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Abstract— The classical approach to linear system identifica-
tion is given by parametric Prediction Error Methods (PEM).
In this context, model complexity is often unknown so that
a model order selection step is needed to suitably trade-off
bias and variance. Recently, a different approach to linear
system identification has been introduced, where model order
determination is avoided by using a regularized least squares
framework. In particular, the penalty term on the impulse
response is defined by so called stable spline kernels. They embed
information on regularity and BIBO stability, and depend on
a small number of parameters which can be estimated from
data. In this paper, we provide new nonsmooth formulations
of the stable spline estimator. In particular, we consider linear
system identification problems in a very broad context, where
regularization functionals and data misfits can come from a rich
set of piecewise linear quadratic functions. Moreover, our anal-
ysis includes polyhedral inequality constraints on the unknown
impulse response. For any formulation in this class, we show
that interior point methods can be used to solve the system
identification problem, with complexity O(n3)+O(mn2) in each
iteration, where n and m are the number of impulse response
coefficients and measurements, respectively. The usefulness of
the framework is illustrated via a numerical experiment where
output measurements are contaminated by outliers.

Index Terms— linear system identification; bias-variance
trade off; kernel-based regularization; robust statistics; interior
point methods; piecewise linear quadratic densities

I. INTRODUCTION

The classical approach to linear system identification is
given by Parametric Prediction Error Methods (PEM) [1],
[2]. First, models of different and unknown order, e.g. ARX
or ARMAX, are postulated and identified from data. Then,
they are compared using either complexity measures such as
AIC or cross validation (CV) [3], [4].
Some limitations of this approach have been recently de-
scribed in [5] (see also [6] for an analysis of CV). This has
led to the introduction of an alternative technique, where
identification is seen as a function learning problem for-
mulated in a possibly infinite-dimensional space [5], [7]. In
particular, the problem is cast in the framework of Gaussian
regression [8]: the unknown impulse response is seen as a
Gaussian process, whose autocovariance encodes available
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prior knowledge. This approach was subsequently given an
interpretation in a Regularized Least Squares framework in
[9].
The new estimators proposed in [5], [10] rely on a class of
autocovariances, called stable spline kernels, which include
information on the exponential stability of the unknown
system. The impulse response is modeled as the m-fold
integration of white Gaussian noise subject to an exponential
time transformation. The first-order stable spline kernel has
been recently derived using deterministic arguments [9], and
named the TC kernel. An even more sophisticated covariance
for system identification, the so called DC kernel, is also
described in [9].
All of these kernels are defined by a small number of un-
known hyperparameters, which can be learned from data, e.g.
by optimizing the marginal likelihood [11], [12], [13]. This
procedure resembles model order selection in the classical
parametric paradigm, and theoretical arguments supporting
it are illustrated in [14]. Once the hyperparameters are
found, the estimate of the system impulse response becomes
available in closed form. Extensive simulation studies have
shown that these new estimators can lead to significant
advantages with respect to the classical ones, in particular
in terms of robustness and in model complexity selection.
All of the new kernel-based approaches discussed in [5],
[7], [9] rely on quadratic loss and and penalty functions. As
a result, in some circumstances they may perform poorly.
In fact, quadratic penalties are not robust when outliers are
present in the data [15], [16], [17], [18]. In addition, they
neither promote sparse solutions, nor select small subsets
of measurements or impulse response coefficients with the
greatest impact on the predictive capability for future data.
These are key issues for feature selection and compressed
sensing [19], [20], [21].
The limitations of quadratic penalties motivate adopting
alternative penalties for both loss and regularization function-
als. For example, popular regularizers are the the `1-norm, as
in the LASSO [22], or a weighted combination of `1 and `2,
as in the elastic net procedure [23]. Popular fitting measures
robust to outliers are the `1-norm, the Huber loss [15], the
Vapnik ε-insensitive loss [24], [25] and the hinge loss [26],
[25], [27]. Recently, all of these approaches have been cast
in a unified statistical modeling framework [14], [28], where
solutions to all models can be computed using interior point
(IP) methods.
The aim of this paper is to extend this framework to
the linear system identification problem. In particular, we
propose new impulse response estimators that combine the
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stable spline kernels and arbitrary piecewise linear quadratic
(PLQ) penalties. Generalizing the work in [14], [28], we
also allow the inclusion of inequality constraints on the
unknown parameters. This generalization can be used to
efficiently include additional information — for example,
about nonnegativity and unimodality of the impulse response
— into the final estimate. We show that all of these models
can be solved with IP techniques, with complexity that
scales well with the number of output measurements. These
new identification procedures are tested via a Monte Carlo
study where output error models are randomly generated and
output data (corrupted by outliers) is obtained. We compare
the performance of the classical stable spline estimator that
uses a quadratic loss with the performance of the new
estimator that uses `1 loss.
The structure of the paper is as follows. In Section II, we
formulate the problem and briefly review the stable spline
estimator described in [5], [9]. In Section III we introduce
the new class of non smooth stable spline estimators, review
the class of PLQ penalties, and generalize the framework
in [29] by including affine inequality constraints. We also
demonstrate how IP methods can be used to efficiently com-
pute the impulse response estimates. In Section IV, the new
approach is tested via a Monte Carlo study, where system
output measurements are corrupted by outliers. We end the
paper with Conclusions, and include additional proofs in the
Appendix.

II. PROBLEM STATEMENT AND THE STABLE SPLINE
ESTIMATOR

A. Statement of the problem

Consider the following linear time-invariant discrete-time
system

y(t) = G(q)u(t)+ e(t), t = 1, . . . ,m , (II.1)

where y is the output, q is the shift operator (qu(t)= u(t+1)),
G(q) is the linear operator associated with the true system,
assumed stable, u the input and e the i.i.d. noise. Assuming
the input u known, our problem is to estimate the system
impulse response from N noisy measurements of y.

B. The stable spline estimator

We now briefly review the regularized approach to system
identification proposed in [5], [9]. For this purpose, denote by
x ∈ Rn the (column) vector containing the impulse response
coefficients. Here, in contrast to classical approaches to
system identification, the size n is chosen sufficiently large to
capture system dynamics rather than to establish any kind of
trade-off between bias and variance. It is useful to rewrite the
measurement model (II.1) using the following matrix-vector
notation

z = Hx+E , (II.2)

where the vector z∈Rm contains the m output measurements,
H is a suitable matrix defined by input values, and E
denotes the noise of unknown variance σ2. Then, the stable

spline estimator is defined by the following regularized least
squares problem:

x̂ = argmin
x
‖z−Hx‖2

2 + γxT Q−1x , (II.3)

where the positive scalar γ is a regularization parameter, and
Q∈Rn×n can be taken from the class of stable spline kernels
[10]. In particular, adopting the discrete-time version of the
stable spline kernel of order 1, the (i, j) entry of Q is

Qi j = α
max(i, j), 0≤ α < 1 . (II.4)

Above, α is a kernel hyperparameter which corresponds to
the dominant pole of the system, and is typically unknown.
This kernel was also studied in [9], where it was called
the tuned/correlated (TC) kernel. Motivations underlying the
particular shape (II.4) have been discussed under both a
statistical and a deterministic framework, see [30] and [31].
Note that the estimator (II.3), equipped with the kernel (II.4),
contains the unknown hyperparameters α and γ . These can
be obtained as follows. First, the estimate σ̂2 of σ2 can
be computed by fitting a low-bias model for the impulse
response using least squares (as e.g. described in [32]).
Then, one can exploit the Bayesian interpretation underlying
problem (II.3): if the noise is Gaussian, it provides the
minimum variance estimate of x when the impulse response
is modeled as a Gaussian vector independent of E with
autocovariance λQ. Here, λ is an unknown scale factor
equal to σ2/γ . The estimates of λ and α are obtained by
maximizing the marginal likelihood (obtained by integrating
x out of the joint density of z and x). This gives

(λ̂ , α̂) = argmin
λ ,α

zT
Σ
−1
z z+ logdet(Σz) , (II.5)

where the m×m matrix Σz is

Σz = λHQHT + σ̂
2Im ,

and Im the m×m identity matrix (see [5] for details).
Let Q̂ be the matrix defined in (II.4) with α set to its

estimate α̂ . Then, setting Q to Q̂ and γ to σ̂2/λ̂ in (II.3),
we obtain the impulse response estimate

x̂ = λ̂ Q̂HT
Σ̂
−1
z z ,

where
Σ̂z = λ̂HQ̂HT + σ̂

2Im.

III. NEW NON SMOOTH FORMULATIONS OF THE STABLE
SPLINE ESTIMATOR

To simplify the problem formulation, it is useful to
introduce an auxiliary variable y, and to to rewrite the
classical stable spline estimator (II.3) using the following
relationships:

x = Ly, Q = LLT . (III.1)

where L is invertible. Using (III.1), (II.3)) becomes

min
y
‖(z−HLy)‖2 + γ‖y‖2 . (III.2)

It is apparent that this estimator uses quadratic functions to
define both the loss ‖(z−HLy)‖2 and the regularizer ‖y‖2.
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Fig. 1. Scalar penalties, top to bottom: `2, `1, Huber, Vapnik, elastic net,
and smooth insensitive loss

In the rest of the paper we study a generalization of (III.2)
given by

min
y∈Y

V (HLy− z)+ γW (y) , (III.3)

where Y is a polyhedral set (which can be used e.g. to provide
nonnegativity information on the impulse response x = Ly),
and V , W are defined by the piecewise linear quadratic
functions introduced in the next subsection.

A. PLQ penalties

Definition 3.1 (PLQ functions and penalties): A
piecewise linear quadratic (PLQ) function is any function
ρ(U,M,b,B; ·) : RN → R having representation

ρ(U,M,b,B;y) = sup
u∈U

{
〈u,b+By〉− 1

2 〈u,Mu〉
}
, (III.4)

where U ⊂RK is a nonempty polyhedral set, M ∈S K
+ the set

of real symmetric positive semidefinite matrices, and b+By

is an injective affine transformation in y, with B∈RK×N , so,
in particular, K ≥ N and null(B) = {0}.

When 0 ∈U , the associated function is a penalty, since it
is necessarily non-negative.

Remark 3.2: When b = 0 and B = I, we recover the
basic piecewise linear-quadratic penalties characterized in
[33, Example 11.18].

Remark 3.3 (scalar examples): `2, `1, elastic net, Huber,
hinge, and Vapnik penalties are all representable using the
notation of Definition 3.1.

1) `2: Take U = R, M = 1, b = 0, and B = 1. We obtain

ρ(y) = sup
u∈R

{
uy−u2/2

}
.

The function inside the sup is maximized at u = y,
hence ρ(y) = 1

2 y2.
2) `1: Take U = [−1,1], M = 0, b = 0, and B = 1. We

obtain
ρ(y) = sup

u∈[−1,1]
{uy} .

The function inside the sup is maximized by taking
u = Rsign(y), hence ρ(y) = |y|.

3) Elastic net: `2 +λ`1. Take

U = R× [−λ ,λ ], b =

[
0
0

]
, M =

[
1 0
0 0

]
, B =

[
1
1

]
.

4) Huber: Take U = [−κ,κ], M = 1, b = 0, and B = 1.
We obtain

ρ(y) = sup
u∈[−κ,κ]

{
uy−u2/2

}
,

with three explicit cases:
a) If y <−κ , take u =−κ to obtain −κy− 1

2 κ2.
b) If −κ ≤ y≤ κ , take u = y to obtain 1

2 y2.
c) If y > κ , take u = κ to obtain a contribution of

κy− 1
2 κ2.

This is the Huber penalty.
5) Vapnik loss is given by (y− ε)+ + (−y− ε)+. We

obtain its PLQ representation by taking

B=

[
1
−1

]
, b=−

[
ε

ε

]
, M =

[
0 0
0 0

]
, U = [0,1]× [0,1]

to yield

ρ(y)= sup
u∈U

{〈[
y− ε

−y− ε

]
,u
〉}

=(y−ε)++(−y−ε)+.

6) Soft insensitive loss function [34]. We can create a
symmetric soft insensitive loss function (which one
might term the Hubnik) by adding together two soft
hinge loss functions:

ρ(y) = sup
u∈[0,κ]

{(y− ε)u}− 1
2 u2 + sup

u∈[0,κ]
{(−y− ε)u}− 1

2 u2

= sup
u∈[0,κ]2

{〈[
y− ε

−y− ε

]
,u
〉}
− 1

2 uT
[

1 0
0 1

]
u .

See bottom bottom panel of Fig. 1.



B. Optimization with PLQ penalties

Consider a constrained minimization problem for a gen-
eral PLQ penalty:

min
y∈Y

ρU,M,b,B(y) := sup
u∈U

{
〈u,b+By〉− 1

2
uT Mu

}
, (III.5)

where Y is a polyhedral set, described by

Y = {y : AT y≤ a} . (III.6)

After studying this problem, we will come back to consider
the estimator (III.3).

It turns out that a wide class of problems (III.5) are
solvable by interior point (IP) methods [35], [36], [37]. IP
methods solve nonsmooth optimization problems by work-
ing directly with smooth systems of equations character-
izing the optimality of these problems. [29, Theorem 13]
presents a full convergence analysis for IP methods for
formulations (III.5) without inequality constraints, so Y =
RN in (III.5). While a generalization of the full analysis to
cover inequality constraints is out of the scope of this paper,
we present an important computational result showing that
constraints can be included in a straightforward manner,
and provide the computational complexity of each interior
point iteration. Moreover, the proof of the result (given in
Appendix) shows that constraints help the numerical stability
of the interior point iterations.

Theorem 3.4 (Interior Point for PLQ with Constraints):
Consider any optimization problem of the form (III.5), with
y ∈RN , b,u ∈RK , C ∈RK×L, c ∈RL, B ∈RK×N , A ∈RN×P,
M ∈ RK×K , and a ∈ RP. Suppose that the PLQ satisfies

Null(M)∩Null(CT ) = 0. (III.7)

Suppose also that M contains on the order of K entries, while
C contains on the order of L entries. Then every interior point
iterations can be computed with complexity O(L+KN2 +
PN2 +N3).

The assumptions on the structure of M and C are satisfied
for many common PLQ penalties. For example, for `2 we
have M = I and C = 0, while for `1, M = 0 and C contains
two copies of the identity matrix.

Turning out attention back to system identification, N = n
will be the dimension of the impulse response, while K and
L may depend on m; in fact K ≥m always, while L depends
on the structure of the PLQ penalty. To be more specific, we
have the following corollary.

Corollary 3.5: Problem (III.3) can be formulated as a
minimization problem of the form (III.5). If the constraint
matrix A has on the order of n entries, while matrices B and
C have on the order of m entries, each interior point iteration
can be solved with complexity O(mn2 +n3).

Note that the computational complexity of the IP method
scales favorably with the number of measurements m which,
in the system identification scenario, is typically much larger
than the number of unknown impulse response coefficients
n.

IV. MONTE CARLO STUDY

We consider a Monte Carlo study of 300 runs. At
each run, the MATLAB command m=rss(30) is first
used to obtain a SISO continuous-time system of 30th
order. The continuous-time system m is then sampled at 3
times of its bandwidth, obtaining the discrete-time system
md through the commands: bw=bandwidth(m); f =
bw*3*2*pi; md=c2d(m,1/f,’zoh’). If all poles of
md are within the circle with center at the origin and radius
0.95 on the complex plane, then the feedforward matrix of
md is set to 0, i.e. md.d=0, and the system is used and
saved.
The system input at each run is white Gaussian noise of
unit variance. The input delay is always equal to 1 and this
information is given to every estimator used in the Monte
Carlo study described below.
Data consists of 400 input-output pairs, which are collected
after getting rid of initial conditions, and corrupted by a noise
generated as a mixture of two normals with a fraction of
outlier contamination equal to 0.2; i.e.,

ei ∼ 0.8N(0,σ2)+0.2N(0,100σ
2).

Here, σ2 is randomly generated in each run as the variance
of the noiseless output divided by the realization of a random
variable uniformly distributed on [1,10]. With probability
0.2, each measurement may be contaminated by a random
error whose standard deviation is 10σ .
The quality of an estimator is measured by computing the fit
measure at every run. To be more specific, given a generic
dynamic system represented by S(q), let ‖S(q)‖2 denote the
`2 norm of its impulse response, numerically computed using
only the first 100 impulse response coefficients, whose mean
is denoted by S̄(q). Then, the fit measure for the j-th run with
estimated model Ĝ j(q) is

F j(G, Ĝ j) = 100

(
1−
‖G(q)− Ĝ j(q)‖2

‖G(q)− Ḡ(q)‖2

)
(IV.1)

During the Monte Carlo simulations, the following 5
estimators are used:
• Oe+oracle. Classical PEM approach, with candidate

models given by rational transfer functions defined by
two polynomials of the same order. This estimator is
implemented using the oe.m function of the MAT-
LAB System Identification Toolbox equipped with the
robustification option (’LimitError’,r)1 and an
oracle, which provides a bound on the best achievable
performance of PEM by selecting (at every run) the
model order (between 1 and 20) and the value of r
(0,1,2 or 3) that maximize (IV.1).

• Oe+CV. Same as above, except that r=0 (the fit crite-
rion is purely quadratic) and model order is estimated

1As per MATLAB documentation, the value of r specifies when to adjust
the weight of large errors from quadratic to linear. Errors larger than r
times the estimated standard deviation have a linear weight in the criteria.
The standard deviation is estimated robustly as the median of the absolute
deviations from the median and divided by 0.7. The value r=0 disables the
robustification and leads to a purely quadratic criterion.



via cross validation. In particular, data are split into a
training and validation data set of equal size. Then, for
every model order ranging from 1 to 20, the MATLAB
function oe.m (fed with the training set) is called. The
estimate of the order minimizes the sum of squared
prediction errors on the validation set. This is obtained
by the MATLAB function predict.m (imposing null
initial conditions) fed with the validation data set. The
final model is computed by oe.m, using the estimated
value of the order and all the available measurements
(the union of the training and validation sets).

• Oe+CVrob. Same as above, except that level of robus-
tification r is also chosen via cross validation on the
grid {0,1,2,3}.

• SS+`2. This is the classical stable spline estimator (II.3),
which uses a quadratic loss and the stable spline reg-
ularizer. Hyperparameters are determined via marginal
likelihood optimization, as described in subsection II-B.
The number of estimated impulse response coefficients,
i.e. the dimension of x in (II.2), is n = 100. Only
the first 100 input-output pairs are used to define the
entries of the matrix H in (II.2), so that the size of the
measurement vector z is m = 300.

• SS+`1. This is the new nonsmooth version of the stable
spline estimator. It coincides with (II.3) except that
the quadratic loss is replaced by the `1 loss. The
hyperparameter α defining the stable spline kernel in
(II.4) and the regularization parameter γ are estimated
via cross validation as follows. The matrix H in (II.2)
is defined as described above. Then, the remaining
300 input-output pairs are split into a training and
validation data set of equal size. The estimates of
the hyperparameters α,γ are chosen so that the cor-
responding impulse response estimate (obtained using
only the training set) provides the best prediction on
the validation data (according to a quadratic fit). The
candidate hyperparameters are selected from a two-
dimensional grid. In particular, α may assume values in
[0.01,0.05,0.1,0.15, . . . ,0.9,0.95,0.99] while γ varies
on a set given by 20 values logarithmically spaced
between γ̂/100 and 100γ̂ , where γ̂ is the estimate used
by SS+`2. The final estimate of the impulse response is
computed using the hyperparameter estimates and the
union of training and validation data sets.

The plots in Fig. 2 are the Matlab boxplots of the errors
(IV.1) obtained by the 5 estimators. The rectangle shows the
25−75% quantiles of all the numbers with the horizontal line
showing the median. The “whiskers” outside the rectangle
display the 10− 90% quantiles, with the remaining errors
(which may be deemed outliers) plotted using “+”. The aver-
age fits obtained by Oe+oracle, Oe+CV, Oe+CVrob, SS+`2
and SS+`1 are 84.7,44.4,62.6,55.8 and 70.1, respectively.
The best results are obtained by Oe+oracle. However, keep
in mind that this estimator relies on an ideal tuning of the
model order and of the level of robustification which is not
implementable in practice.

In comparison with the other estimators, the performance of
SS+`2 and Oe+CV is negatively influenced by the presence
of data contamination. The reason is that both of these
estimators use quadratic loss functions. Notice however that
textitSS+`2 largely outperforms Oe+CV.
Focusing now on numerical schemes equipped with robust
losses, we see that SS+`1 outperforms Oe+CVrob. It pro-
vides the best results among all the estimators implementable
in practice: the stable spline kernel introduces a suitable
regularization with the `1 loss to guard against outliers.

V. CONCLUSIONS

We have extended the stable spline estimator to a non
smooth setting. Quadratic losses and regularizers can now
be replaced by general PLQ functions, which allow new
applications, such as robust estimators in the presence of
outliers in the data. In addition, we presented an extended
formulation that can include affine inequality constraints
on the unknown impulse response, which can be used for
example to incorporate nonnegativity into the estimate. We
have shown that the corresponding generalized estimates can
be computed in an efficient way by IP methods. Finally,
our simulation results showed a significant performance
improvement of the stable spline kernel with `1 loss over
previous art.

VI. APPENDIX

A. Proof of Theorem 3.4

From [33][Example 11.47], the Lagrangian for problem
(III.5) for feasible (y,u) is given by

L(y,u) = bT u− 1
2

uT Mu+uT By .

Since U is by assumption a polyhedral set, it can be
expressed by a linear system of inequalities:

U = {u : CT u≤ c} . (VI.1)

Using the explicit characterizations of U and W , the opti-
mality conditions for (III.5) are

2By−Mu+b =Cq , q≥ 0

−BT u = Aw , w≥ 0
(VI.2)

(see [33] and [38] for more details). The inequality constraint
in the definition of U in (VI.1) can be reformulated using
slack variables s,r:

CT u+ s = c

AT y+ r = a .

Combining all of these equations yields the KKT system for
(III.5):

0 = BT u+Aw
0 = By−Mu−Cq+b
0 = CT u+ s− c
0 = AT y+ r−a
0 = qisi ∀i , q,s≥ 0
0 = wiri ∀i , w,r ≥ 0 .

(VI.3)
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Fig. 2. Boxplot of the 300 percentage fits obtained by PEM equipped with an oracle (Oe+Or), by PEM with cross validation equipped with the quadratic
loss (Oe+CV) and with a robust loss (Oe+CVrob), by the stable spline estimator equipped with the quadratic loss (SS+`2) and with the `1 loss (SS+`1).

The last two sets of equations in (VI.3) are known as the
complementarity conditions. Solving the problem (III.5) is
then equivalent to satisfying (VI.3), and there is a vast opti-
mization literature on working directly with the KKT system.
In the Kalman filtering/smoothing application, interior point
methods have been used to solve the KKT system (VI.3) in
a numerically stable and efficient manner, see e.g. [39].

An interior point approach applies damped Newton itera-
tions to a relaxed version of VI.3:

Fµ(s,q,u,r,w,y) =


s+CT u− c
QS1−µ1

By−Mu−Cq+b
r+AT y−a
WR1−µ1
BT u+Aw

 . (VI.4)

The relaxation parameter µ is driven aggressively to 0 as the
method proceeds. Every Newton iteration solves

F(1)
µ

[
∆sT , ∆qT , ∆uT , ∆rT , ∆wT , ∆yT ,

]T
=

−Fµ(s,q,u,r,w,y) ,

where

F(1)
µ =


I 0 CT 0 0 0
Q S 0 0 0 0
0 −C −M 0 0 B
0 0 0 I 0 AT

0 0 0 W R 0
0 0 BT 0 A 0

 . (VI.5)

Using the row operations

r2← r2−Qr1

r3← r3 +CS−1r2

we arrive at the system
I 0 CT 0 0 0
0 S −QCT 0 0 0
0 0 −T 0 0 B
0 0 0 I 0 AT

0 0 0 W R 0
0 0 BT 0 A 0

 .

where T = M +Cdiag(q/s)CT . Note that this matrix is
invertible if and only if the hypothesis (III.7) holds. If T
is invertible, the row operations

r6← r4 +BT T−1B

r5← r5−Wr4

r6← r6−AR−1r5

reduce the system to upper triangular form
I 0 CT 0 0 0
0 S −QCT 0 0 0
0 0 −T 0 0 B
0 0 0 I 0 AT

0 0 0 0 R −WAT

0 0 0 0 0 BT T−1B+AR−1WAT

 .

Note that s, q, r, and w are componentwise positive (which
holds for every nonzero µ), while B is injective (see Defi-
nition 3.1), hence BT T−1B is a square matrix of full rank.
The term AR−1WAT is also positive semidefinite, and only
serves to stabilize the inversion of the final term. Therefore,
we can carry out Newton iterations on the µ-relaxed system,
as claimed.

To show the computational complexity, we give the full
interior point iteration, which is derived by applying the
row operations used to obtain the upper triangular system
to the right hand side −Fµ , then solving for ∆y, and back



substituting.

r1 =−s−CT u+ c

r2 = µ1+Q(CT u− c)

r3 =−(By−Mu−Cq+b)+CS−1r2

r4 =−(r+AT y−a)

r5 = µ1+W (AT y−a)

T = M+CQS−1CT

r6 =−(BT u+Aw)+BT T−1r3−AR−1r5

Ω = BT T−1B+AR−1WAT

∆y = Ω
−1r6

∆w = R−1(r5 +WAT
∆y)

∆r = r4−AT
∆y

∆u = T−1(−r3 +B∆y)

∆q = S−1(r2 +QCT
∆u)

∆s = r1−CT
∆u

(VI.6)

Note that the matrix T can be constructed in O(L + K)
operations if C contains on the order of L terms. The matrix
Ω can be constructed in O(NK2 + NP2) operations, and
inverted in O(N3) operations. These operations dominate the
complexity, giving the bound O(L+NK2 +NP2 +N3).

B. Proof of Corollary 3.5

To translate (III.3) to (III.5), we have to specify the
structures A,B,b,C,c, which capture the impulse response
constraints, the injective linear model, and the structure of
U , respectively.

Suppose that ρw(y) and ρv(x) are given by

ρw(y) := sup
u∈Uw

〈bw +Bwy,u〉− 1
2

uT Mwu

ρv(x) := sup
u∈Uv

〈bv +Bvx,u〉− 1
2

uT Mvu
(VI.7)

First define

ρ̃v(y) := ρv(γ
−1(HLy− z))

= sup
u∈Uv

〈
bv− γ

−1Bvz+ γ
−1BvHLy,u

〉
− 1

2
uT Mvu .

Adding ρ̃v and ρw together, we obtain the general system
identification objective with the following specification:

M =

[
Mw 0
0 Mv

]
, B =

[
Bw

γ−1BvHL

]
, b =

[
bw

bv− γ−1Bvz

]
C =

[
Cw 0
0 Cv

]
, c =

[
cw
cv

]
.

The matrix A and vector a encodes the constraints, as given
by (III.6).

This completes the specification. The complexity result
follows immediately from the assumptions on A,B,C and
Theorem 3.4.

It is also worthwhile to consider the structure of (VI.6).
First, note that

T = M+CQS−1CT

=

[
Mw 0
0 Mv

]
+

[
Cw 0
0 Cv

]
QS−1

[
Cw 0
0 Cv

]T

=

[
Mw +CwQwS−1

W CT
w 0

0 Mv +CvQvS−1vCT
v

]
=

[
Tw 0
0 Tv

]
,

so in fact T is block diagonal. This fact gives a more explicit
formula for Ω:

Ω = BT T−1B+AR−1WAT

=
[
BT

w γ−1LT HT BT
v
][T−1

w 0
0 T−1

v

][
Bw

γ−1BvHL

]
+AR−1WAT

= BT
wT−1

w Bw +σ
−2LT HT BT

v T−1
v BvHL+AR−1WAT .
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