(qv) row2[
0 0 0 D(sv) 0 −D(qv)(Av)T 0

]
row5 ← row5 +AwD(sw)−1 row3[
0 0 0 0 −Tw 0 BwQ−1/2G

]
row6 ← row6 +AvD(sv)−1 row4[
0 0 0 0 0 −T v −BvR−1/2H

]
.

In the above expressions,

Tw := Mw +Aw(Sw)−1Qw(Aw)T

T v := Mv +Av(Sv)−1Qv(Av)T ,
(4.8)

where (Sw)−1Qw and (Sv)−1Qv are always full-rank di-
agonal matrices, since the vectors sw, qw, sv, qv are always
strictly positive in IP iterations. The invertibility of Tw

and T v is charachterized in the following lemma.

Lemma 4.10. (Invertibility of T ) Let θU,M (·) be any PLQ

penalty on Rk, with U = {u
∣∣∣ATu ≤ a}. Let Tθ := M +

ADAT, where D is any diagonal k×k matrix with positive
entries on the diagonal. Then Tθ is invertible if and only
if Null(M) ∩ U∞ = {0}, or dom(θU,M ) is Rk.

Proof: Note that

Null(M +ADAT) = {w
∣∣∣wTMw + wTADATw = 0}

= {w
∣∣∣w ∈ Null(M) , w ∈ Null(AT)}

= Null(M) ∩Null(AT).

The first claim now follows from the fact that U∞ =
Null(AT). Recall that the effective domain of θ is given by
(Null(M)∩U∞)◦, and it is immediate from the definition
of ‘polar’ that 0◦ = Rk. �
Remark 4.11. (Block diagonal structure of T in i.d. case)
Suppose that y is a random vector, y = ( y1 ··· yn ),
where each yi is itself a random vector in Rmi , from
some PLQ density p(yi) ∝ exp[−c2θUi,Mi

((·))], and all
yi are independent. Let Ui = {u : ATi u ≤ ai}. Then
the matrix Tθ is given by Tθ = M + ADAT where
M = diag[M1, · · · ,MN ], A = diag[A1, · · · , AN ], D =
diag[D1, · · · , DN ], and {Di} are diagonal with positive
entries. Moreover, Tθ is block diagonal, with ith diagonal
block given by Mi +AiDiA

T
i . �

Corollary 4.12. (T matrices in the Kalman smoothing
context) The matrices Tw and T v in (4.8) are block diago-
nal provided that {wk} and {vk} are independent vectors
from any PLQ densities. Moreover, if these densities all
satisfy the characterization in Lemma 4.10, these matrices
are also invertible. �

We now finish the reduction of F
(1)
µ to upper block

triangular form:

row7 ← row7 +
(
GTQ−T/2(Bw)T(Tw)−1

)
row5−(

HTR−T/2(Bv)T(T v)−1
)

row6

I 0 0 0 (Aw)T 0 0

0 I 0 0 0 (Av)T 0

0 0 Sw 0 −Qw(Aw)T 0 0

0 0 0 Sv 0 −Qv(Av)T 0

0 0 0 0 −Tw 0 BwQ−1/2G

0 0 0 0 0 −T v −BvR−1/2H
0 0 0 0 0 0 Φ





where

Φ = ΦG + ΦH = GTQ−T/2(Bw)T(Tw)−1BwQ−1/2G

+HTR−T/2(Bv)T(T v)−1BvR−1/2H.
(4.9)

Note that Φ is symmetric positive definite. Note also that
Φ is block tridiagonal, since

(1) ΦH is block diagonal.
(2) Q−T/2(Bw)T(Tw)−1BwQ−1/2 is block diagonal, and

G is block bidiagonal, hence ΦG is block tridiagonal.

Solving system (4.6) requires inverting the block diagonal
matrices T v and Tw at each iteration of the damped
Newton’s method, as well as solving an equation of the
form Φ∆x = %. We have already seen that Φ is block
tridiagonal, symmetric, and positive definite, so Φ∆x = %
can be solved in O(Nn3) time using the block tridiagonal
algorithm in [Bell, 2000]. The remaining four back solves
required to solve (4.6) can each be done in O(nN) time.


