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Abstract. Smoothing methods have become part of the standard tool set for the study and
solution of nondifferentiable and constrained optimization problems as well as a range of other vari-
ational and equilibrium problems. In this note we synthesize and extend recent results due to Beck
and Teboulle on infimal convolution smoothing for convex functions with those of X. Chen on gra-
dient consistency for nonconvex functions. We use epi-convergence techniques to define a notion of
epi-smoothing that allows us to tap into the rich variational structure of the subdifferential calculus
for nonsmooth, nonconvex, and nonfinite-valued functions. As an illustration of the versatility and
range of epi-smoothing techniques, the results are applied to the general constrained optimization
for which nonlinear programming is a special case.
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1. Introduction. A standard approach to solving nonsmooth and constrained
optimization problems is to solve a related sequence of unconstrained smooth ap-
proximations [7, 8, 9, 21, 29, 33, 37, 48, 53]. The approximations are constructed so
that cluster points of the solutions or stationary points of the approximating smooth
problems are solutions or stationary points for the limiting nonsmooth or constrained
optimization problem. In the setting of convex programming, there is now great in-
terest in these methods in the very-large-scale setting (e.g., see [26, 44, 48, 49]), where
first-order methods for convex nonsmooth optimization have been very successful. At
the same time, there are many recent applications of smoothing methods to general
nonlinear programming, equilibrium, and mathematical programs with equilibrium
constraints; e.g., see [10, 18, 19, 20, 22, 23, 31, 34, 35, 36]. This paper is concerned
with synthesizing and expanding the ideas presented in two important recent papers
on smoothing. Beck and Teboulle [7] developed a smoothing framework for nons-
mooth convex functions based on infimal convolution. Chen [21], among other things,
studied the notion of gradient consistency for smoothing sequences. Our goal is to
extend the ideas presented in [7] for convex functions to the class of convex composite
functions and provide conditions under which this extension preserves the gradient
consistency. Our primary tool in this analysis is the notion of variational convergence
called epi-convergence [4, 5, 53]. Epi-convergence is ideally suited to the study of
the variational properties of parametrized families of functions allowing, for exam-
ple, the development of a calculus of smoothing functions which is essential for the
applications to the nonlinear inverse problems that we have in mind [1, 2, 3]. Epi-
smoothing is a weaker notion of smoothing than those considered in [7, Definition 2.1]
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where complexity results are one of the key contributions [7, Theorem 3.1]. Tt is the
complexity results that require stronger notions of smoothing. On the other hand,
our goal is to establish limiting variational properties in nonconvex applications, in
particular, gradient consistency (see [21, Theorem 1] and [15, Theorem 4.5]).

We begin in section 2 by introducing the notions of epigraphical and set-valued
convergence upon which our analysis rests. We also introduce the tools from subdif-
ferential calculus [53] that we use to establish gradient consistency. In section 3, we
define epi-smoothing functions and develop a calculus for these smoothing functions
that includes basic arithmetic operations as well as composition. In section 4, we give
conditions under which the Beck and Teboulle [7] approach to smoothing via infimal
convolution also gives rise to epi-smoothing functions that satisfy gradient consistency.
These results are then applied to Moreau envelopes (e.g., see [53]) and quadratic sup-
port (QS) functions. In section 5, we introduce convex composite functions and give
conditions under which the epi-smoothing results of section 4 can be extended to this
class of functions. In section 6, we conclude by applying the smoothing results for
convex composite functions to general nonlinear programming problems.

Notation. Most of the notation used is standard. An element x € R™ is under-
stood as a column vector, and R := [—o0, +00] is the extended real line. The space of
all real m x n-matrices is denoted by R™*", and for A € R™*", AT is its transpose.
The null space of A is the set

nul A := {x € R" | Az = 0}.

By I,xn we mean the n x n identity matrix and by ones(n, m) the n x m matrix each
of whose entries is the number 1.

Unless otherwise stated, || - || denotes the Fuclidean norm on R™ and ||-||; denotes
the 1-norm. If C' C R™ is nonempty and closed, the Fuclidean distance function for
C is given by

(1.1) dist(y | €) := inf |y — 2.

When C is convex it is easily established that the distance function is a convex func-
tion, and optimization (1.1) has a unique solution Il (y) which is called the projection
of y onto C.

For a sequence {z¥} C R™ and a (nonempty) set X C R™ we abbreviate the fact
that 2* converges to # € R” and 2* € X for all k € N by

v —x T.
Moreover, for a function f : R™ — R, define
b =z = ¥ =7 and f(2F) - f(3).

This type of convergence coincides with ordinary convergence when f is continuous.

For a real-valued function f : R™ — R differentiable at Z, the gradient is given
by Vf(z), which is understood as a column vector. For a function F' : R® — R™
differentiable at Z, the Jacobian of F at T is denoted by F'(Z), i.e.,

VE; (j)T
F'(z)= ; e R™*™,
VFE,(z)T
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In order to distinguish between single- and set-valued maps, we write S : R® = R™
to indicate that S maps vectors from R”™ to subsets of R™. The graph of S is the set

gph S == {(z,y) | y € S(x)},

which is equivalent to the classical notion when S is single-valued.

2. Preliminaries. In this section we review certain concepts from variational
and nonsmooth analysis employed in the subsequent analysis. The notation is pri-
marily based on [53].

For an extended real-valued function f : R™ — RU {400} its epigraph is given by

epi f = {(z,a) e R" xR | f(z) < a},
and its domain is the set
dom f := {z € R" | f(x) < +o0}.

The notion of the epigraph allows for very handy definitions of a number of properties
for extended real-valued functions (see [41, 52, 53]).

DEFINITION 2.1 (closed, proper, convex functions). A function f : R® — RU
{+o0} is called lower semicontinuous (Isc) (or closed) if epi f is a closed set. f is
called convex if epi f is a convexr set. A convex function f is said to be proper if
dom f # 0.

Note that these definitions coincide with the usual concepts for ordinary real-
valued functions. Moreover, it holds that a convex function is always (locally Lips-
chitz) continuous on the (relative) interior of its domain [52, Theorem 10.4].

Furthermore, we point out that in what follows, for an Isc convex function f :
R™ — R U {400}, we always exclude the case f = +00, which means that we deal
with proper functions.

An important function in this context is the indicator function of a set C C R™
given by 6(- | C) : R™ — R U {+oo} with

0 if zeC,
6(3:'0)_{—1—00 if z¢C.

The indicator function §(- | C) is convex if and only if C' is convex, and §(- | C) is Isc
if and only if C' is closed.

A crucial role in our upcoming analysis is played by the concept of epi-convergence.
In order to define epi-convergence, we first need to introduce the notion of set-
convergence in the sense of Painlevé-Kuratowski: For a sequence of sets {C*} with
Cr C R™ for all k € N, we define the outer limit as

Limsup C* := {# | 3K C N(infinite), {eF} sz eCr Vke K}

k—o00

and the inner limit as

L}Cminfck i={z |3k e N, {a*} s 2:2" € C" VEk>ko}.
— 00

From the definitions it is clear that always Liminfy_,o, C¥ C Limsup,_, . C*. We
say that {C*} converges if the outer and inner limits are equal, i.e.,

Lim C* := Limsup C* = Liminf C*.
k—o0 k—s 00 k—o0
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DEFINITION 2.2 (epi-convergence). We say that a sequence {fy} of functions
fr : R® — R epi-converges to f: R" — R if

Lim epi fr, = epi f.
k— oo
In this case we write
e—limf,=f or fp— f.

Epi-convergence for sequences of convex functions goes back to Wijsman [58, 59],
where it is called infimal convergence. The term epi-convergence arguably is due to
Wets [57].

A crucial feature of epi-convergence is the following property due to Wijsman (see
[563, Theorem 11.34]): If the functions fi, f : R™ — R U {400} are proper, lsc, and
convex, one has

e—limfy,=f <= e—limf; = f",

where f*(y) := sup,{u’y — f(u)} is the Legendre-Fenchel transform (see, e.g., [53,
equation 11(1)]) of f. A handy characterization of epi-convergence is given by

V{z*} — z: liminf fy(2F) > f(2),

(2.1) fof = VIER" { Hak} — z: limsup fr(z¥) < f(2)

(see [53, Proposition 7.2]), which we invoke in several places. For extensive surveys
of epi-convergence we refer the reader to [4] or [53, Chapter 7).

We make use of the regular and limiting subdifferentials to describe the variational
behavior of nonsmooth functions. In constructing the limiting subdifferential, we
employ the outer limit for a set-valued mapping, which we now define along with the
inner limit. Both definitions are based on the respective notions for set-convergence
from above.

For S :R™” = R™ and X C R" the outer limit of S at Z relative to X is given by

Limsup S(x) := U Lim sup S(z*)
T—XT {2+ ) >z k—oo

= {v| 3@’} =5x 7, {v*} v € S(zF) VkeN},

and the inner limit of S at T relative to X is defined by

o L o k
Lwlgl)?%fS(x) = ﬂ Lllcg(glfS(x )
{ak} oz
= {v|V{z"} =x 7, "} 5 v, ko e N:0F € S(2F) VEk>ko}.
We say that S is outer semicontinuous at T relative to X if

Limsup S(x) C S(Z).

T—XT
In the case that outer and inner limits coincide, we write

Lim_S(x) := Limsup S(z)

T—=XT T—=XxT

and say that S is continuous at Z relative to X.
DEFINITION 2.3 (regular and limiting subdifferential). Let f : R™ — R U {+oc}
and T € dom f.
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(a) The reqular subdifferential of f at T is the set given by

of (@) :={v | f(z) > (@) + 0" (@ - 7) + o(|lx — Z||) }.
(b) The limiting subdifferential of f at T is the set given by

df(z) := Limsup df ().

5T

There are other ways to obtain the limiting subdifferential than the one described
above, which goes back to Mordukhovich [46]. See [17] or [43] for a construction of
the limiting subdifferential via Dini-derivatives.

It is a well-known fact (see [53, Proposition 8.12]) that if f : R™ — R U {400} is
convex, both the limiting and the regular subdifferential coincide with the subdiffer-
ential of convex analysis, i.e.,

f@) ={v]| f(x) > f(@) +vT(x —7) VreR"}=0f(T) V7€ domf.

The above subdifferentials are closely tied to normal cones; in fact, the reqular and
the limiting normal cones (see [53, Definition 6.3]) of a closed set C C R"™ at € C
can be expressed as

N@#|C)=86z|C) and N(z|C)=0é=z]|C);

see [53, Exercise 8.14].
An important concept in the context of subdifferentiation is (subdifferential) reg-
ularity. We say that f : R™ — RU{+oco} is (subdifferentially) regular at € dom f if

N((z, f(2)) [ epi f) = N((z, f(z)) | epi f).

Note that this regularity notion coincides with the one used in [24]; see the discussion
on p. 61 in [24] in combination with [53, Corollary 6.29].

3. Epi-smoothing functions. In this section we lay out the general framework
for the smoothing functions studied in this paper. Let f : R™ — R U {400} be Isc.
We say sy : R® x R — R is an epi-smoothing function for f if the following two
conditions are satisfied:

(1) s¢(-, pur) epi-converges to f for all {ux} | 0, written

(3.1) e~lim sy (- p) = f.

(i) s¢(-, p) is continuously differentiable for all 1 > 0.
We point out that (3.1) is satisfied if and only if

Lim episy (-, u) = epi f,
w0
a characterization which we invoke in several places without referring to it explic-

itly. Moreover, note that (3.1) is always fulfilled (see [53, Theorem 7.11]) under the
condition

(3.2) lim s¢(z,p) = f(Z) VZeR",

pnl0,x—x
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which is called continuous convergence in [53]. As we will see in section 4, however,
continuous convergence can be an excessively strong assumption, especially when
dealing with nonfinite-valued functions.
The following result provides an elementary calculus for epi-smoothing functions.
PROPOSITION 3.1. Let g,h : R™ — R U {400} be Isc and let s, and s;, be
epi-smoothing functions for g and h, respectively.
(a) If sq converges continuously to g, then sy := sq + s is an epi-smoothing
function for f:= g+ h.
(b) If g is continuously differentiable, then sy := g + s5 is an epi-smoothing
function f:=g+h.
(c) If A > 0, then Asy is an epi-smoothing function for Ag.
(d) If A € R™ "™ has rank m and b € R™, then s4(-,-) := sq(A(-) +b,-) is an
epi-smoothing function for f:= g(A(-) +b).
Proof. Item (a) follows from [53, Theorem 7.46], while (b) follows from (a) and
the fact that g is a continuously convergent epi-smoothing function for itself. Item (c)
is provided by [53, Exercise 7.8(d)]. Item (d) is an immediate consequence of Theorem
3.2 and the discussion up front. d
To obtain a more powerful chain rule than the one given in item (d) above, we
need to invoke more refined tools from variational analysis. One such tool is metric
reqularity (e.g., see [17, 47, 53]), originally defined for set-valued mappings. For a
single-valued mapping F': R™ — R" we say that F' is metrically reqular at T € R™ if
there exists v > 0 and neighborhoods W of Z and V' of F(Z) such that

dist(z, F~\(y)) < 7| F (@) — y| VeeW,yeV.

We say that F' is metrically regular if it is metrically regular at every z € R™. In
particular, F' is metrically regular if it is a locally Lipschitz homeomorphism (e.g.,
see [53, Corollary 9.55]). Mordukhovich has shown that metric regularity can be
fully characterized via the coderivative criterion; e.g., see [47, 53]. In the case of a
single-valued, continuously differentiable map F' : R™ — R™ the coderivative criterion
reduces to the condition that rank F’(Z) = m, that is,

F is metrically regular at Z <= rank F'(Z) = m.

THEOREM 3.2. Let g : R™ — RU {+oo} and let sy be an epi-smoothing function
for g. Furthermore, let F' : R — R™ be continuously differentiable and metrically
regular. Then sy := s4(F(-),-) is an epi-smoothing function for f :=go F.

Proof. The smoothness properties are obvious from the assumptions. Next, let
{px} 4 be given and put gi := s,(-, i) and fj, := groF. We need to show that f; — f.
For this purpose, we invoke the characterization of epi-convergence as provided by
(2.1). To this end, let z € R" and {z*} — Z be given. Then it follows from the fact
that g, = ¢ and (2.1) that

(3.3) limkinf fe(z®) = lirr}cinf gr(F(z™) > g(F(z)) = f(z).
Moreover, as g, — g, (2.1) yields a sequence {y*} — 4 := F(z) such that
lim sup gr(y*) < 9().

Since F is metrically regular at Z, we obtain a sequence {z*} — Z such that F(z*) =
y* for all k € N. This in turn gives

1imksup fu(zh) = lirnksup gk(W*) < 9(y) = f(z).
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This together with (3.3) proves (2.1) for fi with respect to f, and this concludes the
proof. a

Although epi-convergence is arguably a mild condition, it still provides desirable
convergence behavior for minimization in the following sense.

THEOREM 3.3 (see [53, Theorem 7.33]). Suppose the sequence { fi} is eventually
level-bounded (see [53, p. 266]), and fr = f with fi and f Ilsc and proper. Then

inf fi, — inf f (finite).

Now, suppose a numerical algorithm produces sequences {z*} — & and {ur} 1 0
such that
lim Vmsf(xk,,uk) — 0.
k—o0

A natural question to ask in this context is whether Z is a critical point of f in the
sense that 0 € df(z). A sufficient condition is clearly provided by

Limsup Vgss(x, u) C 0f(Z).
r—T,ud0

The next result shows that the converse inclusion is always valid if s¢(-, 1) < f.
LEMMA 3.4. Let f : R®™ — RU {400} be lsc and sy be an epi-smoothing function
for f. Then for T € dom f we have

0f(Z) C Limsup Vysf(x, 1).
z—Z,10
Proof. Let v € 0f(Z) be given. Since by assumption e—lim, o s¢(-, 1) = f we
may invoke [53, Corollary 8.47] in order to obtain sequences {ux} | 0, {z*} — Z and
{v*} with v* € 9,s¢(2%, uy) such that v* — v. Now, since s¢(-, uy) is continuously
differentiable by assumption, we have

Uk = vff(kauk)a

which identifies v as an element of Limsup,_,z 10 Vas¢(x, 1) and thus the assertion
follows. d

A major contribution of this paper is the construction of smoothing functions
having the property that

(3.4) Limsup Vgsf(z, u) = 0f(Z)

r—T,1l0
at any point £ € dom f. This condition implies the notion of gradient consistency
defined in [21, equation (4)] which is obtained by taking the convex hull on both sides
of this equation. However, since all the functions we consider are subdifferentially
regular, Lemma 3.4 implies that (3.4) is equivalent to gradient consistency.

4. Epi-smoothing via infimal convolution. In this section we show that the
class of smoothing functions for nonsmooth, convex, and lsc functions introduced in
[7] fits into the framework layed out in section 3. As a byproduct, we show that
Moreau envelopes fulfill the requirements of our smoothing setup.

The approach taken in [7] is based on infimal convolution [6, 41, 42, 52, 53]. Given
two (extended real-valued) functions fi, f2 : R® — R the inf-convolution (or epi-sum;
see Lemma 4.2(b) in this context) is the function fi# fo : R® — R defined by

(fr#tfo)(2) := inf {fi(u) + f2(z —u)}.
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It should be noted that the idea of using infimal convolution for smoothing convex
functions is well known and due to Moreau; see [45]. For a modern account of these
techniques in Hilbert spaces, see [6] and the references therein.

In what follows we assume that

(a) g:R™ - RU {400} is proper, lsc, and convex, and

(b) w:R™ — R is convex and continuously differentiable with Lipschitz gradient.
Moreover, for p > 0, define the function w,, : R — RU {+oc0} by

wu(y) == uw(%).

Obviously, w,, is also convex and continuously differentiable with Lipschitz gradient.
Moreover, it is easily seen that

epiw, = pepiw.

In [7], the authors consider the (convex) function

(@) = int, fot+mo(2)} o)
u€eRn 1%
as a smoothing function for g. We now investigate conditions on w for which the
inf-convolution g#w,, serves as an epi-smoothing function in the sense of section 3.
In this context, the notion of coercivity plays a key role where it arises as a natural
assumption on the function w. Several notions of coercivity occur in the literature.
We now define those useful to our study.
DEFINITION 4.1 (coercive functions). Let f : R™ — RU{+4o00} be lsc and convez.
(a) f is called O-coercive if

(b) f is called 1-coercive if
f(x)

= = +o0.
llz]—oo [|z]]

The first result establishes important properties of the function g#w,.
LEMMA 4.2. If w is 1-coercive (or 0-coercive and g bounded from below) the

following hold:
(a) g#w, is finite-valued, i.e., g#w, : R" = R, and for all x € R™ we have

() = min L)+ (") |

ueR” 1%

i.e.,

. T—u
ai%%lin {g(u) + uw(T)} #0.

(b) We have

epi g#w, = epig + epiw,.
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(c) g#w, is continuously differentiable with
V(g#w,)(z) = Vw (%) = Vw,(z —uy(z)) VzreR",

where u,(z) € argmin, cpn {g(u) + uw(%) b
Proof. The assertion that

(g#wu)(z) < +oo0 Vz e R"

is due to the fact that w is finite-valued and g # +oo. Moreover, w, obviously
inherits the respective coercivity properties from w. Hence, the remainder of (a)
follows immediately from [6, Proposition 12.14].

In turn, (b) follows from (a) and [6, Proposition 12.8(ii)].

Item (¢) is an immediate consequence of (a) together with
[7, Theorem 4.2(c)]. a

The following auxiliary result, which is key for establishing the epigraphical limit
behavior of g#w,,, states that the epigraphical limit of w,, for | 0is §(- | {0}) if and
only if w is 1-coercive.

LEMMA 4.3. w is 1-coercive if and only if

elimw, = 3(- | {0)).

Proof. First, let w be 1-coercive. We start by showing that Limsup,, ,epiw, C
{0} x Ry =epid(- | {0}).

To this end, let (z,a) € Limsup,, |, epiw,. Then there exist sequences {zF} — 2,
{ar} — @, and {u} | 0 such that

zk

(4.1) ,ukw(ﬁ) <ar VEkeN.

This can be written as
k
w(z—) <% yrew
273 Mk

It is immediately clear from this representation that & > 0, since otherwise the right-
hand side would tend to —oo, while the left-hand side either remains convergent on a

subsequence (if {z—i} is bounded) or tends to +oo (if {Z—Z} is unbounded).

Now, suppose that z # 0. Then {;—Z} is unbounded and (4.1) can be rewritten as

w(ﬁ) < X ypen.

EIIE]

By the 1-coercivity of w the left-hand side tends to +oo, while the right-hand side
is bounded, which is a contradiction. Hence, we have proved that Z = 0 and & > 0,
which shows that in fact Limsup,, o epiw, C {0} x R.

We now show that Liminf, o epiw, D {0} x Ry. For these purposes, let @ > 0
and {ur} 4 0 be given. Then choose zF := 0 and ay = & + uw(0) > wy, (2%).
Then (2*,a)) € epiw,, for all k € N and (2*,a)) — (0,a&). This shows that
Liminf, o epiw, 2 {0} x Ry.
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Putting together all the pieces of information, we see that

Lim epiw, = epid(- | {0}),
A%y

ie.,
e~ limuw, = (| {0}).

Now, suppose that w is not 1-coercive. Then there exists an unbounded sequence
{2*} such that either

w(zk)
(el

or {w(mk)} is bounded. Put py := —= — 0. Then

[Ed [Ed
" < xk ) B w(zk)
SRNIE [Ed I
and we have
xk xk .
(42) (w,wuk <W>) S eplw#k \V/k S N.

k
If % — —o00, we infer that w,, does not converge epigraphically at all (in particular

not to (- | {0})) from (2.1), since we have liminfy_, o wy, (”2—2”) — —0Q.

k
In the case that {ul}\gﬁl\)} is bounded, we may assume without loss of generality

(w.lo.g.) that

for some @ € R. Then we infer from (4.2) that

(Z,w) € Limsup epiw,,
k—o0

with Z # 0 being an accumulation point of {”i—:”} But (z,o) ¢ epio(- | {0}), which
concludes the proof. O

The following lemma establishes simple monotonicity and boundedness properties
for the family of functions g#w,,.

LeMMA 4.4. If w(0) < 0, then for all y € R™ the function p — (g#wu)(y) is
bounded by g(y) from above and we have

(g#wu, )(y) < (g#wu,)(y) whenever g > po > 0.

Proof. Let y € R™. Then it holds that

(o)) = inf {0+ () } < o0+ s0) < a0

u€eR™
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Now let p1 > ps > 0. Then we have
o(k) = (“”+(1 )
H1 M1 2
< B2 ( )+(1 MZ)w(O)
M1 2
()
U1 2

Wi (Y) S wua(y) vy € R,

Multiplying by p; yields

and hence we have
g(u) +wp, (Y —u) < g(u) +wp, (y —u) YueR™
Taking the infimum over all u € R" gives

(g#w) (y) < (9#wp)(y),

which concludes the proof due the choice of u; and ps. O

The following result establishes the desired epi-convergence properties of the inf-
convolutions. Note that to our knowledge, we cannot deduce it from known results
such as [53, Proposition 7.56] or [5, Theorem 4.2], since our assumptions do not meet
the requirements for the application of these results. In particular, we do not assume
g to be bounded from below.

PROPOSITION 4.5. If w is 1-coercive, then

e—lim g#w, = g.
WOg# w=9

Proof. The fact that Liminf, o epi g#w, 2 epig follows immediately from [53,
Theorem 4.29(a)] when applied to the respective epigraphs.

Therefore, it is enough to show that Limsup,, , epi g#w, C epig.

To this end, pick (z,a@) € Lim Sup,, ;o epi g#wy, arbitrarily. Then there exist se-
quences {u} | 0,{z*} — Z and ay — @& such that

(4.3) (g#w,, )(2*) < ap  VEk €N.

& ) ok —u
u® € argmin } g(u) + prw ,
u€R™ Kk

(4.3) can be written as

With

ok —uk

(4.4) g(u®) + prpw < ) <ap VkeN.

Mk

Using the fact (cf. [6, Theorem 9.19]) that the convex Isc function g is minorized by
an affine function, say, « — b7 2 + f3, this leads to

k uk

bTuk+ﬁ+ukw( )Sak Vk € N.
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If we assume that {u*} does not convergence to Z, we can rewrite this (for k sufficiently
large) as

{Ika’uk
w( o )<Oék—bT k—ﬁ

B Fa

Whether {u*} is unbounded or not, we obtain a contradiction, since the left-hand
side tends to +00, as w is 1-coercive, while the right-hand side remains bounded.

Hence, {u*} — Z. We now claim that g(u*) %4 +o0o and hence, in particular,
Z € domg. If this were not the case, we invoke [6, Theorem 9.19] again to get an
affine minorant of w, say, x — ¢’x + v, and infer from (4.4) that

g(u®) + T (b —2%) + ey < . Vk €N.

This, however, leads to a contradiction if g(u*) — +o0 since T (u¥ — 2%) + ppy — 0
and aj — @ < +o0o. Thus, we have shown that {g(u*)} is bounded from above. Since
g is Isc and u* — Z, we also know that liminfs_, . g(u*) > g(Z). Hence, we may as
well assume that g(u*) — § > ¢(Z) and, in particular, we have Z € dom g.

We now infer from (4.4) that

(z% —u* oy, — g(u*)) € epiw,, VkeN.

k

Since ¥ — u* — 0 and oy — g(u¥F) = o — §, Lemma 4.3 implies

(0,& — §) € Limsupepiw, C epid(- | {0}).
0

This immediately gives
9(z) <g < aq,

i.e., (Z,a) € epig, which concludes the proof. O

We are now in a position to state the main result of this section.

THEOREM 4.6. If w is 1-coercive, then the function sg : (z, 1) — (g#w,)(z) is
an epi-smoothing function for g with

gph Visy(-, ) — gphdg
0

and hence, in particular,

Limsup Vgsg(z, u) = 09(Z) VI € domg.
w0, x—zx

Proof. Due to Propostion 4.5, we have e—lim, o s4(-, ) = e—lim, o g#w, = g.
The smoothness properties of V;s4(-, 1) = Vg#w, follow from Lemma 4.2. The
remaining assertion is an immediate consequence of Attouch’s theorem; see [53, The-
orem 12.35]. This concludes the proof. O

Moreau envelopes. The most prominent choice for w is given by

1
112

UJZ:§
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The resulting inf-convolution of w,, with an lsc function g : R — RU {400} is called
the Moreau envelope or Moreau—Yosida regularization of g and is denoted by e,g, i.e.,

cpaa) =it {atw) + 51w~ ol }.

The set-valued map P,g : R = R" given by

P,g(z) := arglrunin {g(w) + %Hw — a:|2}

is called the proximal mapping for g.

The following properties of Moreau envelopes and proximal mappings of convex
functions are well known; see [52, 53] or [41].

PROPOSITION 4.7. Let f : R™ = RU {400} be lsc and conver and p > 0. Then
the following holds:

(a) P.f is single-valued and Lipschitz continuous.

(b) euf is conver and smooth with Lipschitz gradient Ve, f given by

Ve f(a) = o = Puf(@)]

(c) argmin f = argmine,, f.

In view of item (c) it is possible to recover the minimzers of a (possibly nonsmooth)
convex function by those of its Moreau envelope. Hence, it is not even necessary to
drive the smoothing parameter to zero.

Since the function z — 3||z||? is 1-coercive, the following result can be formulated
as a corollary of Theorem 4.6.

COROLLARY 4.8. Let g : R — RU {400} be Isc and convex. Then sq : (z, 1) —
eng(x) is an epi-smoothing function for g with

Limsup Vgsg(x, 1) = 09(Z) VZ € domyg.

pl0, x—x
When g is Isc and convex, the fact that e, g epi-converges to g as p | 0 is well known
(cf. the discussion in [53] after Proposition 7.4).

QS functions (see [3, 53]). QS functions play a key role in a wide variety of
applications, e.g., signal denoising [25, 26], model selection [55], compressed sensing
[27, 28, 38], robust statistics [40], Kalman filtering [1, 2, 32], and support vector
classifiers [30, 51, 54]. Examples include arbitrary gauge functionals [53] (e.g., norms),
the Huber penalty [7, 40], the hinge loss function [30, 51, 54], and the Vapnik penalty
[39, 56]. For an overview of these functions and their statistical properties see [3, 53].
In this section, we show that the Moreau envelope mapping g — e, g maps the class
of QS functions to itself in a very natural way.

DEFINITION 4.9. The convex function g : R* — R is said to be QS if for some
positive integer m there exists a nonempty closed convexr set U C R™ (typically poly-
hedral), an injective matriz R € R™*™  q symmetric and positive semidefinite matric
B e R™*™  and a vector b € R™ such that

1
(4.5) 9(x) := 0w . () :=sup (u, Rx —b) — §uTBu.
uelU

Ifm=n, R=1, andb =0, then g is said to be piecewise linear-quadratic (PLQ) [53].
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Ezample 4.1 (examples of QS functions).
1. Norms: Let ||-||, be a norm with closed unit ball B,. Then |-||, = e .0.1.0),
where BS := {v | (v, u) <1 for allu € B, }.
2. The Huber penalty: Let x > 0. Then 6 _,, .jn ;1,0 is the Huber penalty with
threshold «.
3. The Vapnik penalty: Let € > 0 and define U = [0,1]?", R = [Inxn, —Inxn]T,
and b = eones(2n,1). Then 0, 14 is the Vapnik penalty with threshold e.
PROPOSITION 4.10. Let Oy 5 s be an QS function. If B is positive definite or
U is bounded, then

eua(U,B,R,b) = G(U,B,R,b)a

where B = B +pRRT. Moreover, for each x € R" there exists a saddle-point (u,v) €
U x R™ for the closed proper concave-conver saddle-function [52, section 33]

1 1
K(u,v) ;== (Rv —b, u) — guTBu—i— o | —v||* = 6(u | U)

satisfying e, g(x) = K(,7).

Proof. Regardless of the choice of x, K is coercive in v for each u € U, and if
B is positive definite or U is bounded, then —K is coercive in u for each v € R™.
Hence, by [52, Theorem 37.6] for every x € R™ K has a saddle-point (@,7) € U x R™
satisfying

eng(x) = U?ﬂ{ﬂ sggK(u, v)
u

= K(a,7)
= inf K .
sup g, Ko

To complete the proof observe that the problem

. _ 1 T . T 1 2
vlean" K(u,v) = {(b, u) + 5 U Bu} +u1ean" [<v, RTu) + o |z — v

has a unique solution at v(z,u) = x — pRTu. Plugging this solution into K gives
eng(r) = sup,ey K(u, v(z,u)) = 0w 5,50 (). O

Ezample 4.2 (lasso problem). Given A € R™*" and b € R™ with m << n,
consider the nonsmooth optimization problem

, 1
(4.6) min f(z) = §|\A$—bll2+/\llﬂf|\1,

where A > 0. This problem is known in the literature as the lasso problem; see [28, 55].

The objective function f is the sum of two convex functions, one smooth and the
other a nonsmooth PLQ function. By Proposition 3.1, an epi-smoothing function for
f can be obtained by computing the Moreau envelope for the 1-norm. This envelope
is obtained from the proximal mapping which in this case is commonly referred to in
the literature as soft thresholding [25, 26]. An easy computation shows that

i +p if oz < —p,

Pul-hi(z)=Q o —p if z;>p,
0 it |z < p.
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5. Convex composite functions. An important and powerful class of non-
smooth, nonconvex functions f : R™ — R U {400} is given by

(5.1) f(z):=g(H(z)) VxeR",

where g : R™ — R U {400} is a closed, proper, convex function and H : R™ — R™ is
(twice) continuously differentiable. These functions are convex composite (see, e.g.,
[11, 12] or [16]) and are closely related to amenable functions (see [53, Definition
10.32)).

Suppose one has an epi-smoothing function s, of g; then it is a natural question
to ask whether s¢(-,-) := s4(H(-), ) is an epi-smoothing function of f. That is, do the
smoothing properties of s, (with respect to g) carry over to smoothing properties of
sy (with respect to f)? In particular, does the epi-convergence of s,4(-, i) to g imply
the epi-convergence of s¢(-, ) to f 7 To clarify this connection, we start with an easy
observation for which we give a self-contained proof. (An alternative proof can be
obtained by applying [53, formula 4(8)] to the respective epigraphs and the function
F(x,a) := (H(x),a) satisfying epi f = F~*(epig).)

LEMMA 5.1. Let s4 be an epi-smoothing function for g, and define s¢(-,-) =
sq(H(-),-). Then

Limsupepisf(-, ) C epi f.
%y

Proof. Let (z,a) € Limsup,, qepisy(-, ). Then there exist sequences {z*} —
Z,{ax} — @ and {ug} | 0 such that

sg(H(z"), ) < o, Yk €N,
ie.,
(H(z"),ou) € episg(-,pur) Yk €N.
Since (H(z*),a*) — (H(),&) we get from the epi-convergence of s4(-, ) to g that
(H(Zz),a) € epig,
which immediately yields
(z,@) € epi f.

This proves the result. d

We point out that in the previous result, as well as in the following two results,
only continuity of H and no smoothness assumption is needed.

PROPOSITION 5.2. Let sy be an epi-smoothing function for g such that for all
y € R™ the term s4(y, 1) is bounded by g(y) from above for all p > 0. Then for
sf(e,-) == 8q(H("),-) we have

e—limsy(-,pu) = f.
w0

Proof. Due to Lemma 5.1, it suffices to show that

Liminfepiss (-, 1) 2 epi f.
w0
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To this end, let (Z,@) € epi f and {pu} | 0. By the boundedness assumption we have
(z,a) €episg(-, k) VkeN.
With the choice z* := Z and oy, := & it follows immediately that

(Z,a) € Liminfepis¢(-, 1),
w0

which concludes the proof. O
COROLLARY 5.3. If in the setting of section 4, w is 1-coercive with w(0) < 0,
then for sq(-, p) 1= g#w, we have

e—limsg(H(-),p) =go H.
w0

Proof. The assertion follows immediately from Lemma 4.4 and Proposition
5.2. O

In the following result we employ the limiting normal cone for a (nonempty)
convex set C' C R™ at & € C, which is given by (cf. [53, Theorem 6.9])

N@|C)={veR" |vi(z-2)<0 VzeC}.

In our setting, C is the domain of an Isc, convex function g : R” — R U {400}, which
is closed and convex.

LEMMA 5.4. Let {gr} be a sequence of lsc, convex functions g : R™ — RU{+o0}
converging epi-graphically to g : R™ — R U {+occ}. Furthermore, let {z*} be an
unbounded sequence such that z* € dgy(y*) for all k € N for some {y*} — 7 € domg.
Then every accumulation point of {HE—ZH} lies in N (g | domg).

Proof. Let Z be an accumulation point of {ﬁ} W.lo.g. we can assume that

Hz—’“H — Z. Moreover, let y € dom g be given. Since e—limg_, o, gr = g, we may invoke

(2.1) to obtain a sequence {§*} — y such that limsup,_, ., gx(9*) < g(y). Since by
assumption z* € dg(y*) for all k € N, we infer

(@) = gr(®) > (T (9F —y*) Vk eN.

Dividing by ||2*| yields

gk (@) —gr (™) _ (5)T

= (9"
1241l 121l

—y*) = 2"y —p).

To prove the assertion it suffices to see that the numerator of the left-hand side of the
above inequality is bounded from above at least on a subsequence. This, however, is
true due to the choice of {¢*} and (2.1). O
A standard assumption in the context of convex composite functions (cf. [16]) is
the basic constraint qualification which is formally stated in the following definition.
DEFINITION 5.5 (basic constraint qualification). Let f be given as in (5.1). Then
f is said to satisfy the basic constraint qualification (BCQ) at a point T € dom f if

N(H(z) | domg) nnul H' (z)T = {0}.

Note that in the setting of (5.1), BCQ always holds at a point Z € dom f where
H'(z)T has full column rank. Moreover, BCQ is always fulfilled when g is finite-
valued, since then dom g = R™ and thus N(H(Z) | dom g) = {0} for all z € R™.
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The BCQ is important since it guarantees a rich subdifferential calculus for the
composition f =go H.

LEMMA 5.6 (see [53, Theorem 10.6]). Let f be given as in (5.1). If BCQ is
satisfied at T € dom f, then f is (subdifferentially) regqular at T and we have

0f(z) = H'(z)" 0g(H ().

THEOREM 5.7. Let s, be an epi-smoothing function for g. If s¢(-,-) = s4(H(-),")
is an epi-smoothing function for f :=go H, then

Limsup Vgsf(z, u) = 0f(Z)
pl0,c—2x

for all T € dom f at which the BCQ holds.

Proof. We need only show that Limsup,, o,z Vass(H(2), ) C 0f(Z), since the
Lim inf-inclusion is clear from Lemma 3.4.

To this end, let v € Limsup,, o ,_,z Vas¢(H(z), 1) be given. Then there exist
sequences {z*} — & and {j} | 0 such that

(5.2) H' (2")TV psy(H (%), ) = Vs y(a®, ur) — v.

Put 2% := s,(H(2*), ux) (k € N). If {z*} were unbounded, then w.l.o.g. {%} —
Z # 0, and we infer from (5.2) that

zenul H'(z)7.
On the other hand, Lemma 5.4 tells us that zZ € N(H(Z) | dom g), and thus,
0+#z¢e N(H(Z) | domg) Nnul H (z)7,

which contradicts BCQ. Hence, {z*} is bounded and converges at least on a subse-
quence, and due to Attouch’s theorem [53, Theorem 12.35] the limit (accumulation
point) lies in dg(H(z)). Using this and the fact that H' is continuous, we get

ve H (z)Tog(H(z)) = 0f(Z),

where the equality is due to Lemma 5.6. This concludes the proof. a

COROLLARY 5.8. Let s4 be an epi-smoothing function for g, and suppose w is
1-coercive with w(0) < 0. Then s¢(-,-) = s4(H(-),) is an epi-smoothing function for
fi=goH and

Limsup Vgsf(z, u) = 0f(Z)
pl0,c—2x

for all T € dom f at which the BCQ holds.

Proof. The result follows immediately from Corollary 5.3 and Theorem 5.7. d

In Theorem 4.6, we used convexity to obtain the gradient consistency condition
directly via Attouch’s theorem. However, the corresponding result in Corollary 5.8
does not follow from the generalized version of Attouch’s theorem for convex composite
functions given in [50, Theorem 2.1], since our assumptions are too weak for the
application of this result. Specifically, we do not require the equi primal-lower nice
property. The equi primal-lower nice property follows, for example, by assuming H
to be C? instead of only C1; cf. [50, Proposition 2.3].
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6. Constrained optimization. We now apply the results of the previous sec-
tion to the constrained optimization problem

minimize  ¢(x)

(6.1) subject to  h(z) € C,

where ¢ : R — R and h : R® — R™ are smooth mappings and C' C R™ is a nonempty
closed convex set. This is an example of a convex composite optimization problem
[11, 12, 16], where the composite function f = go H is given by

s9) =1+ 00 €) and ()= [0,

In this case, ¢ is the sum of a smooth convex function, g1 (v, y) := 7, and a nonsmooth
convex function ga(y,y) := d(y | C). Hence, by Proposition 3.1, we can obtain
an epi-smoothing function for g by only smoothing the g» term. A straightforward
computation shows that

1.
euga(y) = 5 dist*(y | C).
Therefore, by Corollary 5.3,
1
(6.2) sp(x, p) = o(x) + ﬂdistz(h(a:) | C)

is an epi-smoothing function for f. This is one of the classical smoothing functions
for constrained optimization [33]. The BCQ becomes the condition

(6.3) nul 2/ (z)" N N(h(z) | C) = {0}.

In the case where C' = {0}° x R™ ™ the function (6.2) is the classical least-squares
smoothing function for nonlinear programming, and (6.3) reduces to the Mangasarian—
Fromovitz constraint qualification (e.g., see [53, Example 6.40]).

Corollary 5.8 tells us that at every point & with h(Z) € C' we have

Limsup V,s¢(z, 1) = Vé(z) + k' () N(h(z) | C)

pnl0,2—z

whenever condition (6.3) holds at z, where, by Proposition 4.7,

h(z) — Hc(h(x)))
p :

Vasp(z, p) = Vo(x) + B (z)T (

The results of section 5 allow us to make powerful statements about algorithms
that use the epi-smoothing function (6.2) to solve the optimization problem (6.1). We
begin by studying the case of cluster points that are feasible for (6.1).

THEOREM 6.1. Let s¢ be as in (6.2) with ¢, h, and C satisfying the hypotheses
specified in (6.1). Let {z*} C R™ and {ux} 1 0 satisfy | Vasg(a®, pe)|| 1 0. Then every
feasible cluster point T of {x*} at which (6.3) is satisfied is a Karush-Kuhn-Tucker
(KKT) point for (6.1), i.e.,

0€df(x)=Ve()+ 1 (@)"N(hz)|C).
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Proof. Lemma 5.6 implies that 0f(Z) = V¢(z) + b/ ()TN (h(z) | C). Hence, by
Corollary 5.8, Z is a KKT point for (6.1). O

Theorem 6.1 tells us that the feasible cluster points of sequences of approximate
stationary points of s; are KKT points, but from an algorithmic perspective, this does
not give us a mechanism for testing proximity to optimality via standard optimality
conditions. That is, it does not show how to approximate the multiplier vector. This
is addressed by the following corollary.

COROLLARY 6.2. Let s¢, ¢, h, C, {*}, and {u} be as in Theorem 6.1, and
let @ be a cluster point of {x*} at which h(z) € C and (6.3) is satisfied. If J C N is
a subsequence for which ¥ —; T, then the associated subsequence {y*};, where

S o M) Mo (b))
' Mk

remains bounded and every cluster point § is such that (Z,y) is a KKT pair for (6.1),
i.e.,

VE €N,

0=Vo(@)+h (@) 'y with §€ N((z)]|CO).

Proof. Let J C N and Z be as in the statement of the corollary. Theorem 6.1 tells
us that 7 is a KKT point for (6.1), i.e., 0 € 9f(z) = Vé(z) +h'(2)T N (h(z) |C). We
first show that the subsequence {y*}; given above is necessarily bounded.

Suppose, to the contrary, that the sequence is not bounded. Then there is a
further subsequence J c J such that ||ka 1; +oo. With no loss in generality we
may assume that there is a unit vector 7 such that y*/ Hka —j y. Since y* e
N (I¢(h(z*)) | C) for all k, the outer semicontinuity of the normal cone operator
z+— N (z|C) relative to C (cf. [53, Proposition 6.6]) implies that § € N (h(Z) | C).
Dividing ||V,sy(2¥, ur)|| by ||y*|| and taking the limit over J gives h/(z)7 = 0. But
this contradicts the BCQ (6.3) since § is a unit vector. Therefore, the sequence {y*} ;
is bounded.

Let ¢ be any cluster point of the sequence {y*} ;. (At least one such cluster point
must exist since this sequence is bounded.) As above, § € N (h(z) | C'), and by the
hypotheses, 0 = V¢(z) + h'(z)Ty. Hence, Z is a KKT point for (6.1) and ¢ is an
associated KKT multiplier. d

We now address the case of infeasible cluster points, i.e., cluster points Z for which
h(z) ¢ C. To understand this case, we must first review the subdifferential properties
of the distance function dist(- | C)) and the associated convex composite function

Y(z) = dist(h(z) | C).
First, recall from [14, Proposition 3.1] that

.  (N@|C)nB it yec,
(6.4) adlSt(y|C)_{N(y|C+dist(y|C)IB%)ﬂbdry(IB%) it y¢cC.

where bdry(B) is the boundary of the unit ball, and by [53, Example 8.53] we also
have

: : y —1lc(y)
. S = N S B ]B = —_— .
(6.5) odist(y | C) (y |C +dist(y | C)B) N bdry(B) {dist(y | C)} Vyé¢C
In addition, from [12, equation 2.4], ¢ is subdifferentially regular on R™ with

(6.6) oY(x) = b (x)Tadist(h(x) | C).

These formulas yield the following result.
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THEOREM 6.3. Let sy, ¢, h, C, {2*}, and {ux} be as in Theorem 6.1, and let
T be a cluster point of {x*} at which h(Z) ¢ C. Then 0 € OY(z).

Proof Let J C N be such that ¥ —; Z. Since ||szf(xk,uk)H J 0, we have
pie || Vasg(2F, pr)|| L 0, and consequently

W' ()T (h(2*) = Tl (h(z"))) — 0.

Hence, by the continuity of Il and (6.5), 0 € 9y(Z). O

Theorem 6.3 shows that any algorithm that drives V,ss(z¥, ux) to zero as . | 0
performs admirably even when problem (6.1) is itself infeasible. That is, in the absence
of feasibility, it naturally tries to locate a nonfeasible stationary point for (6.1) as
defined in [13]. It may happen that the original problem is feasible while all cluster
points are nonfeasible stationary points. This can be rectified by placing a further
restriction on how the iterates {*} are generated.

PROPOSITION 6.4. Let C, ¢, h, and sy be as in (6.1) and (6.2), and let {pr} | 0.
Suppose that there is a known feasible point & for (6.1). If {x*} is a sequence for which

(6.7) sp(a, ) < sp(@ ) = 6(F) Vh=1.2,...,

then every cluster point of {x*} must be feasible for (6.1).

Proof. Let & be a cluster point of {z*} and let J C N be such that z¥ —; z.
If z is not feasible, then ﬁdistz(h(xk) | C) =y +oo. But sg(a,ux) = é(z*) +
ﬁdistg(h(a:k) | C) < ¢(%), giving the contradiction ¢(z*) —; —c0. O

The additional condition (6.7) in Proposition 6.4 is easily achieved in the context
of a descent algorithm designed to attain the required property vas f(xk , uk)ﬂ 40. In
practice, for each pi41, one initiates an inner descent algorithm to locate z*+! with
||stf(a:k+1,uk+1)|| < ||stf(a:k,uk)H. Typically, this inner algorithm is initiated
at z¥. However, if the inner descent algorithm is initiated at & whenever ¢(%) =
$¢(%, k1) < sp(2%, 1), then (6.7) is satisfied.

In general, without further hypotheses, feasibility might not be attained in the
limit. This is true even in the prototypical example of convex composite optimization,
the Gauss—Newton method for solving nonlinear systems of equations. It is often the
case that the additional hypotheses employed are related to the BCQ (6.3). One way
to understand the role of nonfeasible stationary points and their effect on computation
is through constraint qualifications that apply to nonfeasible points. These constraint
qualifications extend (6.3) to points on the whole space. Among the many possible
extensions one might consider, we use one from the geometry of the subdifferential
(6.4) first explored in [13]. We say that the extended constraint qualification (ECQ)
for (6.1) is satisfied if

(6.8) nul 7 ()T N N (h(z) | C + dist(h(z) | C)B) = {0}.

Note that this condition is well defined on all of R™ and reduces to (6.3) when h(x) €
C. When h(z) ¢ C, it is easily seen that 0 € 9¢(x) if and only if (6.8) is not satisfied.
Hence, if one assumes that ECQ is satisfied at all iterates, then nonfeasible cluster
points cannot exist. For example, if C = {0}, then a standard global constraint
qualification is to assume that h’(x) is everywhere surjective, i.e., nulh/(z)” = {0}
for all z. This implies (6.8), which simply says that b’ (z)Th(z) # 0 whenever h(x) # 0
and h/(x) is surjective whenever h(z) = 0.
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7. Final remarks. In this paper we have synthesized the infimal convolution
smoothing ideas proposed by Beck and Teboulle in [7] with the notion of gradient con-
sistency defined by Chen in [21]. To achieve this we make use of epi-convergence tech-
niques that are well suited to the study of the variational properties of parametrized
families of functions. Using epi-convergence, we defined the notion of epi-smoothing
for which we established a rudimentary calculus. Epi-smoothing is a weakening of the
kinds of smoothing studied in [7] where the focus is on convex optimization and the
derivation of complexity results which necessitate stronger forms of smoothing. We
then applied the epi-smoothing ideas to study the epi-smoothing properties of convex
composite functions, a very broad and important class of nonconvex functions. In
particular, we showed that general constrained optimization falls within this class.
Using the epi-smoothing calculus, we easily derived the convergence properties of a
classical smoothing approach to constrained optimization establishing the convergence
properties even in the case when the underlying optimization problem is not feasible.
This application demonstrates the power of these ideas as well as their ease of use.
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