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Abstract: Popular convex approaches for sparse estimation such as Lasso and Multiple Kernel
Learning (MKL) can be derived in a Bayesian setting, starting from a particular stochastic
model. In problems where groups of variables have to be estimated, we show that the same
probabilistic model, under a suitable marginalization, leads to a different non-convex estimator
where hyperparameters are optimized. Theoretical arguments, independent of the correctness
of the priors entering the sparse model, are included to clarify the advantages of our non-
convex technique in comparison with MKL and the group version of Lasso under assumption of
orthogonal regressors.

1. INTRODUCTION

In this paper we investigate sparse estimation in a linear
regression model where the explanatory factors θ ∈ Rm
are naturally grouped so that θ is partitioned as θ =

[θ(1)> θ(2)> . . . θ(p)>]>. In this context we assume
that θ is group (or block) sparse, i.e. many of the con-
stituent vectors θ(i) are zero or have a negligible influence
on the output y ∈ Rn. In addition, we assume that the
number of unknowns m is large, possibly larger than the
size of the available data n. Interest in general sparsity
estimation and optimization has attracted the interest of
many researchers in statistics, machine learning, and signal
processing with numerous applications in feature selection,
compressed sensing, and selective shrinkage [Hastie and
Tibshirani, 1990, Tibshirani, 1996, Donoho, 2006, Can-
des and Tao, 2007]. The motivation for our study of the
group sparsity problem comes from the dynamic Bayesian
network scenario identification problem as discussed in
[Chiuso and Pillonetto, 2010b,a, 2012]. In a dynamic net-
work scenario the explanatory variables are often the past
histories of different input signals with the groups θ(i)

representing the impulse responses which describe the
relationship between the i-th input and the output y.
This application informs our view of the group sparsity
problem as well as our measures of success for a particular
estimation procedure.

Many approaches have been proposed in the literature
for joint estimation and variable selection problems. We
cite the well known Lasso [Tibshirani, 1996], Least An-
gle Regression (LAR) [Efron et al., 2004], their group
versions Group Lasso (GLasso) and Group Least Angle
Regression (GLAR) [Yuan and Lin, 2006], Multiple Kernel
Learning (MKL) [Bach et al., 2004, Evgeniou et al., 2005,
Pillonetto et al., 2010]. Methods based on hierarchical
Bayesian models have also been considered such as Au-

tomatic Relevance Determination (ARD) [Mackay, 1994],
the Relevance Vector Machine (RVM) [Tipping, 2001],
and the exponential hyperprior in [Chiuso and Pillonetto,
2010b, 2012]. The Bayesian approach described in [Chiuso
and Pillonetto, 2010b, 2012] and further developed in this
paper is intimately related to [Mackay, 1994, Tipping,
2001]; in fact, the exponential hyperprior algorithm in
[Chiuso and Pillonetto, 2010b, 2012] is a penalized version
of ARD.

An interesting series of papers [Wipf and Rao, 2007,
Wipf and Nagarajan, 2007, Wipf et al., 2011] provide
a nice link between penalized regression problems like
Lasso, also called type-I methods, and Bayesian methods
(like RVM [Tipping, 2001] and ARD [Mackay, 1994])
with hierarchical hyperpriors where the hyperparameters
are estimated via maximizing the marginal likelihood
and then inserted in the Bayesian model following the
Empirical Bayes paradigm [Maritz and Lwin, 1989]; these
latter methods are also known as type-II methods [Berger,
1985]. Note that this Empirical Bayes paradigm has also
been recently used in the context of System Identification
[Pillonetto and De Nicolao, 2010, Pillonetto et al., 2011,
Chen et al., 2011].

In [Wipf and Nagarajan, 2007, Wipf et al., 2011] it is
argued that type-II methods have advantages over type-
I methods; some of these advantages are related to the
fact that, under suitable assumptions, the former can
be written in the form of type-I with the addition of
a non-separable penalty term (a function g(x1, .., xn) is
non-separable if it cannot be written as g(x1, . . . , xn) =∑n
i=1 = h(xi)). The analysis in [Wipf et al., 2011] also

suggests that in the low noise regime the type-II approach
results in a tighter approximation to the `0 norm.

This is supported by experimental evidence showing that
these Bayesian approaches perform well in practice. Our
experience is that the approach based on the marginal
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likelihood is particularly robust w.r.t. noise regardless of
the correctness of the Bayesian prior.

The scope of this work, which is also motivated by the
stunning performance of the exponential hyperprior ap-
proach introduced in the dynamic network identification
scenario [Chiuso and Pillonetto, 2010b, 2012], is to provide
some new insights clarifying the above issues. In particular
in the first part of the paper the relation among Lasso (and
GLasso), the Exponential Hyperprior (HGLasso algorithm
hereafter, for reasons which will become clear later on)
and MKL is discussed by putting all these methods in a
common Bayesian framework (similar to that discussed
in [Park and Casella, 2008]). Both Lasso/GLasso and
MKL boil down to convex optimization problems, while
HGLasso does not. All these methods are then compared
in terms of optimality (KKT) conditions and tradeoffs
between sparsity and shrinkage are studied illustrating
the advantages of HGLasso over GLasso and MKL assum-
ing orthogonal regressors. In particular, the properties of
Empirical Bayes estimators which form the basis of our
computational scheme are studied in terms of their Mean
Square Error properties. Such analysis avoids assumptions
on the correctness of the priors entering the stochastic
model and clarifies why HGLasso is likely to provide more
sparse and accurate estimates in comparison with the
other two convex estimators.

The paper is organized as follows. In Section 2 we in-
troduce the HGLasso approach in a Bayesian framework.
Section 3 introduces MKL. In Section 4 the Mean Squared
Error properties of HGLasso and MKL are compared us-
ing orthogonal regressors. The analysis also includes the
GLasso case, since, under orthogonal assumptions, the
regularization paths of MKL and GLasso are the same,
see [Aravkin et al., 2011]. Some conclusions then end the
paper.

2. HGLASSO ESTIMATOR

We consider a linear measurement model of the form

y = Gθ + v y ∈ Rn θ ∈ Rm (1)

where v is the vector whose components are white noise of
known variance σ2.

For the reasons put forward in the introduction, we are
interested in situations where the explanatory factors G
used to predict y are grouped. As such we partition θ into
p sub-vectors θ(i), i = 1, . . . , p, so that

θ = [θ(1)> θ(2)> . . . θ(p)>]>. (2)

For i = 1, . . . , p, assume that the sub-vector θ(i) has
dimension ki so that m =

∑p
i=1 ki. Next, conformally

partition the matrix G = [G(1), . . . , G(p)] to obtain the
measurement model

y = Gθ + v =

p∑
i=1

G(i)θ(i) + v. (3)

In what follows, we assume that θ is block sparse in the
sense that many of the blocks θ(i) are null, i.e. with all of
their components equal to zero, or have a negligible effect
on y.

An possible approach to the block sparsity problem, dis-
cussed in [Chiuso and Pillonetto, 2010b], relies on the

group version of the model in Fig. 1(a) illustrated in Fig.
1(b). In the network, λ is now a p-dimensional vector
with independent and identically distributed components
λi ∈ R+:

pγ(λi) = γe−γλiχ(λi), (4)

where γ is a positive scalar while χ(t) = 1 if t ≥ 0, 0
otherwise. In addition, conditional on λ, each block θ(i)

of the vector θ is zero-mean Gaussian with covariance 1

λiIki , i = 1, .., p, i.e.

θ(i)|λi ∼ N(0, λiIki) (5)

The proposed estimator first optimizes the marginal den-
sity of λ, and then again using an empirical Bayes ap-
proach, the minimum variance estimate of θ is computed
with λ taken as known and set to its estimate. We call
this scheme Hyperparameter Group Lasso (HGLasso). It
is described in the following theorem.

Theorem 1. Consider the Bayesian network in Fig. 1(b)
with measurement model given by (3), (5), and (4), and
define

λ̂ = arg max
λ∈Rp

+

∫
Rm

p(θ, λ|y)dθ (6)

Then, λ̂ is given by

arg min
λ∈Rp

+

1

2
log det(Σy(λ)) +

1

2
y>Σ−1

y (λ)y + γ

p∑
i=1

λi (7)

where

Σy(λ) := GΛG> + σ2I, Λ := blockdiag({λiIki}) (8)

In addition, the HGLasso estimate of θ, denoted θ̂HGL, is

given by setting λ = λ̂ in the function

θHGL(λ) := E[θ|y, λ] = ΛG>(Σy(λ))−1y. (9)

�

The derivation of this estimate can be found in [Aravkin
et al., 2011] and is omitted for reasons of space. Note that
the optimization (7) is performed in Rp, rather than in Rm
(m > p for the group case) where the GLasso [Yuan and
Lin, 2006] objective is optimized.

Let the vector µ denote the dual vector for the constraint
λ ≥ 0. Then the Lagrangian for the problem (7) is given
by

L(λ, µ) :=
1

2
log det(Σy(λ)) +

1

2
y>Σy(λ)−1y+

+γ1>λ− µ>λ
(10)

Using the fact that

∂λi
L(λ, µ) =

1

2
tr
(
G(i)>Σy(λ)−1G(i)

)
− 1

2
y>Σy(λ)−1G(i)G(i)>Σy(λ)−1y + γ − µi,

we obtain the following KKT conditions for (7).

Proposition 2. The necessary conditions for λ to be a
solution of (7) are

1 The results in this paper can be easily extended to priors of the
form λi ∼ N(0, λiQi); however for sake of exposition we prefer to
work with Σki

= Iki
.
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Fig. 1. Bayesian networks describing the stochastic model
for sparse estimation (a) and group sparse estimation
(b)

Σy = σ2I +

p∑
i=1

λiG
(i)G(i)>

WΣy = I

tr
(
G(i)>WG(i)

)
− ‖G(i)>Wy‖22 + 2γ − 2µi = 0,

µiλi = 0, i = 1, . . . , p
0 ≤ µ, λ and 0 �W,Σy

(11)

It is interesting to observe that one has

E
[
θHGL(λ)θHGL(λ)> |λ

]
= ΛG>Σy(λ)−1GΛ,

and so, for i = 1, . . . , p,

E
[
θ

(i)
HGL(λ)

(
θ

(i)
HGL(λ)

)> ∣∣∣∣ λ] = λ2
i

(
G(i)>WG(i)

)
. (12)

In addition

‖θ(i)
HGL(λ)‖2 = λ2

i ‖G(i)>Wy‖22, i = 1, . . . , p.

Equation (11) indicates that when tuning λ there should
be a link between the “norm” of the actual estimator
‖θ̂(i)(λ)‖2 to its a priori second moments (12). In partic-
ular, when no regularization is imposed on λ (i.e. γ = 0)
and the nonnegativity constraint is not active, i.e. µi = 0,
one finds that the optimal value of λi makes the norm of
the estimator equal to (the trace of) its a priori matrix of
second moments.

Remark 3. If each block θ(i) was assumed to have a
covariance of the form λiQi then one should use the
weighted norm ‖x‖Qi

:= x>Q−1
i x instead. Analogously,

if the group θ(i) are infinite dimensional objects in a
Reproducing Kernel Hilbert Space (RKHS) H, which is
of interest in the system identification scenario in which
each θ(i) is an impulse response, then the 2-norm has to
be replaced with the norm in the RKHS.

3. MULTIPLE KERNEL LEARNING

Multiple Kernel Learning (MKL) provides another ap-
proach to the block sparsity problem [Bach et al., 2004,
Evgeniou et al., 2005, Dinuzzo, 2010, Bach, 2008]. To
introduce this approach consider the measurements model

y = f + v =

p∑
i=1

f (i) + v , (13)

where v is as specified in (1). In the MKL framework,
f represents the sampled version of a scalar function
assumed to belong to a (generally infinite-dimensional)
reproducing kernel Hilbert space (RKHS) [Wahba, 1990].
For our purposes, we consider a simplified scenario where
the domain of the functions in the RKHS is the finite set
[1, . . . , n]. In this way, f represents the entire function
and y is the noisy version of f sampled on all its whole
domain. In addition, we assume that f belongs to the
RKHS, denoted HK , having kernel defined by the matrix

K(λ) =

p∑
i=1

λiK
(i), (14)

where it is further assumed that each of the functions
f (i) is an element of a RKHS, denoted H(i), having kernel
λiK

(i) with associated norm denoted by ‖f (i)‖(i).
According to the MKL approach, the estimates of the
unknown functions f (i) are obtained jointly with those
of the scale factors λi by solving the following inequality
constrained problem:

({f̂ (i)}, λ̂) = arg min
{f(i)},λ∈Rp

+

(y − f)>(y − f)

σ2
+

p∑
i=1

‖f (i)‖2(i)

s.t.

p∑
i=1

λi ≤M , (15)

where M plays the role of a regularization parameter.
Hence, the “scale factors” contained in λ ∈ R+

p are opti-
mization variables, thought of as “tuning knobs” adjusting
the kernel K(λ) to better suit the measured data. Using
the extended version of the representer theorem, e.g. see
[Dinuzzo, 2010, Evgeniou et al., 2005], the solution is

f̂ (i) = λ̂iK
(i)ĉ, i = 1, . . . , p (16)

where

{ĉ, λ̂} = arg min
c∈Rn,λ∈R+

p

(y −K(λ)c)>(y −K(λ)c)

σ2
+ c>K(λ)c

s.t.

p∑
i=1

λi ≤M (17)

It can be shown that every local solution the above opti-
mization problem is also a global solution, see [Dinuzzo,
2010] for details.

In the following proposition we supply the KKT conditions

for λ̂ to be solutions of (17).

Proposition 4. The necessary and sufficient conditions for
λ to be a solution of (17) are

Σy = K(λ) + σ2I
WΣy = I

−‖G(i)>Wy‖22 + 2γ − 2µi = 0, i = 1, . . . , p
µiλi = 0, i = 1, . . . , p
0 ≤ µ, λ and 0 �W,Σy

(18)

�
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4. MEAN SQUARED ERROR PROPERTIES OF
EMPIRICAL BAYES ESTIMATORS

In this Section we evaluate the performance of an estima-

tor θ̂ using its Mean Squared Error (MSE) i.e. its expected
quadratic loss

tr

[
E
[(
θ̂ − θ̄

)(
θ̂ − θ̄

)> ∣∣∣∣ λ, θ = θ̄

]]
,

where θ̄ is the “true” but unknown value of θ. When we
speak about “Bayes estimators” we think of estimators of

the form θ̂(λ) := E [θ | y, λ] computed using the probabilis-
tic model Fig. 1 with γ fixed.

We derive the MSE formulas under the simplifying as-
sumption of “orthogonal” regressors (G>G = nI) and
show that the Empirical Bayes estimator converges to
an “optimal” estimator in terms of its MSE. This fact
has close connections to the so called “Stein” estimators
[James and Stein, 1961], [Stein, 1981], [Efron and Mor-
ris, 1973]. The same optimality properties are attained,
asymptotically, when the columns of G are realizations of
uncorrelated processes having the same variance. This is
of interest in the system identification scenario considered
in [Chiuso and Pillonetto, 2010a,b, 2012] since it arises
when one performs identification with i.i.d. white noises
as inputs.

We begin by deriving an expression for the MSE of the

Bayes estimators θ̂(λ) := E [θ | y, λ]. In this section, it is
convenient to introduce the following notation

Ev[ · ] := E[ · |λ, θ = θ̄] and Varv[ · ] := E[ · |λ, θ = θ̄].

Proposition 5. Consider the model (3) under the proba-
bilistic model described in Fig. 1(b). The Mean Squared

Error of the Bayes estimator θ̂(λ) := E [θ|y, λ] given λ and
θ = θ̄ is

MSE(λ) = tr
[
Ev
[
(θ̂(λ)− θ)(θ̂(λ)− θ)>

]]
= tr

[
σ2R−1(λ)P (λ, θ̄)R−1(λ)

]
. (19)

where

R(λ) := G>G+ σ2Λ−1 P (λ, θ̄) := G>G+ σ2Λ−1θ̄θ̄>Λ−1.

Proof. See [Aravkin et al., 2011].

We can now minimize the expression for MSE(λ) given
in (19) with respect to λ to obtain the optimal minimum
mean squared error estimator. In the case where G>G =
nI this computation is straightforward and is recorded in
the following proposition.

Corollary 6. Assume that G>G = nI in Proposition 5.
Then MSE(λ) is globally minimized by choosing

λi = λopti :=
‖θ̄(i)‖2

ki
, i = 1, . . . , p. (20)

Next consider the Maximum a Posteriori estimator of
λ again under the simplifying assumption G>G = nI.
Note that, under the noninformative prior (γ = 0), this
Maximum a Posteriori reduces to the standard Maximum
(marginal) Likelihood approach to estimating the prior
distribution of θ. Consequently, we continue to call the
resulting procedure Empirical Bayes (a.k.a. Type-II Max-
imum Likelihood, [Berger, 1985]).

Proposition 7. Consider model (3) under the probabilistic
model described in Fig. 1(b), and assume that G>G =
nI. Then the estimator of λi obtained maximizing the
marginal posterior p(λ|y),

{λ̂1(γ), ..., λ̂p(γ)} := arg max
λ∈Rp

+

p(λ|y)

= arg max
λ∈Rp

+

∫
p(y, θ|λ)pγ(λ) dθ,

(21)
is given by

λ̂i(γ) = max

(
0,

1

4γ

[√
k2
i + 8γ‖θ̂(i)

LS‖2 −
(
ki +

4σ2γ

n

)])
,

(22)
where

θ̂
(i)
LS =

1

n

(
G(i)

)>
y

is the Least Squares estimator of the i−th block θ(i). As
γ → 0 (γ = 0 corresponds to an improper flat prior) the
expression (22) yields:

lim
γ→0

λ̂i(γ) = max

(
0,
‖θ̂(i)
LS‖2

ki
− σ2

n

)
. (23)

In addition, the probability P[λ̂i(γ) = 0 | θ = θ̄] of setting

λ̂i = 0 is given by

P[λ̂i(γ) = 0 | θ = θ̄] = P
[
χ2
ki,µ ≤

(
ki + 2γ

σ2

n

)]
, (24)

where χ2(ki, µ) denotes a noncentral χ2 random variable
with d degrees of freedom and noncentrality parameter
µ := ‖θ̄(i)‖2 n

σ2 .

Proof. See [Aravkin et al., 2011]

Note that the expression of λ̂i(γ) in Proposition 7 has the
form of a “saturation”. In particular, for γ = 0, we have

λ̂i(0) = max(0, λ̂∗i ), where λ̂∗i :=
‖θ̂(i)
LS‖2

ki
− σ2

n
. (25)

The following proposition shows that the “unsaturated”

estimator λ̂∗i is unbiased and consistent estimator of λopti

which minimizes the Mean Squared Error while λ̂i(0) is
only asymptotically unbiased and consistent.

Corollary 8. Under the assumption G>G = nI, the es-

timator of λ̂∗ := {λ∗1, .., λ∗p} in (25) is an unbiased and

mean square consistent estimator of λopt which minimizes

the Mean Squared Error, while λ̂(0) := {λ1(0), .., λp(0)} is
asymptotically unbiased and consistent, i.e.:

E[λ̂∗i | θ = θ̄] = λopti lim
n→∞

E[λ̂i(0) | θ = θ̄] = λopti (26)

and
lim
n→∞

λ̂∗i
m.s.
= λopti lim

n→∞
λ̂i(0)

m.s.
= λopti (27)

where
m.s.
= denotes convergence in mean square.

Proof. See [Aravkin et al., 2011]

Remark 9. Note that if θ̄(i) = 0 the optimal value λopti is

zero. Hence (27) shows that asymptotically λ̂i(0) converges
to zero. However, in this case, it is easy to see from (24)
that

lim
n→∞

P[λ̂i(0) = 0 | θ = θ̄] < 1.
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There is in fact no contradiction between these two state-
ments because one can easily show that for all ε > 0,

P[λ̂i(0) ∈ [0, ε) | θ = θ̄]
n→∞−→ 1.

In order to guarantee that limn→∞ P[λ̂i(γ) = 0 | θ = θ̄] = 1

one must chose γ = γn so that 2σ
2

n γn → ∞, so that γn
grows faster than n. This is in line with the well known
requirements for Lasso to be model selection consistent. In
fact, Theorem 1 in [Aravkin et al., 2011] shows that the
link between γ and the regularization parameter γL for
Lasso is given by γL =

√
2γ. The condition n−1γn → ∞

translates into n−1/2γLn →∞, a well known condition for
Lasso to be model selection consistent [Zhao and Yu, 2006,
Bach, 2008].

The results obtained so far suggest that the Empirical
Bayes resulting from HGLasso has desirable properties
with respect to the MSE of the estimators. One wonder
whether the same favorable properties are inherited by the
Multiple Kernel Learning estimators. The next proposition
shows that this is not the case. In fact, for θ̄(i) 6= 0
MKL does yield consistent estimators for λopti ; in addition,

for θ(i) = 0 the probability of setting λ̂i(γ) to zero (see
equation (31)) is much smaller than that obtained using
HGLasso (see equation (24)); this is also illustrated in
Figure 2 (top). Also note that, as illustrated in Figure 2
(bottom), when the “true” θ is equal to zero MKL tends to

give much larger values of λ̂ than those given by HGLasso.

This results in larger values of ‖θ̂‖ (see Figure 2).

Proposition 10. Consider model (3) under the probabilis-
tic model described in Fig. 1(b), and assume G>G = nI.
Then the estimator of λi obtained by maximizing the joint
posterior p(λ, φ|y)

{λ̂(γ), ..., λ̂p(γ)} := arg max
λ∈Rp

+
,φ∈Rm

+

p(λ, φ|y), (28)

is given by

λ̂i(γ) = max

(
0,
‖θ̂(i)
LS‖√
2γ
− σ2

n

)
, (29)

where

θ̂
(i)
LS =

1

n

(
G(i)

)>
y

is the Least Squares estimator of the i−th block θ(i) for

i = 1, . . . , p. For n→∞ the estimator λ̂i(γ) satisfies

lim
n→∞

λ̂i(γ)
m.s.
=
‖θ̄(i)‖√

2γ
. (30)

In addition, the probability P[λ̂i(γ) = 0 | θ = θ̄] of setting

λ̂i(γ) = 0 is given by

Pθ[λ̂i(γ) = 0 | θ = θ̄] = P
[
χ2
(
ki, ‖θ̄(i)‖2 n

σ2

)
≤ 2γ

σ2

n

]
.

(31)

Proof. See [Aravkin et al., 2011].

Note that the limit of the MKL estimators λ̂i(γ) as n→∞
depends on γ. Therefore, using MKL, one cannot hope to
get consistent estimators of λopti . Indeed, for ‖θ̄(i)‖2 6= 0,

consistency of λ̂i(γ) requires γ → ki
2‖θ̄(i)‖2 , which is a

circular requirement.

5. CONCLUSION

It has been shown that HGLasso and MKL derive from the
same Bayesian model, yet in a different way. The HGLasso
relies on a marginalized joint density with the resulting
estimator involving optimization of a non-convex objec-
tive. However, the non-convex nature allows HGLasso to
achieve higher levels of sparsity than MKL without intro-
ducing too much regularization in the estimation process.
The MSE analysis reported in this paper, under assump-
tions of orthogonal regressors where MKL and GLasso
share the same regularization paths, reveals the superior
performance of HGLasso also in the reconstruction of the
parameter groups different from zero. It shows the robust-
ness of the empirical Bayes procedure, based on marginal
likelihood optimization, independently of the correctness
of the priors entering the stochastic model underlying
HGLasso.

ACKNOWLEDGEMENTS

This research has been partially supported by the PRIN
grant n. 20085FFJ2Z “New Algorithms and Applications
of System Identification and Adaptive Control” by the
Progetto di Ateneo CPDA090135/09 funded by the Uni-
versity of Padova, by the European Community’s Seventh
Framework Programme [FP7/2007-2013] under agreement
n. FP7-ICT-223866-FeedNetBack and under grant agree-
ment n257462 HYCON2 Network of excellence

REFERENCES

A. Aravkin, J. Burke, A. Chiuso, and G. Pillonetto.
Convex vs nonconvex approaches for sparse estimation:
glasso, multiple kernel learning and hyperparameter
glasso. Technical report, University of Padova, 2011.
submitted to Journal of Machine Learning Research.

F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel
learning, conic duality, and the smo algorithm. In
Proceedings of the 21st International Conference on
Machine Learning, pages 41–48, 2004.

F.R. Bach. Consistency of the group lasso and multiple
kernel learning. Journal of Machine Learning Research,
9:1179–1225, 2008.

J.O. Berger. Statistical Decision Theory and Bayesian
Analysis. Springer Series in Statistics. Springer, second
edition, 1985.

E. Candes and T. Tao. The Dantzig selector: statistical
estimation when p is much larger than n. Annals of
Statistics, 35:2313–2351, 2007.

T. Chen, H. Ohlsson, and L. Ljung. On the estimation of
transfer functions, regularization and gaussian processes
- revisited. In IFAC World Congress 2011, Milano, 2011.

A. Chiuso and G. Pillonetto. Nonparametric sparse esti-
mators for identification of large scale linear systems.
In Proceedings of IEEE Conf. on Dec. and Control,
Atlanta, 2010a.

A. Chiuso and G. Pillonetto. Learning sparse dynamic
linear systems using stable spline kernels and exponen-
tial hyperpriors. In Proceedings of Neural Information
Processing Symposium, Vancouver, 2010b.

A. Chiuso and G. Pillonetto. A Bayesian approach to
sparse dynamic network identification. Automatica, to
appear, 2012.

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

969



Fig. 2. This plot has been generated assuming that there are two blocks (p = 2) of dimension k1 = k2 = 10 with
θ̄(1) = 0 and all the components of the true θ̄(2) ∈ R10 set to one.The matrix G equal to the identity, the noise

variance equal to 0.1 and n = 1. Left: probability of setting θ̂(1) to zero vs Mean Squared Error in θ̂(2). Curves

are parametrized in γ ∈ [0,+∞). Right: Mean Squared Error in θ̂(1) vs Mean Squared Error in θ̂(2). Curves are
parametrized in γ ∈ [0,+∞).

F. Dinuzzo. Kernel machines with two layers and multiple
kernel learning. arXiv:1001.2709, 2010.

D. Donoho. Compressed sensing. IEEE Trans. on Infor-
mation Theory, 52(4):1289–1306, 2006.

B. Efron and C. Morris. Stein’s estimation rule and its
competitors–an empirical Bayes approach. Journal of
the American Statistical Association, 68(341):117–130,
1973.

B. Efron, T. Hastie, L. Johnstone, and R. Tibshirani. Least
angle regression. Annals of Statistics, 32:407–499, 2004.

T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning
multiple tasks with kernel methods. Journal of Machine
Learning Research, 6:615–637, 2005.

T. J. Hastie and R. J. Tibshirani. Generalized additive
models. In Monographs on Statistics and Applied Proba-
bility, volume 43. Chapman and Hall, London, UK, 1990.

W. James and C. Stein. Estimation with quadratic loss.
In Proc. 4th Berkeley Sympos. Math. Statist. and Prob.,
Vol. I, pages 361–379. Univ. California Press, Berkeley,
Calif., 1961.

D.J.C. Mackay. Bayesian non-linear modelling for the
prediction competition. ASHRAE Trans., 100(2):3704–
3716, 1994.

J. S. Maritz and T. Lwin. Empirical Bayes Method.
Chapman and Hall, 1989.

T. Park and G. Casella. The Bayesian Lasso. Journal of
the American Statistical Association, 103(482):681–686,
June 2008.

G. Pillonetto and G. De Nicolao. A new kernel-based
approach for linear system identification. Automatica,
46(1):81–93, 2010.

G. Pillonetto, F. Dinuzzo, and G. De Nicolao. Bayesian
online multitask learning of gaussian processes. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 32(2):193–205, 2010.

G. Pillonetto, A. Chiuso, and G. De Nicolao. Prediction
error identification of linear systems: a nonparametric
Gaussian regression approach. Automatica, 45(2):291–

305, 2011.
C.M. Stein. Estimation of the mean of a multivariate

normal distribution. The Annalso of Statistics, 9(6):
1135–1151, 1981.

R. Tibshirani. Regression shrinkage and selection via the
LASSO. Journal of the Royal Statistical Society, Series
B., 58, 1996.

M. Tipping. Sparse Bayesian learning and the relevance
vector machine. Journal of Machine Learning Research,
1:211–244, 2001.

G. Wahba. Spline models for observational data. SIAM,
Philadelphia, 1990.

D.P. Wipf and S. Nagarajan. A new view of automatic
relevance determination. In Proc. of NIPS, 2007.

D.P. Wipf and B.D. Rao. An empirical Bayesian strat-
egy for solving the simultaneous sparse approximation
problem. IEEE Transactions on Signal Processing, 55
(7):3704–3716, 2007.

D.P. Wipf, B.D. Rao, and S. Nagarajan. Latent variable
Bayesian models for promoting sparsity. IEEE Trans-
actions on Information Theory (to appear), 2011.

M. Yuan and Y. Lin. Model selection and estimation in
regression with grouped variables. Journal of the Royal
Statistical Society, Series B, 68:49–67, 2006.

P. Zhao and B. Yu. On model selection consistency of
lasso. Journal of Machine Learning Research, 7:2541–
2563, Nov. 2006.

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

970


