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A SEQUENTIAL QUADRATIC OPTIMIZATION ALGORITHM
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Abstract. We present a sequential quadratic optimization (SQO) algorithm for nonlinear con-
strained optimization. The method attains all of the strong global and fast local convergence guaran-
tees of classical SQO methods, but has the important additional feature that fast local convergence
is guaranteed when the algorithm is employed to solve infeasible instances. A two-phase strategy,
carefully constructed parameter updates, and a line search are employed to promote such conver-
gence. The first phase subproblem determines the reduction that can be obtained in a local model of
an infeasibility measure when the objective function is ignored. The second phase subproblem then
seeks to minimize a local model of the objective while ensuring that the resulting search direction
attains a reduction in the local model of the infeasibility measure that is proportional to that attained
in the first phase. The subproblem formulations and parameter updates ensure that, near an optimal
solution, the algorithm reduces to a classical SQO method for constrained optimization, and, near
an infeasible stationary point, the algorithm reduces to a (perturbed) SQO method for minimizing
constraint violation. Global and local convergence guarantees for the algorithm are proved under
reasonable assumptions and numerical results are presented for a large set of test problems.
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1. Introduction. Sequential quadratic optimization (SQO) methods are known
to be extremely efficient when applied to solve nonlinear constrained optimization
problems [24, 34, 37]. Indeed, it has long been known [3, 4, 5] that with an ap-
propriate globalization mechanism, SQO methods can guarantee global convergence
from remote starting points to feasible optimal solutions, or to infeasible stationary
points if the constraints are incompatible. One of the main additional strengths of
SQO is that in the neighborhood of a solution point satisfying common assumptions
and an appropriate constraint qualification, fast local convergence to feasible optimal
solutions can be attained [35].

Despite these important and well-known properties of SQO methods, there is an
important feature that many contemporary SQOmethods lack, and it is for this reason
that the algorithm in this paper has been designed, analyzed, and tested. Specifically,
in addition to possessing the convergence guarantees mentioned in the previous para-
graph, we have proved that the algorithm proposed in this paper yields fast local
convergence when applied to solve infeasible problem instances. The rapid detection
of infeasibility is an important issue in nonlinear optimization as many contemporary
methods either fail or require an excessive number of iterations and/or function eval-
uations before being able to detect that a given problem instance is infeasible [32].
As a result, modelers are forced to wait an unacceptable amount of time, only to be
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840 JAMES V. BURKE, FRANK E. CURTIS, AND HAO WANG

told eventually (if at all) that model and/or data inconsistencies are present. Rapid
infeasibility detection is also important in areas including branch-and-bound methods
for nonlinear mixed-integer and parametric optimization, as algorithms for solving
such problems often require the solution of a number of nonlinear subproblems. Slow
infeasibility detection by such algorithms can create huge bottlenecks.

There are two main novel features of our algorithm. Most importantly, it is an
algorithm that possesses global and local superlinear convergence guarantees for fea-
sible and infeasible problems without having to resort to feasibility restoration. This
feature, in that a single approach is employed for solving both feasible and infeasi-
ble problems, means that the algorithm avoids many of the inefficiencies that may
arise when contemporary methods are employed to solve problems with incompatible
constraints. The second novel feature of our algorithm is that it is able to attain
these strong convergence properties with at most two quadratic optimization (QO)
subproblem solves per iteration. This is in contrast to recently proposed methods that
provide rapid infeasibility detection, but only at a much higher per-iteration cost.

In the following section, we compare and contrast our approach with recently pro-
posed SQO methods, focusing on properties of those methods related to infeasibility
detection. We then present our algorithm in section 3 and analyze its global and local
convergence properties in section 4. Our numerical experiments in section 5 illustrate
that an implementation of our algorithm yields solid results when applied to a large
set of test problems. Finally, concluding remarks are the subject of section 6.

We remark at the outset that we analyze the local convergence properties of our
algorithm under assumptions that are classically common for analyzing that of SQO
methods. We explain that our algorithm can be backed by similarly strong conver-
gence guarantees under more general settings (see our discussion in section 4.3), but
have made the conscience decision to use these common assumptions to avoid un-
necessary distractions in the analysis. Overall, the main purpose of this paper is to
focus on the novelties of our algorithm—which include the unique formulations of
our subproblems, our use of separate multiplier estimates for the optimization and
a corresponding feasibility problem, and our unique combination of updates for the
penalty parameter—which provide our algorithm with global and fast local conver-
gence guarantees on both feasible and infeasible problem instances.

2. Literature review. Our algorithm is designed to act as an SQO method for
solving an optimization problem when the problem is feasible, and otherwise, it is
designed to act as a perturbed SQO method [15] for a problem to minimize constraint
violation. In this respect, our method has features in common with those in the class
of penalty-SQO methods [19] where search directions are computed by minimizing
a quadratic model of the objective combined with a penalty on the violation of the
linearized constraints. In such algorithms, if the penalty parameter is driven to an ex-
treme value, then the algorithm transitions to solely minimizing constraint violation.
We believe that this approach is reasonable, though there are two main disadvantages
of the manner in which penalty-SQO methods are often implemented. One disad-
vantage is that the penalty parameter takes on all of the responsibility for driving
constraint violation minimization. This leads to a common criticism of penalty meth-
ods, which is that the performance of the algorithm is too highly dependent on the
penalty parameter updating scheme. The second disadvantage is that, if the penalty
parameter is not driven to its extreme value sufficiently quickly, then convergence,
especially for infeasible problems, can be slow. These disadvantages motivate us to
design a method that reduces to a classical SQO approach for feasible problems, where
updates for the penalty parameter lead to rapid convergence in infeasible cases.

D
ow

nl
oa

de
d 

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A SQO ALGORITHM WITH RAPID INFEASIBILITY DETECTION 841

The immediate predecessor of our work is the penalty-SQO method proposed in
[6]. In particular, the approach in [6] is also proved to yield fast local convergence
guarantees for infeasible problems. That method does, however, have certain practical
disadvantages. The most significant of these is that, particularly in infeasible cases,
the method may require the solution of numerous QO subproblems per iteration.
Indeed, near an infeasible stationary point, at least three QO subproblems must be
solved. The first will reveal that for the current penalty parameter value it is not pos-
sible to compute a linearly feasible step, the second then gauges the progress toward
linearized feasibility that can be made locally, and the third may produce the actual
search direction. (In fact, if the conditions necessary for global convergence are not
satisfied after the third QO subproblem solve, then even more QO subproblem solves
are needed until the conditions are satisfied.) In contrast, the algorithm proposed
in this paper solves at most two QO subproblems per iteration. It also relies less
on the penalty parameter for driving constraint violation minimization, and involves
separate multiplier estimates for the optimization and feasibility problems. This last
feature of our algorithm—that of having two separate multiplier estimates—is quite
unique for an optimization algorithm. However, we believe that it is natural as the
optimization algorithm must implicitly decide which of two problems to solve: the
given optimization problem or a problem to minimize constraint violation.

Our algorithm is a multiphase active-set method that has similarities with other
such methods that have been proposed over the last few decades. For instance, the
method in [6] borrows the idea, proposed in [11] and later incorporated into the
line-search method in [10], of “steering” the algorithm with the penalty parame-
ter. Consequently, that method at least suffers from the same disadvantages as the
method in [6] when it comes to infeasibility detection. More commonly, multiphase
SQO methods have taken the approach of solving a first-phase inequality-constrained
subproblem—typically a linear optimization (LO) subproblem—to estimate an opti-
mal active set, and then solving a second-phase equality-constrained subproblem to
promote fast convergence; see, e.g., [8, 9, 13, 17, 18, 21]. A method of this type that
solves two QO subproblems is that in [29], though again the second-phase subproblem
in that method is equality-constrained as it only involves linearizations of constraints
predicted to be active at an optimal solution. Our algorithm differs from these in that
we do no active-set prediction, and rather solve up to two inequality-constrained sub-
problems. The methods in [22, 23] involve the solution of up to three subproblems per
iteration: one to compute a “predictor” step, one to compute a “Cauchy” step, and
one to compute an “accelerator” step. In fact, various subproblems are proposed for
the “accelerator” step, including both equality-constrained and inequality-constrained
alternatives. Our algorithm differs from these in that ours is a line search method,
whereas they are trust region methods, and our first-phase subproblem computes a
pure feasibility step rather than one influenced by a local model of the objective. This
latter feature makes our method similar to those in [3, 4], though again our work is
unique in that we ensure rapid infeasibility detection, which is not provided by any of
the aforementioned methods besides that in [6]. Finally, we mention that multiphase
strategies have also been employed in interior-point techniques; see, e.g., [7, 30].

3. Algorithm description. We present our algorithm in the context of the
generic nonlinear constrained optimization problem

(3.1)
minimize

x
(min

x
) f(x)

subject to (s.t.) cE(x) = 0, cI(x) ≤ 0,
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842 JAMES V. BURKE, FRANK E. CURTIS, AND HAO WANG

where f : Rn → R, cE : Rn → R
mE

, and cI : Rn → R
mI

are twice-continuously
differentiable. If the constraints of (3.1) are infeasible, then the algorithm is designed
to return an infeasibility certificate in the form of a minimizer of the �1 infeasibility
measure of the constraints; i.e., in such cases it is designed to solve

(3.2) min
x

v(x), where v(x) := ‖cE(x)‖1 + ‖[cI(x)]+‖1.

Here, for a vector c, we define [c]+ := max{c, 0} and, for future reference, define
[c]− := max{−c, 0} (both componentwise). The priority is to locate a stationary
point for (3.1), but in all cases the algorithm is at least guaranteed to find a stationary
point for (3.2), i.e., a stationary point for v. We say a point x is stationary for v if
0 ∈ ∂v(x), where ∂v(x) is the Clarke subdifferential of v at x [2, 14] (see [3] for a
complete review of first-order theory for potentially infeasible problems).

Each iteration of our algorithm consists of solving at most two QO subproblems,
updating a penalty parameter, and performing a line search on an exact penalty func-
tion. In this regard, the method is broadly similar to that proposed in [3]; however,
the algorithm contains numerous refinements included to ensure rapid local conver-
gence in both feasible and infeasible cases. In this section, we present the details of
each step of the algorithm. Of particular importance is the integration of our penalty
parameter updates around the QO solves as this parameter is critical for driving fast
local convergence for infeasible instances. A complete description of our algorithm is
presented at the end of this section.

We begin by describing the conditions under which our algorithm terminates
finitely. In short, the algorithm continues iterating unless a stationary point for
problem (3.1) has been found. We define such stationary points according to first-
order optimality conditions for problems (3.1) and (3.2), all of which can be presented
by utilizing the Fritz John (FJ) function for (3.1), namely

F(x, ρ, λ) := ρf(x) + λE
T
cE(x) + λI

T
cI(x).

Here, ρ ∈ R is an objective multiplier and λ, with λE ∈ R
mE

and λI ∈ R
mI

, are
constraint multipliers. For future reference, we note that ρ also plays the role of the
penalty parameter in the �1 exact penalty function

(3.3) φ(x, ρ) := ρf(x) + v(x).

Our algorithm updates ρ and seeks stationary points for (3.1) through decreases in φ.
One possibility for finite termination is that the algorithm locates a first-order

optimal point for (3.1). First-order optimality conditions for problem (3.1) are

(3.4)

∇xF(x, ρ, λ) = ρ∇f(x) +∇cE(x)λE +∇cI(x)λI = 0,

cE(x) = 0, cI(x) ≤ 0,

λI ≥ 0, λI · cI(x) = 0.

Here, ∇f : Rn → R
n is the gradient of f , [∇cE ]T : Rn → R

mE×n is the Jacobian of
cE (and similarly for [∇cI ]T ), and for vectors a and b we denote their componentwise
(i.e., Hadamard or Schur) product by a · b, a vector with entries (a · b)i = aibi. If
(x∗, ρ∗, λ∗) with (ρ∗, λ∗) �= 0 satisfies (3.4), then we call (x∗, ρ∗, λ∗) stationary for
(3.1); in particular, it is an FJ point [26]. Of particular interest are those FJ points
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with ρ∗ > 0 as these correspond to Karush–Kuhn–Tucker (KKT) points for (3.1)
[27, 28].

The other possibility for finite termination is that the algorithm locates a station-
ary point for (3.2) that is infeasible for problem (3.1). Hereafter, defining e as a vector
of ones (whose size is determined by the context), first-order optimality conditions for
problem (3.2) are

(3.5)

∇xF(x, 0, λ) = ∇cE(x)λE +∇cI(x)λI = 0,

−e ≤ λE ≤ e, 0 ≤ λI ≤ e,
(e+ λE) · [cE(x)]− = 0, (e − λE) · [cE(x)]+ = 0,

λI · [cI(x)]− = 0, (e − λI) · [cI(x)]+ = 0.

If (x∗, λ∗) satisfies (3.5) and v(x∗) > 0, then we call (x∗, λ∗) stationary for (3.1); in
particular, it is an infeasible stationary point. Despite the fact that such a point is
infeasible for (3.1), it is deemed stationary as first-order information indicates that
no further improvement in minimizing constraint violation locally is possible.

We now describe our technique for computing a search direction and multiplier
estimates, which involves the solution of the QO subproblems (3.7) and (3.9) below.
Once the details of these subproblems have been specified, we will describe an updating
strategy for the penalty parameter that is integrated around these QO solves.

At the beginning of iteration k, the algorithm assumes an iterate of the form

(3.6) (xk, ρk, λk, λ̂k) with ρk > 0, −e ≤ λEk ≤ e, 0 ≤ λ
I
k ≤ e, and λ̂Ik ≥ 0.

As all stationary points for (3.1) are necessarily stationary for the constraint violation
measure v, we initiate computation in iteration k by seeking to measure the possible
improvement in minimizing the following linearized model of v at xk:

l(d;xk) := ‖cE(xk) +∇cE(xk)T d‖1 + ‖[cI(xk) +∇cI(xk)Td]+‖1.

Specifically, defining H(x, ρ, λ) as an approximation for the Hessian of F at (x, ρ, λ),
we solve the following QO subproblem whose solution we denote as (dk, rk, sk, tk):

(3.7)

min
(d,r,s,t)

eT (r + s) + eT t+ 1
2d

TH(xk, 0, λk)d

s.t.

⎧⎪⎨⎪⎩
cE(xk) +∇cE(xk)T d = r − s,
cI(xk) +∇cI(xk)T d ≤ t,

(r, s, t) ≥ 0.

As shown in Lemma 4.3 in section 4.1, this subproblem is always feasible and, if
H(xk, 0, λk) is positive definite, then the solution component dk is unique. In addition,
dk yields a nonnegative reduction in l(·;xk), i.e.,

(3.8) Δl(dk;xk) := l(0;xk)− l(dk;xk) ≥ 0,

where equality holds if and only if xk is stationary for v.
Upon solving subproblem (3.7) and setting

λk+1 with − e ≤ λEk+1 ≤ e and 0 ≤ λIk+1 ≤ e
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as the optimal multipliers for the linearized equality and inequality constraints in
(3.7), we check for termination at an infeasible stationary point. Specifically, we
consider the constraint violation measure v and the following residual for (3.5):

Rinf (xk, λk+1) := max{‖∇xF(xk, 0, λk+1)‖∞,
‖(e− λEk+1) · [cE(xk)]+‖∞, ‖(e+ λEk+1) · [cE(xk)]−‖∞,
‖(e− λIk+1) · [cI(xk)]+‖∞, ‖λIk+1 · [cI(xk)]−‖∞}.

If Rinf (xk, λk+1) = 0 and v(xk) > 0, then (xk, λk+1) is an infeasible stationary point.
Otherwise, as shown in Lemma 4.3 in section 4.1, it follows that either v(xk) = 0 or
dk is a direction of strict descent for v from xk.

Having measured, in a particular sense, the possible improvement in minimiz-
ing constraint violation by solving the QO subproblem (3.7), the algorithm solves a
second QO subproblem that seeks optimality. Denoting Ek and Ik as the sets of con-
straints that are linearly satisfied at the solution of (3.7) (i.e., that have rik = sik = 0

for i ∈ E or t
i
k = 0 for i ∈ I, respectively), we require that the computed direction

maintains this set of linearly satisfied constraints. The other linearly violated con-
straints in Eck ∪ Ick (where Eck := E \ Ek and Ick := I \ Ik) remain relaxed with slack
variables whose values are penalized in the subproblem objective. The value of the
penalty parameter employed at this stage is the value for ρk immediately prior to this
second phase subproblem, which for future notational convenience we denote as ρ̂k.
Overall, we solve the following regularized QO subproblem whose solution we denote
as (d̂k, r̂k

Ec
k , ŝk

Ec
k , t̂k

Ic
k):

(3.9)

min
(d,rE

c
k ,sE

c
k ,tI

c
k )

ρ̂k∇f(xk)Td+ eT (rE
c
k + sE

c
k) + eT tI

c
k + 1

2d
TH(xk, ρ̂k, λ̂k)d

s.t.

⎧⎪⎪⎨⎪⎪⎩
cEk(xk) +∇cEk(xk)

Td = 0, cE
c
k(xk) +∇cEc

k(xk)
T d = rE

c
k − sEc

k ,

cIk(xk) +∇cIk(xk)
Td ≤ 0, cI

c
k(xk) +∇cIc

k(xk)
T d ≤ tIc

k ,

(rE
c
k , sE

c
k , tI

c
k) ≥ 0.

Upon solving (3.9) and setting

λ̂k+1 with − e ≤ λ̂Ec
k

k+1 ≤ e, 0 ≤ λ̂I
c
k

k+1 ≤ e, and λ̂Ik

k+1 ≥ 0

as the optimal multipliers for the linearized equality and inequality constraints in
(3.9), it is again appropriate to check for finite termination of the algorithm, this time

with respect to the optimality conditions for (3.1). Given (xk, ρk, λ̂k+1) we consider
the violation measure v and the following residual corresponding to (3.4):

Ropt(xk, ρk, λ̂k+1) := max{‖∇xF(xk, ρk, λ̂k+1)‖∞, ‖λ̂Ik+1 · cI(xk)‖∞}.
We prove in Lemma 4.5 in section 4.1 that if the algorithm reaches this stage, then ρk
is strictly positive. Thus, if Ropt(xk, ρk, λ̂k+1) = 0 and v(xk) = 0, then (xk, ρk, λ̂k+1)
is a KKT point for (3.1).

If the algorithm has not terminated finitely due to this last check of optimality,
then the search direction dk is chosen as a convex combination of the directions
obtained from subproblems (3.7) and (3.9). Given a constant β ∈ (0, 1), our criterion
for the selection of the weights in this combination is

(3.10) Δl(dk;xk) ≥ βΔl(dk;xk).
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For w ∈ [0, 1], the reduction in l(·;xk) obtained by

(3.11) d(w) := wdk + (1− w)d̂k
is a piecewise linear function of w. If Δl(dk;xk) = 0, then by the formulation of

(3.9), we have Δl(d̂k;xk) = 0 and so (3.10) is satisfied by w = 0. Otherwise, if
Δl(dk;xk) > 0, then since Δl(d(1);xk) = Δl(dk;xk) > βΔl(dk;xk), there exists a
threshold w ∈ [0, 1) such that (3.10) holds for all w ≥ w. We define wk as the smallest
value in [0, 1) such that (3.10) holds and set the search direction as dk ← d(wk).

We have presented our techniques for computing the primal search direction dk

as well as new multiplier estimates λk+1 and λ̂k+1. Within this discussion, we have
accounted for finite termination of the algorithm and highlighted certain consequences
of our step computation procedure (e.g., (3.8) and (3.10)) that will be critical in our
convergence analysis. All that remains in the specification of our algorithm is our
updating strategy for the penalty parameter and the conditions of our line search,
which we now present. Note that with respect to ρ, an update is considered twice
in a given iteration. The first time an update is considered is between the two QO
subproblem solves, as it is at this point in the algorithm where the solution of (3.7)
may trigger aggressive action toward infeasibility detection. The second time an
update is considered is after the solution of (3.9). The update considered at that
time is representative of typical contemporary updating strategies, used to ensure a
well-defined line search and global convergence of the algorithm.

Prior to solving the second subproblem (3.9) (and before fixing ρ̂k), we potentially

modify ρk and λ̂k (computed in iteration k−1) to reduce the weight of the objective f

and promote fast infeasibility detection. (Note that ρk and λ̂k will both influence the
objective of (3.9).) If the current iterate is infeasible and the reduction in linearized
feasibility obtained by dk is small compared to the level of nonlinear infeasibility,
then there is evidence that the algorithm is converging to an infeasible stationary
point. In such cases, we consider modifying ρk before solving subproblem (3.9) so that
the rest of the iteration places a higher emphasis on reducing constraint violation.
A corresponding modification to λ̂k is also necessary to guarantee fast infeasibility
detection (see Theorem 4.25). Defining constants θ ∈ (0, 1), κρ > 0, and κλ > 0, if

(3.12) v(xk) > 0 and Δl(dk;xk) ≤ θv(xk),
then we set ρk by

(3.13) ρk ← min{ρk, κρRinf (xk, λk+1)
2}

and modify λ̂k so that

(3.14) ‖λ̂k − λk‖ ≤ κλRinf (xk, λk+1)
2.

Otherwise, we maintain the current ρk and λ̂k. For satisfying (3.14), a simple approach

is to set λ̂k ← αλλ̂k+(1−αλ)λk where αλ is the largest value in [0, 1] such that (3.14)
is satisfied. (This is the approach taken in our implementation described in section
5.)

Upon solving (3.9) and assuming the algorithm does not immediately terminate,
we turn to a second update for ρ and our line search. For these purposes, we employ
the �1 exact penalty function φ (recall (3.3)). At xk, a linear model of φ(·, ρ) is

m(d;xk, ρ) := ρ(f(xk) +∇f(xk)T d) + l(d;xk)
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and the corresponding reduction in this model yielded by the search direction dk is

(3.15) Δm(dk;xk, ρ) := m(0;xk, ρ)−m(dk;xk, ρ) = −ρ∇f(xk)Tdk +Δl(dk;xk).

Prior to the line search, the new penalty parameter ρk+1 is set so that its recipro-
cal is larger than the largest multiplier (derived from (3.9)) and that the reduction
Δm(dk;xk, ρk+1) is at least proportional to Δl(dk;xk). That is, we set ρk+1 so that

(3.16) ρk+1‖λ̂k+1‖∞ ≤ 1

and, for a given constant ε ∈ (0, 1), we have

(3.17) Δm(dk;xk, ρk+1) ≥ εΔl(dk;xk).

Given constants δ ∈ (0, 1) and ω ∈ (0, 1), (3.16) and (3.17) can be achieved by setting

(3.18) ρk ← min

{
δρk,

(1− ε)
‖λ̂k+1‖∞

}
if ρk‖λ̂k+1‖∞ > 1

followed by

(3.19) ρk ←
{
δρk if Δm(dk;xk, ρk) ≥ εΔl(dk;xk) and wk ≥ ω,
min {δρk, ζk} if Δm(dk;xk, ρk) < εΔl(dk;xk),

where

ζk :=
(1− ε)Δl(dk;xk)

∇f(xk)T dk + 1
2d

T
kH(xk, ρ̂k, λ̂k)dk

,

and then setting ρk+1 ← ρk. (Note that when Δm(dk;xk, ρk) ≥ εΔl(dk;xk) and
wk ≥ ω in (3.19), it is not necessary to reduce ρk in order to satisfy (3.17); this
condition would have been satisfied without invoking (3.19). However, since wk ≥ ω,
it follows from (3.11) that the search direction is dominated by the dk component,
which indicates that a reduction in the penalty parameter is appropriate. This feature
of the update (3.19) is important in our convergence analysis. Moreover, we prove in
Lemma 4.5(b) that even after invoking (3.19) in this case, the condition (3.17) will
be satisfied.) Once ρk+1 has been set in this manner, we perform a backtracking line
search along dk to determine αk such that, for η ∈ (0, 1), we have

(3.20) φ(xk + αkdk, ρk+1)− φ(xk, ρk+1) ≤ −ηαkΔm(dk;xk, ρk+1).

Our proposed algorithm, hereafter nicknamed SQuID, is presented as Algorithm 1.
We claim that the algorithmic framework of SQuID is globally convergent for choices
of subproblems other than (3.7). For instance, a linear subproblem with a trust region
would be appropriate for determining the best local improvement in linearized fea-
sibility; see, e.g., [3, 4]. Under certain common assumptions, this choice should also
allow for rapid local convergence for feasible problem instances. We present SQuID as
solving two QO subproblems per iteration, however, as this choice also allows for rapid
local convergence for infeasible instances, the main focus of this paper. In particular,
in the neighborhood of an infeasible stationary point satisfying the assumptions of

section 4.3, it can be seen that as ρk → 0 and λ̂k → λk, subproblem (3.9) produces
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SQO-like steps for the minimization of constraint violation, thus causing rapid con-
vergence toward stationary points for v. That being said, efficient implementations
of SQuID may avoid two QO solves per iteration. For example, at (nearly) feasible
points, one may consider skipping subproblem (3.7) entirely, as we do in our imple-
mentation described in section 5. For the purposes of this paper, however, we analyze
the behavior of SQuID as it has been presented.

Algorithm 1 Sequential quadratic optimizer with rapid infeasibility detection
(SQuID).

1. Choose β ∈ (0, 1), θ ∈ (0, 1), κρ > 0, κλ > 0, ε ∈ (0, 1), ω ∈ (0, 1), δ ∈ (0, 1),

η ∈ (0, 1), and γ ∈ (0, 1). Set k ← 0 and choose (xk, ρk, λk, λ̂k) satisfying (3.6).

2. Compute (dk, rk, sk, tk, λk+1) as the optimal primal-dual solution for (3.7).

3. If Rinf (xk, λk+1) = 0 and v(xk) > 0, then terminate; (xk, λk+1) is an infeasible
stationary point for problem (3.1).

4. If (3.12) holds, then set ρk by (3.13) and λ̂k so that (3.14) holds. Set ρ̂k ← ρk.

5. Compute (d̂k, r̂k
Ec
k , ŝk

Ec
k , t̂k

Ic
k , λ̂k+1) as the optimal primal-dual solution for (3.9).

6. If Ropt(xk, ρk, λ̂k+1) = 0 and v(xk) = 0, then terminate; (xk, ρk, λ̂k+1) is a KKT
point for problem (3.1).

7. Set dk by (3.11) where wk is the smallest value in [0, 1) such that (3.10) holds.

8. Update ρk by (3.18), then by (3.19), and finally set ρk+1 ← ρk.

9. Let αk be the largest value in {γ0, γ1, γ2, . . . } such that (3.20) holds.

10. Set xk+1 ← xk + αkdk and k ← k + 1 and go to step 1.

4. Convergence analysis. The convergence properties of SQuID are the sub-
ject of this section. We prove the well-posedness of the algorithm along with global
and local convergence results for feasible and infeasible problem instances. A few of
the earlier results in this section are well-known in (nonsmooth) composite function
theory, so for the sake of brevity we provide only citations for proofs.

4.1. Well-posedness. We prove that SQuID is well-posed in that each iteration
is well-defined and, if the overall algorithm does not terminate finitely, then an infinite
sequence of iterates will be produced. This can be guaranteed under the following
assumption. (Note that for simplicity here and in section 4.2, we assume that subprob-
lems (3.7) and (3.9) are convex. See section 4.3 for a discussion of how this assumption
can be relaxed without sacrificing local superlinear convergence guarantees.)

Assumption 4.1. The following hold true for the iterates generated by SQuID:
(a) The problem functions f , cE , and cI are continuously differentiable in an

open convex set containing {xk} and {xk + dk}.
(b) For all k, H(xk, 0, λk) and H(xk, ρ̂k, λ̂k) are positive definite.
Our first lemma reveals that −Δl(d;xk) and −Δm(d;xk, ρ), respectively, play the

roles of surrogates for the directional derivatives of v and φ(·.ρ) from xk along the
direction d. For a proof, see [2, Lemma 2.3]. We use the lemma to show that as long
as a search direction dk yields a strictly positive reduction in l(·, xk) (m(·;xk, ρ)), then
it is a direction of strict decrease for v (φ(·, ρ)).

Lemma 4.2. The reductions in l(·;xk) and m(·;xk, ρ) produced by d satisfy

(4.1) Dv(d;xk) ≤ −Δl(d;xk) and Dφ(d;xk , ρ) ≤ −Δm(d;xk, ρ),
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where Dv(d;xk) and Dφ(d;xk, ρ) represent the directional derivatives of v and φ(·, ρ)
at xk corresponding to a step d, respectively.

The next lemma enumerates relevant properties of subproblem (3.7) related to
the well-posedness of SQuID. It states that as long as xk is not stationary for v, the
solution component dk will be a descent direction for v from xk. These properties are
well-known; see, e.g., [2, Theorem 3.6].

Lemma 4.3. Suppose Assumption 4.1 holds. Then, during iteration k of SQuID
we have the following:

(a) Subproblem (3.7) is feasible and the solution component dk is unique.
(b) Δl(dk;xk) ≥ 0 where equality holds if and only if dk = 0.
(c) dk = 0 if and only if xk is stationary for v.
(d) dk = 0 if and only if (xk, λk+1) satisfies (3.5).
Properties of subproblem (3.9) related to the well-posedness of SQuID are enu-

merated in the next lemma.
Lemma 4.4. Suppose Assumption 4.1 holds. Then, during iteration k of SQuID

we have the following:
(a) Subproblem (3.9) is feasible and the solution component d̂k is unique.

(b) With ρk > 0 and v(xk) = 0, step 1 yields d̂k = 0 if and only if (xk, ρk, λ̂k+1)
is a KKT point for (3.1).

Proof. By straightforward verification of the constraint function values, it follows
that dk is feasible for subproblem (3.9). Moreover, as H(xk, ρ̂k, λ̂k) is positive definite
under Assumption 4.1, the objective of (3.9) is strictly convex and bounded below over
the feasible set of the subproblem. Together, these statements imply that subproblem
(3.9) is feasible and that the solution component d̂k is unique. This proves part (a).

For part (b), the solution (d̂k, r̂k, ŝk, t̂k, λ̂k+1) satisfies the KKT conditions

ρk∇f(xk) +H(xk, ρ̂k, λ̂k)d̂k +∇cE(xk)λ̂Ek+1 +∇cI(xk)λ̂Ik+1 = 0,(4.2a)

cEk(xk) +∇cEk(xk)
T d̂k = 0, cE

c
k(xk) +∇cEc

k(xk)
T d̂k = r̂k

Ec
k − ŝkEc

k ,(4.2b)

cIk(xk) +∇cIk(xk)
T d̂k ≤ 0, cI

c
k(xk) +∇cIc

k(xk)
T d̂k ≤ t̂kIc

k ,(4.2c)

λ̂Ik

k+1 · (cIk(xk) +∇cIk(xk)
T d̂k) = 0,(4.2d)

λ̂
Ic
k

k+1 · (cI
c
k(xk) +∇cIc

k(xk)
T d̂k − tI

c
k

k ) = 0,(4.2e)

(e− λ̂Ec
k

k+1) · r̂kE
c
k = 0, (e + λ̂

Ec
k

k+1) · ŝkE
c
k = 0, (e − λ̂Ic

k

k+1) · t̂kI
c
k = 0,(4.2f)

−e ≤ λ̂Ec
k

k+1 ≤ e, 0 ≤ λ̂I
c
k

k+1 ≤ e, and λ̂Ik

k+1 ≥ 0,(4.2g)

from which it is easily shown that

r̂
Ec
k

k = [cE
c
k(xk) +∇cEc

k(xk)
T d̂k]

+, ŝk
Ec
k = [cE

c
k(xk) +∇cEc

k(xk)
T d̂k]

−,

and t̂k
Ic
k = [cI

c
k(xk) +∇cIc

k(xk)
T d̂k]

+.

Since we assume v(xk) = 0, it follows that (dk, rk, sk, tk) = 0 is optimal for (3.7),
which means Ek = E and Ik = I. The optimality conditions (4.2) thus reduce to

ρk∇f(xk) +H(xk, ρ̂k, λ̂k)d̂k +∇cE(xk)λ̂Ek+1 +∇cI(xk)λ̂Ik+1 = 0,(4.3a)

cE(xk) +∇cE(xk)T d̂k = 0, cI(xk) +∇cI(xk)T d̂k ≤ 0,(4.3b)

λ̂Ik+1 ≥ 0, λ̂Ik+1 · (cI(xk) +∇cI(xk)T d̂k) = 0.(4.3c)
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Since we assume ρk > 0, by comparing the elements ofRopt(xk, ρk, λ̂k+1) with those of

(4.3), it follows that d̂k = 0 if and only if (xk, ρk, λ̂k+1) is a KKT point for (3.1).
The next lemma shows that the updates for the penalty parameter in steps 1

and 1 are well-defined and that the latter update guarantees that Δm(dk;xk, ρk+1)
is nonnegative. This can then be used to show, as we do in the lemma, that the line
search in step 1 will terminate finitely with a positive step-size αk > 0.

Lemma 4.5. Suppose Assumption 4.1 holds. Then, during iteration k of SQuID
we have the following:

(a) If at the beginning of iteration k we have ρk > 0, then, after step 1, ρk > 0.
(b) If at the beginning of step 1 we have ρk > 0, then, after step 1, ρk+1 > 0 and

(4.4) Δm(dk;xk, ρk+1) ≥ εΔl(dk;xk) ≥ βεΔl(dk;xk) ≥ 0.

(c) The line search in step 1 terminates with αk > 0.
Proof. If at step 1 we have Rinf (xk, λk+1) = 0, then we must have v(xk) = 0

or else SQuID would have terminated in step 1. Thus, since (3.12) does not hold,
step 1 will maintain the current ρk > 0. On the other hand, if at step 1 we have
Rinf (xk, λk+1) > 0, then either ρk will be maintained at its current positive value or
(3.13) will set ρk > 0. This proves part (a).

For part (b), first consider (3.18). If ‖λ̂k+1‖∞ = 0, then ρk‖λ̂k+1‖∞ < 1, meaning

that (3.18) will not trigger a reduction in ρk. On the other hand, if ‖λ̂k+1‖∞ > 0, then
(3.18) will only ever yield ρk > 0. Thus, after applying (3.18), we have ρk > 0. Now
consider (3.19). We have Δl(dk;xk) ≥ βΔl(dk;xk) ≥ 0 due to (3.8) and (3.10), so all
that remains is to show that ρk+1 > 0 and Δm(dk;xk, ρk+1) ≥ εΔl(dk;xk). There
are two cases to consider: Δl(dk;xk) = 0 and Δl(dk;xk) > 0. If Δl(dk;xk) = 0, then
according to (3.10) and Lemma 4.3 we must have dk = 0. Moreover, if v(xk) �= 0,
then Lemma 4.3 implies that the algorithm would have terminated in step 1, so since
we are in step 1, we must have v(xk) = 0, Ek = E , and Ik = I. It follows that

in step 1 we obtain dk = d̂k (i.e., wk = 0) satisfying ∇f(xk)Tdk ≤ 0. Observing
(3.15), we find that Δm(dk;xk, ρk) ≥ εΔl(dk;xk) and wk < ω, so a reduction in ρk
is not triggered by (3.19), the algorithm sets ρk+1 ← ρk, and (4.4) is satisfied. Now
consider when Δl(dk;xk) > 0. If Δm(dk;xk, ρk) ≥ εΔl(dk;xk) and wk < ω, then
there is nothing left to prove as the algorithm sets ρk+1 ← ρk and (4.4) holds. If
Δm(dk;xk, ρk) ≥ εΔl(dk;xk), but wk ≥ ω, then

Δm(dk;xk, ρk) ≥ εΔl(dk;xk) =⇒ ρk∇f(xk)Tdk ≤ (1− ε)Δl(dk;xk).
Then, since Δl(dk;xk) > 0, it follows that prior to the update (3.19) we have

δρk∇f(xk)T dk ≤ (1− ε)Δl(dk;xk) =⇒ Δm(dk;xk, δρk) ≥ εΔl(dk;xk).
As a result, after the update (3.19), we again have that ρk+1 > 0 and (4.4) holds.
Finally, if Δm(dk;xk, ρk) < εΔl(dk;xk), then by (3.15) we must have ∇f(xk)T dk > 0.
In such cases, after ρk is updated by (3.19) (to a positive value since ζk > 0), we have

Δm(dk;xk, ρk) = −ρk∇f(xk)T dk +Δl(dk;xk)

≥ − (1 − ε)Δl(dk;xk)
∇f(xk)T dk + 1

2d
T
kH(xk, ρ̂k, λ̂k)dk

∇f(xk)Tdk +Δl(dk;xk)

≥ (ε − 1)Δl(dk;xk) + Δl(dk;xk)

= εΔl(dk;xk),
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completing the proof of part (b) of the lemma.
Finally, for part (c), we first claim that Δm(dk;xk, ρk+1) > 0 in step 1. Indeed,

by part (b), the model reduction satisfies Δm(dk;xk, ρk+1) = 0 only if Δl(dk;xk) = 0.
However, by Lemma 4.3 and the formulation of (3.9), this occurs if and only if xk is
stationary for v. If v(xk) > 0, then SQuID would have terminated in step 1; thus, we
may assume v(xk) = 0. Moreover, if dk = 0, then by Lemma 4.4, SQuID would have
terminated in step 1; thus, we may assume dk �= 0. Since under these conditions the
point (d, r, s, t) = (0, 0, 0, 0) is feasible for (3.9) and yields an objective value of 0 for
that subproblem, we must have ∇f(xk)T dk < 0, meaning that Δm(dk;xk, ρk+1) =
−ρk+1∇f(xk)Tdk > 0. Overall, we have shown that if the algorithm enters step 1,
then Δm(dk;xk, ρk+1) > 0. This fact and Lemma 4.2 reveal that dk is a direction of
strict descent for φ(·, ρk+1) from xk, implying that the backtracking line search will
terminate with a positive step-size αk > 0.

Our main theorem in this subsection summarizes the well-posedness of SQuID.
Theorem 4.6. Suppose Assumption 4.1 holds. Then, one of the following holds:
(a) SQuID terminates in step 1 with (xk, λk+1) satisfying

Rinf (xk, λk+1) = 0 and v(xk) > 0;

(b) SQuID terminates in step 1 with (xk, ρk, λ̂k+1) satisfying

ρk > 0, Ropt(xk, ρk, λ̂k+1) = 0, and v(xk) = 0;

(c) SQuID generates an infinite sequence {(xk, ρk, λk, λ̂k)} where, for all k,

ρk > 0, −e ≤ λEk ≤ e, 0 ≤ λ
I
k ≤ e, −e ≤ λ̂E

c
k

k ≤ e, 0 ≤ λ̂I
c
k

k ≤ e, and λ̂Ik

k ≥ 0.

Proof. By Lemmas 4.3, 4.4, and 4.5, each iteration of SQuID terminates finitely.
If SQuID itself does not terminate finitely in step 1 or 1, then steps 1 and 1 and the
optimality conditions for subproblems (3.7) and (3.9) yield the bounds in statement
(c). Moreover, by Lemma 4.5(a)–(b), it follows that an infinite number of SQuID
iterates yields {ρk} > 0.

4.2. Global convergence. We now prove properties related to the global con-
vergence of SQuID under the assumption that an infinite sequence of iterates is gen-
erated; i.e., we focus on the situation described in Theorem 4.6(c). These properties
require a slight strengthening of our assumptions from section 4.1. (As Assumption 4.7
is stronger than Assumption 4.1, it follows that all results from section 4.1 still hold.)

Assumption 4.7. The following hold true for the iterates generated by SQuID:
(a) The problem functions f , cE , cI and their first derivatives are bounded and

Lipschitz continuous in an open convex set containing {xk} and {xk + dk}.
(b) There exist constants μ ≥ μ > 0 such that, for all k and d ∈ R

n,

μ‖d‖2 ≤ dTH(xk, 0, λk)d ≤ μ‖d‖2 and μ‖d‖2 ≤ dTH(xk, ρ̂k, λ̂k)d ≤ μ‖d‖2.
Of particular interest at the end of this section is the behavior of SQuID in

the vicinity of points satisfying the Mangasarian–Fromovitz constraint qualification
(MFCQ) for problem (3.1). We define this well-known qualification for convenience.

Definition 4.8. A point x satisfies the MFCQ for problem (3.1) if v(x) = 0,
∇cE(x) has full column rank, and there exists d ∈ R

n such that

cE(x) +∇cE(x)T d = 0 and cI(x) +∇cI(x)T d < 0.
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In this and the following subsection, at xk, let the sets of positive, zero, and
negative-valued equality constraints be defined, respectively, as

Pk := {i ∈ E : ci(xk) > 0}, Zk := {i ∈ E : ci(xk) = 0}, andNk := {i ∈ E : ci(xk) < 0}.

Similarly, let the sets of violated, active, and strictly satisfied inequality constraints,
respectively, be

Vk := {i ∈ I : ci(xk) > 0}, Ak := {i ∈ I : ci(xk) = 0}, and Sk := {i ∈ I : ci(xk) < 0}.

We similarly define the sets P∗, Z∗, N∗, V∗, A∗, and S∗ when referring to those index
sets corresponding to a point of interest x∗.

The following lemma shows that the norms of the search directions are bounded.
This result can also be seen to follow if one applies [2, Lemma 3.4].

Lemma 4.9. Suppose Assumption 4.7 holds. Then, the sequences {‖dk‖} and

{‖d̂k‖} are bounded above, so the sequence {‖dk‖} is bounded above.
Proof. Under Assumption 4.7, there exists τ > 0 such that v(xk) ≤ τ for any

k. In order to derive a contradiction to the statement in the lemma, suppose that
{‖dk‖} is not bounded. Then, there exists an iteration k yielding ‖dk‖2 > 2τ/μ. The

objective value of subproblem (3.7) corresponding to this dk satisfies

l(dk;xk) +
1
2d

T

kH(xk, 0, λk)dk ≥ 1
2μ‖dk‖2 > τ ≥ v(xk).

However, this is a contradiction as v(xk) is the objective value corresponding to
(d, r, s, t) = (0, [cE(xk)]+, [cE(xk)]−, [cI(xk)]+), which is also feasible for this subprob-
lem. Thus, ‖dk‖2 ≤ 2τ/μ for all k, so {‖dk‖} is bounded.

Now suppose, in order to derive a different contradiction, that for some k the

optimal solution for (3.9) yields μ‖d̂k‖ > 8ρ0‖∇f(xk)‖ and μ‖d̂k‖2 > 2μ‖dk‖2. Then,
under Assumption 4.7, we find

− ρk∇f(xk)T d̂k + ρk∇f(xk)T dk + 1
2d

T

kH(xk, ρ̂k, λ̂k)dk

≤ ρ0‖∇f(xk)‖‖d̂k‖+ ρ0‖∇f(xk)‖‖dk‖+ 1
2μ‖dk‖2

< 1
8μ‖d̂k‖2 + 1

8μ

√
μ

2μ
‖d̂k‖2 + 1

4μ‖d̂k‖2

≤ 1
2μ‖d̂k‖2

≤ 1
2 d̂

T
kH(xk, ρ̂k, λ̂k)d̂k.

Since (dk, rk, sk, tk) is feasible for (3.9) and the above inequality implies

ρk∇f(xk)T d̂k + 1
2 d̂k

TH(xk, ρk, λ̂k)d̂k > ρk∇f(xk)Tdk + 1
2d

T

kH(xk, ρk, λ̂k)dk,

it follows that (d̂k, r̂k, ŝk, t̂k) cannot be the optimal solution for (3.9), a contradiction.
Thus, for all k,

‖d̂k‖ ≤ max
{
8ρ0‖∇f(xk)‖/μ,

√
2μ/μ‖dk‖

}
and since {‖dk‖} and {∇f(xk)} are bounded by the above paragraph and Assump-

tion 4.7, respectively, it follows that {‖d̂k‖} is also bounded.
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The boundedness of {‖dk‖} follows from the above inequality results and the fact

that dk is chosen as a convex combination of dk and d̂k for all k.
We also have the following lemma, providing a lower bound for αk for each k.
Lemma 4.10. Suppose Assumption 4.7 holds. Then, for all k, the stepsize satisfies

αk ≥ cΔm(dk;xk, ρk+1) for some constant c > 0 independent of k.
Proof. Under Assumption 4.7, applying Taylor’s theorem and Lemma 4.2, we

have that for all positive α that are sufficiently small, there exists τ > 0 such that

φ(xk + αdk, ρk+1)− φ(xk, ρk+1) ≤ −αΔm(dk;xk, ρk+1) + τα2‖dk‖2.
Thus, for any α ∈ [0, (1− η)Δm(dk;xk, ρk+1)/(τ‖dk‖2)], we have

−αΔm(dk;xk, ρk+1) + τα2‖dk‖2 ≤ −αηΔm(dk;xk, ρk+1),

meaning that the sufficient decrease condition (3.20) holds. During the line search,
the stepsize is multiplied by γ until (3.20) holds, so we know by the above inequality
that the backtracking procedure terminates with

αk ≥ γ(1− η)Δm(dk;xk, ρk+1)/(τ‖dk‖2).
The result follows from this inequality since, by Lemma 4.9, {‖dk‖} is bounded.

We now prove that, in the limit, the reductions in the models of the constraint
violation measure and the penalty function vanish. For this purpose, it will be con-
venient to work with the shifted penalty function

(4.5) ϕ(x, ρ) := ρ(f(x) − f) + v(x) ≥ 0,

where f is the infimum of f over the smallest convex set containing {xk}. The
existence of f follows from Assumption 4.7. The function ϕ possesses a useful mono-
tonicity property proved in the following lemma.

Lemma 4.11. Suppose Assumption 4.7 holds. Then, for all k,

ϕ(xk+1, ρk+2) ≤ ϕ(xk, ρk+1)− ηαkΔm(dk;xk, ρk+1),

so, by Lemmas 4.5 and 4.10, {ϕ(xk, ρk+1)} is monotonically decreasing.
Proof. By the line search condition (3.20), we have

ϕ(xk+1, ρk+1) ≤ ϕ(xk, ρk+1)− ηαkΔm(dk;xk, ρk+1),

which implies

ϕ(xk+1, ρk+2) ≤ ϕ(xk, ρk+1)− (ρk+1 − ρk+2)(f(xk+1)− f)− ηαkΔm(dk;xk, ρk+1).

The result then follows from this inequality, the fact that {ρk} is monotonically de-
creasing, and since f(xk+1) ≥ f for all k.

We now show that the model reductions vanish in the limit.
Lemma 4.12. Suppose Assumption 4.7 holds. Then, the following limits hold:

0 = lim
k→∞

Δm(dk;xk, ρk+1) = lim
k→∞

Δl(dk;xk) = lim
k→∞

Δl(dk;xk) = lim
k→∞

Δl(d̂k;xk).

Proof. In order to derive a contradiction, suppose that Δm(dk;xk, ρk+1) does not
converge to 0. Then, by Lemma 4.5, there exists τ > 0 and an infinite subsequence of
iterates K such that Δm(dk;xk, ρk+1) ≥ τ for all k ∈ K. By Lemmas 4.10 and 4.11,
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this would imply that ϕ(xk, ρk+1) → −∞, which is impossible since {ϕ(xk, ρk+1)}
is bounded below by 0. Hence, Δm(dk;xk, ρk+1) → 0. The other limits follow by

Lemma 4.5(b), the fact that dk is a convex combination of dk and d̂k for all k, and
the convexity of Δl(·;xk) for all k.

We now show that the primal solution components for the subproblems vanish in
the limit, and thus the primal search directions vanish in the limit.

Lemma 4.13. Suppose Assumption 4.7 holds. Then, the following limits hold:

0 = lim
k→∞

dk = lim
k→∞

d̂k = lim
k→∞

dk.

Proof. First, we prove by contradiction that dk → 0. Suppose there exists τ > 0
and an infinite subsequence of iterates K such that ‖dk‖ ≥ τ for all k ∈ K. By
Lemma 4.12, there exists k′ ≥ 0 such that for all k ≥ k′ we have Δl(dk;xk) ≤ μτ2/4.
(Recall that μ is defined in Assumption 4.7.) Hence, we have that for some k ∈ K
such that k ≥ k′, the optimal objective value of (3.7) satisfies

v(xk)−Δl(dk;xk) +
1
2dkH(xk, 0, λk)dk ≥ v(xk)− 1

4μτ
2 + 1

2μτ
2 > v(xk).

This is a contradiction as v(xk) is the objective value corresponding to (d, r, s, t) =
(0, [cE(xk)]+, [cE(xk)]−, [cI(xk)]+), which is also feasible. Thus, dk → 0.

Now we prove that d̂k → 0. To do this, we first prove that

(4.6) lim
k→∞

ρk∇f(xk)T d̂k = 0.

Indeed, (4.6) clearly holds if ρk → 0 since {∇f(xk)} and {d̂k} are bounded by As-
sumption 4.7 and Lemma 4.9, respectively. Otherwise, if ρk � 0, then due to update
(3.19) we must have Δm(dk;xk, ρk) ≥ εΔl(dk;xk) and wk < ω for all sufficiently
large k. Hence, by Lemma 4.12, (3.15), (3.11), the fact that {ρk} is monotonically
decreasing, the boundedness of {∇f(xk)} under Assumption 4.7, and dk → 0, we have

0 = lim
k→∞

(Δl(dk;xk)−Δm(dk;xk, ρk+1))

= lim
k→∞

ρk+1∇f(xk)T dk
= lim

k→∞
ρk+1∇f(xk)T (wkdk + (1− wk)d̂k)

= lim
k→∞

ρk+1(1− wk)∇f(xk)T d̂k.(4.7)

Since (1 − wk) > (1 − ω) > 0 for all sufficiently large k, and since (ρk+1 − ρk) → 0
follows from the facts that {ρk} is monotonically decreasing and bounded below by
zero, the limit (4.7) implies (4.6).

We may now use (4.6) to prove by contradiction that d̂k → 0. Suppose there

exists τ > 0 and an infinite subsequence of iterations K such that ‖d̂k‖ ≥ τ for all

k ∈ K. By (4.6), there exists k′ ≥ 0 such that for all k ≥ k′ we have ρk∇f(xk)T d̂k ≥
−μτ2/4. Moreover, since dk → 0, {ρk} is monotonically decreasing, and {∇f(xk)}
and {H(xk, ρ̂k, λ̂k)} are bounded under Assumption 4.7, there exists k′′ ≥ 0 such that
for all k ≥ k′′ we have

(4.8) ρk∇f(xk)Tdk < 1
16μτ

2 and 1
2d

T

kH(xk, ρ̂k, λ̂k)dk <
1
16μτ

2.
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Therefore, for k ∈ K with k ≥ max{k′, k′′}, the above inequality and Assump-
tion 4.7(b) imply that the optimal objective value of (3.9) satisfies

ρk∇f(xk)T d̂k + 1
2 d̂k

TH(xk, ρ̂k, λ̂k)d̂k ≥ 1
4μτ

2 > ρk∇f(xk)T dk + 1

2
d
T

kH(xk, ρ̂k, λk)dk.

This contradicts the fact that d̂k is an optimal solution component of (3.9) since
(dk, rk, sk, tk) is feasible for (3.9) and the above inequality implies that it yields a

lower objective value than (d̂k, r̂k, ŝk, t̂k). Hence, d̂k → 0.
The remainder of the result, namely that dk → 0, follows from the above discus-

sion and the fact that dk is a convex combination of dk and d̂k for all k.
We now present our first theorem of this subsection, which states that all limit

points of a sequence generated by SQuID are first-order optimal for problem (3.2).
Theorem 4.14. Suppose Assumption 4.7 holds. Then, the following limit holds:

(4.9) lim
k→∞

Rinf (xk, λk+1) = 0.

Therefore, all limit points of {(xk, λk+1)} are first-order optimal for problem (3.2).
Proof. Necessary and sufficient conditions for the optimality of (dk, λk+1) with

respect to (3.7) are

H(xk, 0, λk)dk +∇cE(xk)λEk+1 +∇cI(xk)λ
I
k+1 = 0,(4.10a)

−e ≤ λEk+1 ≤ e, 0 ≤ λ
I
k+1 ≤ e,(4.10b)

(e− λEk+1) · [cE(xk) +∇cE(xk)Tdk]+ = 0,(4.10c)

(e+ λ
E
k+1) · [cE(xk) +∇cE(xk)Tdk]− = 0,(4.10d)

(e− λIk+1) · [cI(xk) +∇cI(xk)Tdk]+ = 0,(4.10e)

λ
I
k+1 · [cI(xk) +∇cI(xk)Tdk]− = 0,(4.10f)

where we have eliminated

rk = [cE(xk) +∇cE(xk)Tdk]+, sk = [cE(xk) +∇cE(xk)T dk]−,
and tk = [cI(xk) +∇cI(xk)T dk]+.

By Lemma 4.13, we have dk → 0. Thus, as {H(xk, 0, λk)}, {∇cE(xk)}, and {∇cI(xk)}
are bounded under Assumption 4.7 and {λk+1} is bounded by (4.10b), it follows from
(4.10) that Rinf (xk, λk+1)→ 0.

We now prove that if the penalty parameter remains bounded away from zero,
then all feasible limit points of the iterate sequence correspond to KKT points.

Theorem 4.15. Suppose Assumption 4.7 holds. Then, if ρk → ρ∗ for some
constant ρ∗ > 0 and v(xk)→ 0, the following limit holds:

lim
k→∞

Ropt(xk, ρk, λ̂k+1) = 0.

Thus, every limit point (x∗, ρ∗, λ∗) of {(xk, ρk, λ̂k+1)} with ρ∗ > 0 and v(x∗) = 0 is a
KKT point for problem (3.1).

Proof. It follows from (4.2a) and Lemma 4.13 that under Assumption 4.7 we have

(4.11) ∇xF(xk, ρk, λ̂k+1) = −H(xk, ρk, λ̂k)dk → 0.
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Thus, it only remains to show that λ̂Ik · cI(xk)→ 0 when v(xk)→ 0. By Lemma 4.12
and the fact that

Δl(d̂k;xk) = v(xk)− eT (r̂kEc
k + ŝk

Ec
k)− eT t̂kIc

k with (r̂k
Ec
k , ŝk

Ec
k , t̂k

Ic
k) ≥ 0,

we have limk→∞ ‖r̂kEc
k‖1 = limk→∞ ‖ŝkEc

k‖1 = limk→∞ ‖t̂kIc
k‖1 = 0. If ‖λ̂k+1‖∞ is un-

bounded, then ρk → 0 by (3.18), contradicting the conditions of the theorem. Hence,

it follows from Lemma 4.13 that under Assumption 4.7 we have d̂k
T∇cI(xk)λ̂Ik+1 → 0.

Consequently, from (4.2d) and (4.2e), we have

(4.12)
cI

c
k(xk) · λ̂I

c
k

k+1 = (t̂k
Ic
k −∇cIc

k(xk)
T d̂k)

T λ̂
Ic
k

k+1 → 0

and cIk(xk) · λ̂Ik

k+1 = −∇cIk(xk)
T d̂k

T λ̂Ik

k+1 → 0.

The result follows from these limits and (4.11).
We conclude this subsection with a theorem describing properties of limit points

of SQuID whenever the penalty parameter vanishes.
Theorem 4.16. Suppose Assumption 4.7 holds. Moreover, suppose ρk → 0 and

let Kρ be the subsequence of iterations during which ρk is decreased by (3.13), (3.18),
and/or (3.19). Then, the following hold true:

(a) Either all limit points of {xk} are feasible for (3.1) or all are infeasible.
(b) If all limit points of {xk} are feasible, then all limit points of {xk}k∈Kρ cor-

respond to FJ points for problem (3.1) where the MFCQ fails.
Proof. For part (a), in order to derive a contradiction, suppose there exist infinite

subsequences K∗ and K× such that {xk}k∈K∗ → x∗ with v(x∗) = 0 and {xk}k∈K× →
x× with v(x×) = τ > 0. Under Assumption 4.7 and since ρk → 0, there exists k∗ ≥ 0
such that for all k ∈ K∗ with k ≥ k∗ we have ρk+1(f(xk)−f) < τ/4 and v(xk) < τ/4,
meaning that ϕ(xk, ρk+1) < τ/2. (Recall that f has been defined as the infimum of
f over the smallest convex set containing {xk}.) On the other hand, we know that
ρk+1(f(xk)−f) ≥ 0 for all k ≥ 0 and there exists k× ≥ 0 such that for all k ∈ K× with
k ≥ k× we have v(xk) ≥ τ/2, meaning that ϕ(xk, ρk+1) ≥ τ/2. This is a contradiction
since by Lemma 4.11 {ϕ(xk, ρk+1)} is monotonically decreasing. Thus, the set of limit
points of {xk} cannot include feasible and infeasible points at the same time.

For part (b), consider a subsequence K∗ ⊆ Kρ such that {xk}k∈K∗ → x∗ for some
limit point x∗. Let K1 ⊆ K∗ be the subsequence of iterations during which ρk is
decreased by (3.13), and let K2 ⊆ K∗ be the subsequence of iterations during which
it is decreased by (3.18) and/or (3.19). Since K1 ∪ K2 = K∗ and K∗ is infinite, it
follows that K1 or K2 is infinite, or both. We complete the proof by considering two
cases depending on the size of the index set K2. In each case, our goal will be to show
that a set of multipliers produced by SQuID have a nonzero limit point λ∗ such that
(x∗, 0, λ∗) is a FJ point for problem (3.1). We then complete the proof by showing
that the MFCQ fails at such limit points.

Case 1. SupposeK2 is finite, meaning that for all sufficiently large k the algorithm
does not decrease ρk in (3.18) nor in (3.19). Since {λk+1}k∈K1 is bounded by (4.10b),
it follows that this subsequence has a limit point. If all limit points of {λk+1}k∈K1

are zero, then for all sufficiently large k we have −e < λ
E
k+1 < e and 0 ≤ λ

I
k+1 < e.

By (4.10c), (4.10d), and (4.10e), this implies

cE(xk) +∇cE(xk)T dk = 0 and cI(xk) +∇cI(xk)Tdk ≤ 0,

meaning that Δl(dk;xk) = v(xk) for all such k. However, this result implies that
for all such k the algorithm does not decrease ρk by (3.13), implying that K1 is also
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finite, a contradiction. Therefore, if K2 is finite, then K1 is infinite and there exists
a nonzero limit point λ∗ of {λk+1}k∈K1 .

Consider a subsequence Kλ ⊆ K1 such that {(xk, λk+1)}k∈Kλ
→ (x∗, λ∗). By

Theorem 4.14, we have

Ropt(x∗, 0, λ∗) = lim
k∈Kλ
k→∞

Rinf (xk, λk+1) = 0,

meaning that (x∗, 0, λ∗) is a FJ point for problem (3.1).

Case 2. Suppose K2 is infinite. We first prove that ‖λ̂k+1‖∞ > 1− ε for all suf-
ficiently large k ∈ K2. By contradiction, suppose there exists an infinite subsequence
Kε ⊆ K2 such that ‖λ̂k+1‖∞ ≤ 1− ε for all k ∈ Kε. We will show that ρk will not be
updated by (3.18) nor by (3.19), contradicting the fact that k ∈ K2. Since ρk → 0, we

know that for all sufficiently large k ∈ Kε we have ρk‖λ̂k+1‖∞ < 1, implying that ρk is
not reduced by (3.18). Now consider (3.19). By (4.2f), we find that for k ∈ Kε we ob-

tain r̂k
Ec
k = ŝk

Ec
k = 0 and t̂k

Ic
k = 0. This implies that Δl(d̂k;xk) = Δl(dk;xk) = v(xk),

so we obtain wk = 0 < ω, dk = d̂k, and Δl(dk, xk) = v(xk). We then find that

when the algorithm encounters (3.19), we have (temporarily using Ĥk to denote

H(xk, ρ̂k, λ̂k))

Δm(dk;xk, ρk)− dTk Ĥkdk = −ρk∇f(xk)T dk +Δl(dk, xk)− dTk Ĥkdk

= dTk∇cE(xk)λ̂Ek+1 + dTk∇cI(xk)λ̂Ik+1 +Δl(dk;xk)

=
(‖cE(xk)‖1 + ‖[cI(xk)]+‖1)
− cE(xk)T λ̂Ek+1 − cI(xk)T λ̂Ik+1

=
(
‖cE(xk)‖1 − cE(xk)T λ̂Ek+1

)
+
(
‖[cI(xk)]+‖1 − cI(xk)T λ̂Ik+1

)
.(4.13)

Here, the first equality follows by the definition of Δm(dk;xk, ρk) and the second

follows by (4.2a). Then, since (4.2g) implies λ̂Ik+1 ≥ 0, we find that for all i ∈ I either

λ̂ik+1 = 0 or, by (4.2e), λ̂ik+1 > 0 and ∇ci(xk)T d̂k = −ci(xk). Consequently, we have

(4.14) dTk∇cI(xk)λ̂Ik+1 = −cI(xk)T λ̂Ik+1.

This, along with (4.2b), (4.2c), and the definition of Δl(dk;xk), yields the third and

fourth equalities above, the latter being a rearrangement of the former. Since λ̂Ek+1 ≤
‖λ̂Ek+1‖∞e, we have cE(xk)T λ̂Ek+1 ≤ ‖λ̂Ek+1‖∞‖cE(xk)‖1, and as 0 ≤ λ̂Ik+1 ≤ ‖λ̂Ik+1‖∞e,

cI(xk)T λ̂Ik+1 ≤ [cI(xk)]+
T
λ̂Ik+1 ≤ ‖[cI(xk)]+‖1‖λ̂k+1‖∞.

Consequently, we have from (4.13) that

Δm(dk;xk, ρk) ≥ dTk Ĥkdk + (1− ‖λ̂k+1‖∞)‖cE(xk)‖1 + (1− ‖λ̂k+1‖∞)‖[cI(xk)]+‖1
= dTk Ĥkdk + (1− ‖λ̂k+1‖∞)Δl(dk;xk)

≥ εΔl(dk;xk),(4.15)

meaning that ρk will not be reduced by (3.19). Overall, we have contradicted the fact

that k ∈ K2. Hence, we have shown that for large k ∈ K2, we have ‖λ̂k+1‖∞ > 1− ε.
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Now let ρ̃k = ρ̂k/‖λ̂k+1‖ and λ̃k+1 = λ̂k+1/‖λ̂k+1‖∞ be defined for all k ∈ K2

such that ‖λ̂k+1‖∞ > 1 − ε. Since there is an infinite number of such k, it follows

that ρ̃k → 0 and there exists a nonzero limit point λ̃∗ of {λ̃k+1}k∈K2 . Consider an

infinite subsequence Kλ ⊆ K2 such that {(xk, λ̃k+1)}k∈Kλ
→ (x∗, λ̃∗). By (4.2a), we

find that for k ∈ Kλ,

∇xF(xk, ρ̃k, λ̃k+1) = ρ̃k∇f(xk)T +∇cE(xk)λ̃Ek+1 +∇cI(xk)λ̃Ik+1 = Ĥkdk/‖λ̂k+1‖∞.

Since dk → 0 by Lemma 4.13 and ‖λ̂k+1‖∞ is bounded below for sufficient large
k ∈ Kλ, we have that under Assumption 4.7

∇xF(x∗, 0, λ∗) = lim
k∈Kλ
k→∞

∇xF(xk, ρ̃k, λ̃k+1) = 0.

Moreover, since ‖λ̃k+1‖∞ is bounded, as in (4.12), we have

cI(x∗)T λ̃I∗ = lim
k∈Kλ
k→∞

cI(xk)T λ̂Ik+1/‖λ̂k+1‖∞ = 0.

Overall, we have shown that (x∗, 0, λ̃∗) is a FJ point for problem (3.1).
Let (x∗, 0, λ∗) be a FJ point as described above where λ∗ = λ∗ if we are in Case

1 and λ∗ = λ̃∗ if we are in Case 2. Then, from dual feasibility in (3.4) we have

(4.16) ∇xF(x∗, 0, λ∗) = ∇cI(x∗)λI∗ +∇cE(x∗)λE∗ = 0.

Moreover, from the complementarity conditions in (3.4), we have

(4.17) ∇cA∗(x∗)λA∗∗ +∇cE(x∗)λE∗ = 0.

In order to derive a contradiction, suppose that the MFCQ holds at x∗. Since the
MFCQ holds and v(x∗) = 0, there exists a vector u such that ∇cA∗(x∗)Tu < 0 and
∇cE(x∗)Tu = 0. By (4.17), we then have

(4.18) 0 = uT∇cA∗(x∗)λA∗∗ + uT∇cE(x∗)λE∗ = uT∇cA∗(x∗)λA∗∗ .

Since ∇cA∗(x∗)Tu < 0 and λA∗∗ ≥ 0, (4.18) implies λA∗∗ = 0. Thus, from (4.17) and
the fact that under the MFCQ the columns of ∇cE(x∗) are linearly independent, we
have λE∗ = 0. Overall, we have shown that λ∗ = 0, which contradicts the fact that
(x∗, 0, λ∗) is a FJ point for problem (3.1). Hence, MFCQ fails at x∗.

We end our global convergence theory with a corollary that summarizes the results
of the previous theorems. It also provides a stronger result in a special case when the
primal iterates are bounded. This occurs, e.g., when the sublevel sets of the shifted
penalty function ϕ(·, ρ) (recall (4.5)) are bounded for all ρ in the closure of {ρk}.

Corollary 4.17. Suppose Assumption 4.7 holds and let Kρ be defined as in
Theorem 4.16. Then, one of the following situations occurs:

(i) ρk → ρ∗ for some constant ρ∗ > 0 and each limit point of {xk} either corre-
sponds to a KKT point or an infeasible stationary point for problem (3.1);

(ii) ρk → 0 and all limit points of {xk} are infeasible stationary points for (3.1);
(iii) ρk → 0, all limit points of {xk} are feasible for (3.1), and all limit points of

{xk}k∈Kρ correspond to FJ points for (3.1) where the MFCQ fails.
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Consequently, if {xk} is bounded and all limit points of this sequence are feasible for
(3.1) and satisfy the MFCQ, then ρk → ρ∗ for some constant ρ∗ > 0 and all limit
points of {xk} are KKT points for problem (3.1).

Proof. The fact that one of the situations (i)–(iii) occurs follows from Theo-
rems 4.14–4.16 and the fact that {ρk} is monotonically decreasing and bounded below
by zero. All that remains is to prove the last sentence of the corollary. In order to
derive a contradiction, suppose that under the stated conditions we have ρk → 0.
Then, since {xk} is bounded, it follows that the sequence {xk}k∈Kρ has at least one
limit point. However, by Theorem 4.16, it follows that such a limit point violates the
MFCQ, which in turn contradicts the stated conditions. Hence, ρk → ρ∗ for some
constant ρ∗ > 0 and v(xk)→ 0, so the result follows from Theorem 4.15.

4.3. Local convergence. We consider the local convergence of SQuID in the
neighborhood of first-order optimal points satisfying certain common assumptions,
delineated below. For the most part, our assumptions in this subsection represent
a strengthening of the assumptions in section 4.2. However, we loosen our assump-
tions on the quadratic terms in subproblems (3.7) and (3.9) as in this subsection we
only require that they are positive definite in the null space of the Jacobian of the
constraints that are active at a given first-order optimal point.

First, for a given x∗, we will use the following assumption.
Assumption 4.18. The problem functions f , cE , and cI and their first and second

derivatives are bounded and Lipschitz continuous in an open convex set containing x∗.
Second, we make the following assumption concerning a given stationary point

x∗ of (3.2). As such a point may be feasible or infeasible for (3.1), we make this
assumption throughout our local analysis.

Assumption 4.19. Let x∗ be a first-order optimal point for (3.2) such that there
exists λ∗ with (x∗, λ∗) satisfying (3.5). Then, Assumption 4.18 holds at x∗ and

(a) ∇cZ∗∪A∗(x∗)T has full row rank.

(b) −e < λ
Z∗
∗ < e and 0 < λ

A∗
∗ < e.

(c) dTH(x∗, 0, λ∗)d > 0 for all d �= 0 such that ∇cZ∗∪A∗(x∗)T d = 0.

Moreover, the following hold true for the iterates generated by SQuID:
(d) xk → x∗.
(e) For all large k, H(xk, 0, λk) and H(xk, ρ̂k, λ̂k) are the exact Hessian of F at

(xk, 0, λk) and (xk, ρ̂k, λ̂k), respectively.
(f) For all large k, αk = 1.
Finally, if xk → x∗, where x∗ is a KKT point for (3.1), we make the following

assumption. (While we state Assumption 4.20 now, we will not use it until section
4.3.2.)

Assumption 4.20. Let x∗ be a first-order optimal point for (3.1) such that

Assumption 4.19 holds and there are ρ∗ > 0 and λ̂∗ with (x∗, ρ∗, λ̂∗) satisfying (3.4).
Then,

(a) ρk → ρ∗.
(b) λ̂A∗∗ + cA∗(x∗) > 0.

(c) dTH(x∗, ρ∗, λ̂∗)d > 0 for all d �= 0 such that ∇cE∗∪A∗(x∗)Td = 0.

The assumptions above may be viewed as strong when one considers the fact that
local superlinear convergence guarantees for SQO methods have been provided in more
general settings. Our algorithm is able to achieve such convergence in such settings,
but accounting for more general conditions would only add unnecessary complica-
tions to the analysis and detract attention away from our central focus, i.e., the novel
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feature of attaining superlinear convergence for both feasible and infeasible problem
instances with a single algorithm. In particular, consider Assumption 4.19(e) and (f).
The former of these assumptions is strong since, if an exact Hessian is indefinite, the
algorithm must ensure that of all of the local minimizers of the corresponding QO sub-
problem, the subproblem solver computes one satisfying certain conditions (implicit
in Lemma 3.23 later on). This is challenging as nonconvex quadratic optimization
is known to be NP-hard [33]. On the other hand, assuming only that the Hessian
is positive definite in the null space of the active constraint Jacobian, the algorithm
could ensure that the QO subproblem has a unique solution by modifying the Hessian
in appropriate ways so that fast local convergence is still possible. For example, this
can be achieved by augmenting the Hessian with σ∇cZ∗∪A∗(xk)∇cZ∗∪A∗(xk)

T for a
sufficiently large σ > 0 and then applying the characterization result for superlinear
convergence found in [1]. As for Assumption 4.19(f), the primary practical concern
is the Maratos effect [31], which makes this assumption inappropriate in many cases.
However, we may assume that a watchdog mechanism [12] or a second-order correction
[19] is employed to ensure that unit steplengths are accepted by the line search for
large k. We leave it a subject of future research to see how many of the assumptions
above (in addition to Assumptions 4.19(e) and (f)) can be relaxed while still ensuring
the convergence guarantees below, potentially with minor algorithmic variations.

4.3.1. Local convergence to an infeasible stationary point. Suppose As-
sumption 4.19 holds where x∗ is an infeasible stationary point for (3.1). We show
that, in such cases, SQuID converges quadratically to (x∗, λ∗). Some of our analysis
for this case follows that in [6], though we provide proofs for completeness.

A critical component of our local convergence analysis in this subsection is to
show that there is an inherent relationship between problem (3.2) and the following:

(4.19)

min
(x,rP∗ ,sN∗ ,tV∗ )

ρf(x) + eT rP∗ + eT sN∗ + eT tV∗

s.t.

⎧⎪⎨⎪⎩
cP∗(x) = rP∗ , cZ∗(x) = 0, −cN∗(x) = sN∗ ,

cV∗(x) ≤ tV∗ , cA∗∪S∗(x) ≤ 0,

(rP∗ , sN∗ , tV∗) ≥ 0.

In particular, in our first two lemmas, we establish that solutions of (4.19) converge
to that of (3.2) as ρ→ 0.

The following lemma shows that x∗ corresponds to a solution of (4.19) for ρ = 0.

Lemma 4.21. Suppose Assumption 4.19 holds and v(x∗) > 0. Then, x∗ and

(rP∗∗ , sN∗∗ , tV∗∗ ) = (cP∗(x∗),−cN∗(x∗), cV∗(x∗))

correspond to a first-order optimal point for (4.19) for ρ = 0. Moreover, the corre-
sponding dual solution is the unique λ∗ such that (x∗, λ∗) satisfies (3.5).

D
ow

nl
oa

de
d 

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

860 JAMES V. BURKE, FRANK E. CURTIS, AND HAO WANG

Proof. First-order optimality conditions for (4.19) are the following:

ρ∇f(x) +∇cE(x)λE +∇cI(x)λI = 0,(4.20a)

cP∗(x) = rP∗ , cZ∗(x) = 0, −cN∗(x) = sN∗ ,(4.20b)

cV∗(x) ≤ 0, cA∗∪S∗(x) ≤ 0,(4.20c)

(rP∗ , sN∗ , tV∗) ≥ 0,(4.20d)

λA∗∪S∗ · cA∗∪S∗(x) = 0,(4.20e)

λV∗ · (cV∗(x)− tV∗) = 0,(4.20f)

(e− λP∗) · rP∗ = 0, (e+ λN∗) · sN∗ = 0, (e− λV∗) · tV∗ = 0,(4.20g)

λP∗ ≤ e, λN∗ ≥ −e, λA∗∪S∗ ≥ 0, 0 ≤ λV∗ ≤ 0.(4.20h)

If x∗ is an infeasible stationary point, then by definition there exists λ∗ �= 0 such that
(x∗, λ∗) satisfies (3.5). Then, with rP∗ , sN∗ , and tV∗ chosen as in the statement of
this lemma, it is easily verified that (x∗, rP∗ , sN∗ , tV∗ , λ∗) satisfies (4.20) for ρ = 0.

Moreover, from (4.20e) and (4.20g), we find λ
S∗
∗ = 0, λ

P∗
∗ = e, λ

N∗
∗ = −e, and λV∗

= e.
These equations and (4.20a) imply that we have

(4.21) ∇cZ∗∪A∗(x∗)λ
Z∗∪A∗
∗ = −∇cP∗∪V∗(x∗)e +∇cN∗(x∗)e.

Under Assumption 4.19(a), λ
Z∗∪A∗
∗ in (4.21) is unique. Thus, λ∗ is unique.

We now show that for sufficiently small ρ > 0, the solution of problem (4.19)
shares critical properties with that of problem (3.2). This result is formalized in our
next lemma, which makes use of the following nonlinear system of equations:

(4.22)

0 = F (x, ρ, λZ∗∪A∗)

:=

[
ρ∇f(x) +∇cZ∗∪A∗(x)λZ∗∪A∗ +∇cP∗∪V∗(x)e −∇cN∗(x)e

cZ∗∪A∗(x)

]
.

By differentiating F with respect to (x, λZ∗∪A∗), we obtain

(4.23) F ′(x, ρ, λZ∗∪A∗) :=
∂F (x, ρ, λZ∗∪A∗)

∂(x, λZ∗∪A∗)
=

[
G(x, ρ, λZ∗∪A∗) ∇cZ∗∪A∗(x)
∇cZ∗∪A∗(x)T 0

]
where

G(x, ρ, λZ∗∪A∗) := ρ∇2f(x) +
∑

i∈P∗∪V∗

∇2ci(x) +
∑

i∈Z∗∪A∗

λi∇2ci(x)−
∑
i∈N∗

∇2ci(x).

Lemma 4.22. Suppose Assumption 4.19 holds and v(x∗) > 0. Then, for all
ρ sufficiently small, problem (4.19) has a solution (xρ, r

P∗
ρ , sN∗

ρ , tV∗
ρ ) where xρ yields

the same sets of positive, zero, and negative-valued equality constraints and violated,
active, and strictly satisfied inequality constraints as x∗. Moreover, for such ρ, the

corresponding dual variables satisfy λ
P∗
ρ = e, −e < λ

Z∗
ρ < e, λ

N∗
ρ = −e, λV∗

ρ = e,

0 < λ
A∗
ρ < e, and λ

S∗
ρ = 0, and we have

(4.24)

∥∥∥∥[xρ − x∗λρ − λ∗

]∥∥∥∥ = O(ρ).
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Proof. Under Assumption 4.18, F in (4.22) is a continuously differentiable map-

ping about (x∗, 0, λ
Z∗∪A∗
∗ ), and under Assumption 4.19(a) and (c), the matrix F ′

in (4.23) is nonsingular at (x∗, 0, λ
Z∗∪A∗
∗ ). Thus, by the implicit function theorem

[36, Theorem 9.28], there exist open sets Bx ⊂ R
n, Bρ ⊂ R, and Bλ ⊂ R

|Z∗∪A∗|

containing x∗, 0, and λ
Z∗∪A∗
∗ , respectively, and continuously differentiable functions

x(ρ) : Bρ → Bx and λ
Z∗∪A∗

(ρ) : Bρ → Bλ such that

x(0) = x∗, λ
Z∗∪A∗

(0) = λ
Z∗∪A∗
∗ , and F (x(ρ), ρ, λ

Z∗∪A∗
(ρ)) = 0 for all ρ ∈ Bρ.

By the second equation in (4.22) and since x(ρ) varies continuously with ρ, we have

(4.25) cZ∗∪A∗(x(ρ)) = 0, cP∗∪V∗(x(ρ)) > 0, and cN∗∪S∗(x(ρ)) < 0

for ρ sufficiently small. Similarly, since −e < λ
Z∗
∗ < e and 0 < λ

A∗
∗ < e under

Assumption 4.19(b), the fact that λ
Z∗∪A∗

(ρ) varies continuously with ρ implies that

−e < λ
Z∗

(ρ) < e and 0 < λ
A∗

(ρ) < e for ρ sufficiently small. If we define

λ
P∗∪V∗

(ρ) := e, λ
N∗

(ρ) := −e, and λ
S∗
(ρ) := 0

along with

rP
∗
(ρ) := [cP∗(x(ρ))]+, sN∗(ρ) := [cN∗(x(ρ))]−, and tV∗(ρ) := [cV∗(x(ρ))]+,

it follows that (x(ρ), rP∗ (ρ), sN∗(ρ), tV∗(ρ), λ(ρ)) satisfies (4.20), and is, therefore, a
first-order optimal point for (4.19) for sufficiently small ρ. Hence, by (4.25), we have
that xρ = x(ρ) for ρ sufficiently small has the same sets of positive, zero, and negative-
valued equality and violated, active, and strictly satisfied inequality constraints as x∗.

All that remains is to establish (4.24). From the differentiability of xρ = x(ρ) and

λ
Z∗∪A∗
ρ = λ

Z∗∪A∗
(ρ) and their derivatives given by the implicit function theorem, we

have for ρ sufficiently small that[
xρ

λ
Z∗∪A∗
ρ

]
=

[
x∗

λ
Z∗∪A∗
∗

]
− F ′

x,λZ∗∪A∗ (x∗, 0, λ
Z∗∪A∗
∗ )−1F ′

ρ(x∗, 0, λ
Z∗∪A∗
∗ )ρ+ o(ρ).

Hence, under Assumption 4.19, (4.24) is satisfied.
We now turn back to the iterates produced by SQuID. In particular, as in the

previous lemma, we show that in a neighborhood of an infeasible stationary point,
subproblems (3.7) and (3.9) will suggest the optimal partition of the index sets E and
I. This result is reminiscent of the well-known result in [35].

Lemma 4.23. Suppose Assumption 4.19 holds and v(x∗) > 0. Then, for all ρ̂k
sufficiently small and for all (xk, λk) and (xk, λ̂k) each sufficiently close to (x∗, λ∗)
we have the following:

(a) There are local solutions for (3.7) and (3.9) such that dk and d̂k yield the
same sets of positive, zero, and negative-valued equality and violated, active,
and strictly satisfied inequality constraints as x∗. Moreover, with (ρ,H) =(
0, H(xk, 0, λk)

)
and (ρ,H) =

(
ρ̂k, H(xk, ρ̂k, λ̂k)

)
, respectively, the optimal

solutions for (3.7) and (3.9) satisfy

(4.26)

[
H ∇cZ∗∪A∗(xk)

∇cZ∗∪A∗(xk)
T 0

] [
d

λZ∗∪A∗

]
= −

[
ρ∇f(xk) +∇cP∗∪V∗(xk)−∇cN∗(xk)

cZ∗∪A∗(xk)
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and

(4.27) λP∗∪V∗ = e, −e < λZ∗ < e, λN∗ = −e, 0 < λA∗ < e, and λS∗ = 0.

(b) The update (3.13) is triggered infinitely often, yielding (ρk, ρ̂k)→ 0.
Proof. For part (a), consider subproblem (3.7), meaning that we let (ρ,H) =

(0, H(xk, 0, λk)) in (4.26). With dk = 0, (4.10) reduces to (3.5). Thus, (4.10) is solved

at (x∗, λ∗) by (d, λ) = (0, λ∗). By (4.10c)–(4.10f), we have λ
P∗∪V∗
∗ = e, λ

N∗
∗ = −e, and

λ
S∗
∗ = 0. Hence, by (4.10a) and the definitions of Z∗ andA∗, the linear system (4.26) is

satisfied at (x∗, λ∗) by (d, λZ∗∪A∗) = (0, λ
Z∗∪A∗

). Under Assumption 4.19(a) and (c),
the matrix in (4.26) is nonsingular at (x∗, λ∗), and hence the solution of (4.26) varies
continuously in a neighborhood of (x∗, λ∗). In addition, under Assumption 4.19(c),
it follows that H = H(xk, 0, λk) in (4.26) is positive definite on the null space of
∇cZ∗∪A∗(xk)

T in a neighborhood of (x∗, λ∗).
It follows from the conclusions in the previous paragraph that for all (xk, λk)

sufficiently close to (x∗, λ∗), the solution (dk, λ
Z∗∪A∗
k+1 ) to (4.26) is sufficiently close to

(0, λ
Z∗∪A∗
∗ ) such that it satisfies

−e < λ
Z∗
k+1 < e, 0 < λ

A∗
k+1 < e,

cP∗∪V∗(xk) +∇cP∗∪V∗(xk)
T dk > 0,

and cN∗∪S∗(xk) +∇cN∗∪S∗(xk)
T dk < 0.

By construction, such a solution (dk, λ
Z∗∪A∗
k+1 ) satisfies (4.26) and, therefore, satisfies

(4.10) together with λ
P∗∪V∗
k+1 = e, λ

N∗
k+1 = −e, and λS∗

k+1 = 0. Therefore, (dk, λk+1) is a
KKT point of subproblem (3.7), and, as revealed above, it identifies the same sets of
positive, zero, and negative-valued equality and violated, active, and strictly satisfied
inequality constraints as x∗.

The proof of the result corresponding to subproblem (3.9) is similar. Indeed, from
the discussion above, we find that for ρk (and hence ρ̂k) sufficiently small and (xk, λk)
sufficiently close to (x∗, λ∗), the algorithm will set Ek = Z∗, Eck = P∗∪N∗, Ik = A∗∪S∗
and Ick = V∗. The remainder of the proof follows as above with H(xk, 0, λk), (4.10),

and (dk, λk+1) replaced by H(xk, ρ̂k, λ̂k), (4.2), and (d̂k, λ̂k+1), respectively.
Now we prove part (b). We first argue that (3.12) holds for all sufficiently large

k so that ρk is set by (3.13) infinitely many times. Then, we show that this yields
ρk → 0. As xk approaches x∗, we have that v(xk) > 1

2v(x∗) > 0 for all large
k. On the other hand, in a neighborhood of x∗, the constraint functions cE and
cI are bounded under Assumption 4.18. Thus, by the definition of Δl(dk;xk) and
since for all (xk, λk) sufficiently close to (x∗, λ∗), the solution (dk, λk+1) to (4.26) is
sufficiently close to (0, λ∗), we have that Δl(dk;xk) ≤ θ

2v(x∗) < θv(xk) for sufficiently
large k. Overall, this implies that (3.12) holds for such k. Hence, (3.13) is triggered
infinitely many times. Finally, to see that (3.13) drives ρk → 0, it suffices to see that
(dk, λk+1)→ (0, λ∗), (4.10a), and (4.10c)–(4.10f) yield Rinf (xk, λk+1)→ 0.

Lemma 4.23 can be used to show that near (x∗, λ∗), the solutions of system

(4.26) with (ρ,H) =
(
0, H(xk, 0, λk)

)
and (ρ,H) =

(
ρ̂k, H(xk, ρ̂k, λ̂k)

)
correspond to

Newton steps for F (x, 0, λZ∗∪A∗) = 0 and F (x, ρ̂k, λ
Z∗∪A∗) = 0, respectively. We

formalize this property in the following lemma.
Lemma 4.24. Suppose Assumption 4.19 holds and v(x∗) > 0. Then we have the

following:
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(a) If (xk, λk) is sufficiently close to (x∗, λ∗) and (dk, λk+1) generated by sub-
problem (3.7) is obtained via (4.26) with (ρ,H) = (0, H(xk, 0, λk)), then

(4.28)

∥∥∥∥[xk + dk − x∗
λk+1 − λ∗

]∥∥∥∥ ≤ C ∥∥∥∥[xk − x∗λk − λ∗
]∥∥∥∥2

for some constant C > 0 independent of k.
(b) If (xk, λ̂k) is sufficiently close to (x∗, λ∗) and (d̂k, λ̂k+1) generated by sub-

problem (3.9) is obtained via (4.26) with (ρ,H) = (ρ̂k, H(xk, ρ̂k, λ̂k)), then,
with (xρ, λρ) defined as in Lemma 4.22, we have

(4.29)

∥∥∥∥∥
[
xk + d̂k − xρ
λ̂k+1 − λρ

]∥∥∥∥∥ ≤ Ĉ
∥∥∥∥[xk − xρλ̂k − λρ

]∥∥∥∥2
for some constant Ĉ > 0 independent of k.

Proof. For both parts (a) and (b), our proof follows that of [6, Lemma 3.5].
For part (a), by Lemma 4.23(a), if (xk, λk) is sufficiently close to (x∗, λ∗), then

(dk, λk+1) generated by subproblem (3.7) can be obtained via (4.27) and (4.26) with

(ρ,H) = (0, H(xk, 0, λk)). Therefore, since H(xk, 0, λk) = G(xk, 0, λ
Z∗∪A∗
k ) in such

cases, (4.26) constitutes a Newton iteration for F (x, 0, λZ∗∪A∗) = 0 at (xk, 0, λk). We
can now apply standard Newton analysis. By Assumption 4.18 we have that F is con-
tinuously differentiable and F ′ is Lipschitz continuous in a neighborhood of (x∗, 0, λ∗).
By Assumption 4.19(a) and (c), the matrix F ′ is nonsingular at (x∗, 0, λ

Z∗∪A∗
∗ ), so its

inverse exists and is bounded in a neighborhood of (x∗, 0, λ
Z∗∪A∗
∗ ). By [16, Theorem

5.2.1], if (xk, λk) is sufficiently close to (x∗, λ∗), then we have that (4.28) holds true.

For part (b), by Lemma 4.23(a), if (xk, λ̂k) is sufficiently close to (x∗, λ∗), then
(d̂k, λ̂k+1) generated by subproblem (3.9) can be obtained via (4.27) and (4.26) with

(ρ,H) = (ρ̂k, H(xk, ρ̂k, λ̂k)). Therefore, since H(xk, ρ̂k, λ̂k) = G(xk, ρ̂k, λ̂
Z∗∪A∗
k ) in

such cases, system (4.26) constitutes a Newton iteration for F (x, ρ, λZ∗∪A∗) = 0 at

(xk, ρ̂k, λ̂k). By Assumption 4.18 we have that F is continuously differentiable and

F ′ is Lipschitz continuous in a neighborhood of (x∗, ρ, λ
Z∗∪A∗
∗ ). Moreover, since ρ

is bounded, the Lipschitz constant κ1 for F ′ in a neighborhood of (x∗, ρ, λ
Z∗∪A∗
∗ ) is

independent of ρ. By Assumption 4.19(a) and (c), the matrix F ′ is nonsingular at

(x∗, 0, λ
Z∗∪A∗
∗ ), and hence its inverse exists and is bounded in norm by a constant κ2

in a neighborhood of that point. By [16, Theorem 5.2.1],

if

∥∥∥∥[xk − xρλ̂k − λρ

]∥∥∥∥ ≤ 1

κ1κ2
, then

∥∥∥∥∥
[
xk + d̂k − xρ
λ̂k+1 − λρ

]∥∥∥∥∥ ≤ κ1κ2
∥∥∥∥[xk − xρλ̂k − λρ

]∥∥∥∥2 .
This can be achieved if ρ is sufficiently small such that (xρ, λρ) and (xk, λ̂k) satisfy∥∥∥∥[xρ − x∗λρ − λ∗

]∥∥∥∥ ≤ 1

4κ1κ2
and

∥∥∥∥[xk − x∗λ̂k − λ∗

]∥∥∥∥ ≤ 1

4κ1κ2
.

We are now ready to prove our main theorem concerning the local convergence of
SQuID in the neighborhood of infeasible stationary points. The theorem shows that
the convergence rate is dependent on how fast ρ is decreased and λ̂k approaches λk.

Theorem 4.25. Suppose Assumption 4.19 holds and v(x∗) > 0. Then, if (xk, λk)

and (xk, λ̂k) are each sufficiently close to (x∗, λ∗), (dk, λk+1) is obtained via (4.27)
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and (4.26) with (ρ,H) = (0, H(xk, 0, λk)), and (d̂k, λ̂k+1) is obtained via (4.27) and

(4.26) with (ρ,H) = (ρ̂k, H(xk, ρ̂k, λ̂k)), then

(4.30)

∥∥∥∥[xk+1 − x∗
λk+1 − λ∗

]∥∥∥∥ ≤ C ∥∥∥∥[xk − x∗λk − λ∗
]∥∥∥∥2 +O(‖λ̂k − λk‖) +O(ρ)

for some constant C > 0 independent of k. Consequently, as (3.13) and (3.14) yield

ρk = O

(∥∥∥∥[xk − x∗λk − λ∗
]∥∥∥∥2
)

and ‖λ̂k − λk‖ = O

(∥∥∥∥[xk − x∗λk − λ∗
]∥∥∥∥2
)
,

{(xk, λk)} converges to (x∗, λ∗) quadratically. If (3.13) and (3.14) merely yielded

ρk = o

(∥∥∥∥[xk − x∗λk − λ∗
]∥∥∥∥) and ‖λ̂k − λk‖ = o

(∥∥∥∥[xk − x∗λk − λ∗
]∥∥∥∥) ,

then {(xk, λk)} would converge to (x∗, λ∗) superlinearly.

Proof. For a given ρ > 0, let (xρ, λρ) be defined as in Lemma 4.22. Under

Assumption 4.19(f), xk+1 = xk + wkdk + (1− wk)d̂k for all k. Thus,

∥∥∥∥[xk+1 − x∗
λk+1 − λ∗

]∥∥∥∥ ≤ wk

∥∥∥∥[xk + dk − x∗
λk+1 − λ∗

]∥∥∥∥+ (1− wk)

∥∥∥∥[xk + d̂k − x∗
λk+1 − λ∗

]∥∥∥∥
≤ wkC

∥∥∥∥[xk − x∗λk − λ∗

]∥∥∥∥2
+ (1− wk)

(∥∥∥∥[xk + d̂k − xρ + xρ − x∗
0

]∥∥∥∥+ ∥∥∥∥[ 0

λk+1 − λ∗

]∥∥∥∥)
≤ wkC

∥∥∥∥[xk − x∗λk − λ∗
]∥∥∥∥2

+ (1− wk)

(∥∥∥∥∥
[
xk + d̂k − xρ + xρ − x∗
λ̂k+1 − λρ + λρ − λ∗

]∥∥∥∥∥+
∥∥∥∥[xk + dk − x∗

λk+1 − λ∗

]∥∥∥∥
)

≤ C

∥∥∥∥[xk − x∗λk − λ∗
]∥∥∥∥2

+ (1− wk)

(∥∥∥∥∥
[
xk + d̂k − xρ
λ̂k+1 − λρ

]∥∥∥∥∥+
∥∥∥∥[xρ − x∗λρ − λ∗

]∥∥∥∥
)

≤ C

∥∥∥∥[xk − x∗λk − λ∗
]∥∥∥∥2 + Ĉ

∥∥∥∥[xk − xρλ̂k − λρ

]∥∥∥∥2 +O(ρ).(4.31)

Here, the second and fourth inequalities follow from Lemma 4.24(a), the third holds
as we have simply augmented the latter two vector norms, and the last follows from

D
ow

nl
oa

de
d 

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A SQO ALGORITHM WITH RAPID INFEASIBILITY DETECTION 865

Lemmas 4.22 and 4.24(b). By applying Lemma 4.22, we also have that∥∥∥∥[xk − xρλ̂k − λρ

]∥∥∥∥2 ≤ ∥∥∥∥[xk − x∗λ̂k − λ∗

]∥∥∥∥2 + 2

∥∥∥∥[xk − x∗λ̂k − λ∗

]∥∥∥∥ ∥∥∥∥[xρ − x∗λρ − λ∗
]∥∥∥∥+ ∥∥∥∥[xρ − x∗λρ − λ∗

]∥∥∥∥2
≤
∥∥∥∥[xk − x∗λ̂k − λ∗

]∥∥∥∥2 +O(ρ)

≤
∥∥∥∥[xk − x∗λk − λ∗

]∥∥∥∥2 + 2‖λ̂k − λk‖
∥∥∥∥[xk − x∗λk − λ∗

]∥∥∥∥+ ‖λ̂k − λk‖2 +O(ρ)

≤
∥∥∥∥[xk − x∗λk − λ∗

]∥∥∥∥2 +O(‖λ̂k − λk‖) +O(ρ).(4.32)

By (4.31) and (4.32), we obtain

(4.33)

∥∥∥∥[xk+1 − x∗
λk+1 − λ∗

]∥∥∥∥ ≤ (C + Ĉ)

∥∥∥∥[xk − x∗λk − λ∗

]∥∥∥∥2 +O(‖λ̂k − λk‖) +O(ρ).

Letting C := C + Ĉ, we have shown (4.30).

4.3.2. Local convergence to a KKT point. We now consider the local con-
vergence of SQuID in the neighborhood of a KKT point for (3.1) satisfying Assump-
tion 4.20. Our first result shows that in the neighborhood of a solution point, sub-
problem (3.7) yields a linearly feasible search direction, the penalty parameter remains
constant, and the multipliers are not modified outside of the QO solves.

Lemma 4.26. Suppose Assumption 4.20 holds. Then, for all sufficiently large k
with ‖(xk, λk)− (x∗, λ∗)‖ and ‖(xk, λ̂k)− (x∗, λ̂∗)‖ each sufficiently small we have the
following:

(a) A solution of (3.7) has (rk, sk, tk) = 0, yielding Ek = E and Ik = I.
(b) ρk is not decreased by (3.13), (3.18), or (3.19), and the multipliers λ̂k are not

modified by (3.14).
Proof. The proof of part (a) is similar to the proof of Lemma 4.23(a). That is,

under Assumption 4.20 (which means that Assumption 4.19 holds), a solution of (3.7)
with (xk, λk) sufficiently close to (x∗, λ∗) has dk yielding the same sets of positive,
zero, and negative-valued equality and violated, active, and strictly satisfied inequality
constraints as x∗. In this case, Z∗ = E and S∗ ∪ A∗ = I, so (rk, sk, tk) = 0.

Now consider part (b). If xk is feasible, then v(xk) = 0 and (3.12) is violated.
On the other hand, if xk is infeasible, then we have Δl(dk, xk) = v(xk) by part (a),
which implies (3.12) is violated again. Overall, these conclusions imply that (3.13)
and (3.14) are both not triggered. As for (3.18) and (3.19), every time either of these
updates is triggered, ρk is at least reduced by a fraction of its current value. Therefore,
if either of these updates is triggered an infinite number of times, then we would have
ρk → 0. However, under Assumption 4.20 we have ρk → ρ∗ > 0, so for all sufficiently
large k, ρk is not decreased by either update.

Our second result is similar to Lemma 4.23; again, recall [35].
Lemma 4.27. Suppose Assumption 4.20 holds. Then, for all sufficiently large k

with ‖(xk, λk) − (x∗, λ∗)‖ and ‖(xk, λ̂k)− (x∗, λ̂∗)‖ each sufficiently small, there is a

local solution for (3.9) such that d̂k yields the same sets of active and strictly satisfied

inequality constraints as x∗. Moreover, (d̂k, λ̂k+1) satisfies

(4.34)

[
H(xk, ρ∗, λ̂k) ∇cE∪A∗(xk)
∇cE∪A∗(xk)

T 0

][
d̂k

λ̂E∪A∗
k+1

]
= −

[
ρ∗∇f(xk)
cE∪A∗(xk)
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and

(4.35) λ̂A∗
k+1 > 0 and λ̂S∗

k+1 = 0.

Proof. By Lemma 4.26, we have Ek = E and Ik = I under the conditions of
this lemma. Thus, with d̂k = 0, the optimality conditions (4.2) reduce to (3.4),

so (4.2) is solved at (x∗, λ̂∗) by (d, λ) = (0, λ̂∗). By (4.2d), λ̂S∗∗ = 0. Hence, by

(4.2a) and the definition of A∗, the linear system (4.34) is satisfied at (x∗, λ̂∗) by

(d, λE∪A∗) = (0, λ̂E∪A∗∗ ). Under Assumptions 4.19(a) and 4.20(c), the matrix in (4.34)

is nonsingular at (x∗, λ̂∗), and hence the solution of (4.34) varies continuously in a

neighborhood of (x∗, λ̂∗). In addition, under Assumption 4.20(c), H(xk, ρ∗, λ̂k) in
(4.34) is positive definite on the null space of ∇cE∪A∗(xk)

T in a neighborhood of

(x∗, λ̂∗).
It follows from the conclusions in the previous paragraph that for all (xk, λ̂k)

sufficiently close to (x∗, λ̂∗), the solution (d̂k, λ̂
E∪A∗
k+1 ) to (4.34) is sufficiently close to

(0, λ̂E∪A∗∗ ) such that it satisfies

λ̂A∗
k+1 > 0 and cS∗(xk) +∇cS∗(xk)

T d̂k < 0.

By construction, such a solution also satisfies (4.2) together with λ̂S∗
k+1 = 0. Therefore,

(d̂k, λ̂k+1) is a KKT point of subproblem (3.9), and, as revealed above, it identifies
the same sets of active and strictly satisfied inequality constraints as x∗.

We are now prepared to prove our main theorem concerning the local convergence
of SQuID in the neighborhood of KKT points for (3.1).

Theorem 4.28. Suppose Assumption 4.20 holds. Then, for all large k with
‖(xk, λk) − (x∗, λ∗)‖ and ‖(xk, λ̂k) − (x∗, λ̂∗)‖ each sufficiently small, (d̂k, λ̂k+1) is

obtained via (4.34), dk ← d̂k, and

(4.36)

∥∥∥∥[xk+1 − x∗
λ̂k+1 − λ̂∗

]∥∥∥∥ ≤ C ∥∥∥∥[xk − x∗λ̂k − λ̂∗

]∥∥∥∥2
for some constant C > 0 independent of k.

Proof. By Lemma 4.27, under the conditions of the theorem, (d̂k, λ̂k+1) generated
by subproblem (3.9) can be obtained via (4.34) and (4.35). This implies that dk is a

linearly feasible direction, so wk ← 0 and dk ← d̂k. Therefore, since H(xk, ρ∗, λ̂k) =
G(xk, ρ∗, λ̂E∪A∗

k ) in such cases, (4.34) (with d̂ interchanged with dk) constitutes a

Newton iteration applied to the nonlinear system F (x, ρ∗, λE∪A∗) = 0 at (xk, ρ∗, λ̂k).
We can now apply standard Newton analysis. Under Assumption 4.18 we have that
F is continuously differentiable and F ′ is Lipschitz continuous in a neighborhood of
(x∗, ρ∗, λ̂E∪A∗∗ ). Moreover, under Assumptions 4.19(a) and 4.20(c), the matrix F ′

is nonsingular at (x∗, ρ∗, λ̂E∪A∗∗ ), so its inverse exists and is bounded in norm in a

neighborhood of (x∗, ρ∗, λ̂E∪A∗∗ ). By [16, Theorem 5.2.1], if (xk, λ̂k) is sufficiently

close to (x∗, λ̂∗), then we have that (4.36) holds true.

5. Numerical experiments. In this section, we summarize the performance
of SQuID as it was employed to solve collections of feasible and infeasible problem
instances. Our code is a prototype MATLAB implementation of Algorithm 1.

Mention of a few specifications of our implementation are appropriate before we
present our numerical results. First, in order to avoid numerical issues caused by
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poor scaling of the problem functions, each function was scaled so that the �∞-norm
of its gradient at the initial point was no larger than a given constant gmax > 0.
Moreover, our termination conditions are defined to take into account the magnitudes
of the quantities involved in the computation of the optimality and feasibility errors.
Specifically, we terminate and declare that an optimal solution has been found if

(5.1) Ropt(xk, ρk, λ̂k+1) ≤ γmax{χopt,k, 1} and vinf (xk) ≤ γmax{vinf (x0), 1},

where γ > 0 is a given constant,

χopt,k := max{ρk, ‖∇f(xk)‖∞, ‖∇cE(xk)‖∞, ‖∇cI(xk)‖∞, ‖λ̂Ek+1‖∞, ‖λ̂Ik+1‖∞},
and vinf (xk) := max{‖cE(xk)‖∞, ‖max{cI(xk), 0}‖∞}.
We terminate and declare that an infeasible stationary point has been found if
(5.2)
Rinf (xk, λk+1) ≤ γmax{χinf,k, 1}, vinf (xk) > γmax{vinf (x0), 1}, and ρk ≤ ρ,

where ρ > 0 is a given constant and

χinf,k := max{‖∇cE(xk)‖∞, ‖∇cI(xk)‖∞, ‖λEk+1‖∞, ‖λ
I
k+1‖∞}.

Despite the fact that Theorem 4.14 implies that we do not necessarily need ρk → 0
when converging to an infeasible stationary point, we only terminate and declare
infeasibility when ρk is sufficiently small, as specified in (5.2). This may lead to ex-
tra iterations being performed before infeasibility is declared, but aids the algorithm
in avoiding declarations of infeasibility when applied to problem instances that are
actually feasible. Since ρk is decreased rapidly in the neighborhood of an infeasi-
ble stationary point due to (3.12), the additional cost is worthwhile. We also take
into account the scaling of the problem functions when considering whether a given
point is sufficiently feasible so that subproblem (3.7) may be skipped. Specifically, if
vinf (xk) ≤ γmax{vinf (x0), 1} for some γ > 0, then we save computational expense
by approximating the solution of subproblem (3.7) with dk ← 0 and λk+1 ← λk.

Our implementation requires that subproblems (3.7) and (3.9) are convex, so we

modify H(xk, 0, λk) and H(xk, ρ̂k, λ̂k), if necessary, to make them positive definite.
We do this by iteratively adding multiples of the identity matrix until the smallest
computed eigenvalue is sufficiently positive. Specifically, if one of these matrices needs
to be modified at iteration k, then with some ξ > 1 and an initial increment μk, we
add μkI, ξμkI, ξ

2μkI, . . . until the smallest eigenvalue of the matrix is larger than a
positive parameter μmin. We then set μk+1 ← max{μmin, ψμk} for some ψ ∈ (0, 1)
to help save the computational expense of computing eigenvalues and modifying the
matrix in the following iteration. If a matrix does not need to be modified during
iteration k, then we reset μk+1 ← μmin for the following iteration. (We maintain

different increments, μ0
k and μρ

k, for H(xk, 0, λk) and H(xk, ρ̂k, λ̂k), respectively.) Of
course, these modifications may slow the local convergence rate of the algorithm
in the neighborhood of optimal solutions or infeasible stationary points that may
fail to satisfy a strict second-order sufficiency condition, but they allow a prototype
implementation such as ours to be well-defined when applied to nonconvex problems.

For computing the weight wk required in (3.11) for iteration k, we initialize wk ←
0 and check if (3.10) holds for dk ← d̂k. If it does, then the algorithm continues with
these values for the weight and step, and otherwise we apply a bisection method to
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attempt to find the smallest root wk of

Ψ(w) = Δl(wdk + (1− w)d̂k;xk)− βΔl(dk;xk).
Since when dk �= 0 we have Ψ(1) > 0 and Ψ(0) < 0, the bisection method is well-
defined and there exists wk ∈ (0, 1) such that Ψ(wk) = 0. (Note that if dk = 0, then

both dk and d̂k will be linearly feasible, and so (3.10) is satisfied with wk ← 0.) We
terminate the bisection method when the width of the current interval is less than
10−8. This and our choice of ω ← (1−10−18) ensure that we always compute wk < ω,
effectively making this threshold value inconsequential for our numerical experiments.

As final notes on the particulars of our implementation, we remark that (3.7) and
(3.9) are solved using MATLAB’s built-in quadprog routine. Also, the parameter
values used are those provided in Table 1.

Table 1

Input parameters for a prototype MATLAB implemenation of Algorithm 1.

Parameter ρ0 β θ κρ κλ ε δ η
Value 10−1 10−2 10−1 10 10 10−2 5× 10−1 10−8

Parameter gmax γ ρ γ ξ μ0 ψ μmin

Value 102 10−6 10−8 10−8 2 10−4 10−1 10−4

We tested our implementation on 123 of the Hock–Schittkowski problems [25]
available as AMPL models [20].1 (Problems hs068 and hs069 were excluded from the
original set of 125 problems as the required external function was not compiled.) The
original versions of all of these problems are feasible, but we created a corresponding
set of infeasible problems by adding the incompatible constraints x1 ≤ 0 and x1 ≥ 1,
where x1 is the first variable in the problem statement.

Termination results for our implementation applied to these problems are shown
in Tables 2 and 3, which contain statistics for the feasible and infeasible problems,
respectively. In Table 2, the “Succeed” column reveals the number and percentage of
problems for which a point satisfying (5.1) was obtained, and the “Infeasible” column
reveals those statistics for problems for which a point satisfying (5.2) was obtained.
Similarly, the “Succeed” column in Table 3 reveals the number and percentage of
problems for which a point satisfying (5.2) was obtained, and the “Feasible” column
reveals those statistics for problems for which a point satisfying (5.1) was obtained.
In Tables 2 and 3, a termination result in the latter of these two columns represents
a situation where the algorithm failed to solve the problem correctly. Any time the
algorithm fails to terminate within 103 iterations, the algorithm is deemed to “Fail.”
(Problem hs112x was excluded in the set of feasible problems due to a function
evaluation error that occurred during the run.)

Table 2

Performance statistics of SQuID on feasible problems.

Problem type Succeed Fail Infeasible Total
Feasible 110 (90.16%) 11 (9.02%) 1 (0.82%) 122

From Tables 2 and 3, one can see that our code consistently attained a success
rate of at least 90%, which is strong for a prototype implementation. In fact, for

1http://orfe.princeton.edu/∼rvdb/ampl/nlmodels/cute/
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Table 3

Performance statistics of SQuID on infeasible problems.

Problem type Succeed Fail Feasible Total
Infeasible 111 (90.24%) 12 (9.76%) 0 (0.0%) 123

most of the failures and for the feasible problem that was reported to be infeasible,
we found the problems to be very nonconvex. This led to excessive modifications of
the Hessian matrices, and in many cases search directions that were poorly scaled.
The results may be improved with a more sophisticated Hessian modification strategy
and/or the incorporation of second-order correction steps.

We conclude our discussion of this set of numerical experiments by illustrating
the local convergence behavior of SQuID on these sets of test problems. For those
instances that are successfully solved within the iteration limit, we store the logarithms
of Ropt and Rinf for the last ten iterations for the feasible and infeasible problem
instances and plot them in Figures 1 and 2, respectively. In the plots, T represents the
last iteration for each run. (If a given problem is solved in fewer than ten iterations,
then its corresponding plot begins in the middle of the graph.) In Figures 1 and 2, one
can see that most of the curves turn significantly downward on the right-hand side of
the graph. The curves with a slope less than −1 over the last iterations indicate local
superlinear convergence, and the curves with slope less than −2 indicate quadratic
convergence. One finds that many of the curves possess slopes of this type, providing
empirical evidence for the convergence results in section 4.
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Fig. 1. log10 Ropt for the last ten iterations
of SQuID applied to feasible instances.
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Fig. 2. log10 Rinf for the last ten itera-
tions of SQuID applied to infeasible instances.

We close this section with a comparison between SQuID and the algorithm pro-
posed in [6] when applied to solve the infeasible problems presented in [6]. As previ-
ously mentioned in section 2, the algorithm in [6] represents an immediate predecessor
of SQuID. That algorithm also possesses superlinear convergence guarantees, but, un-
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like SQuID, suffers from the disadvantage that more than two QO subproblem solves
may be required in each iteration. After modifying the input parameters in our im-
plementation of SQuID so that they match those used in [6]—e.g., in [6], the initial
penalty parameter was set to 1—we obtained the results presented in Table 4. (Here,
the “Iter.”columns indicate the numbers of (nonlinear) iterations performed and the
“QOs” columns indicate the number of QO subproblems solved prior to termination.)
It is clear in these results that both algorithms detect infeasibility (or locate an opti-
mal solution in the case of problem “batch”) in few iterations, but SQuID typically
requires fewer QO solves. (The only exception is the problem “robot.” This prob-
lem is nonconvex and the performance of both algorithms varies depending on the
input parameters that affect the modifications of the Hessian approximations to make
them positive definite.) These results provide evidence for our claim that SQuID
yields consistent improvement over the algorithm in [6]. That is, SQuID possesses
similar theoretical convergence guarantees, but yields better practical performance
by limiting the number of QO subproblem solves per iteration.

Table 4

Performance measures for test problems in [6].

unique robot isolated batch batch1 nactive
Alg. Iter. QOs Iter. QOs Iter. QOs Iter. QOs Iter. QOs Iter. QOs

SQuID 9 19 27 55 9 19 10 22 15 31 7 15
Ref [6] 9 24 13 34 7 20 11 28 15 40 6 17

6. Conclusion. In this paper, we have proposed, analyzed, and tested a SQO
method that possesses global and fast local convergence guarantees for both feasible
and infeasible problem instances. Novelties of the algorithm are its unique two-phase
approach and carefully designed updating strategy for the penalty parameter. The
subproblems in each phase and the penalty parameter update are designed to strike
a balance between moving toward feasibility and optimality in each iteration. Near
an optimal point satisfying common assumptions, the penalty parameter remains
constant and the algorithm reduces to a classical SQO method, yielding fast local
convergence. Similarly, near an infeasible stationary point, the penalty parameter is
reduced sufficiently and quickly to yield fast infeasibility detection.

The convergence properties that we have proved for our algorithm were illustrated
empirically on test sets of feasible and infeasible problems. We remark, however, that
there remain various practical issues that one faces when considering an implemen-
tation of SQuID. As with any SQO method, the primary concern is the efficiency
of the QO subproblem solver. This is especially the case when one wishes to use
exact second-order derivative information and the resulting Hessian matrices are not
positive definite. We have employed a Hessian modification strategy in our numerical
experiments, but as for any SQO method that employs such a strategy, these modifica-
tions are cumbersome in large-scale settings and may inhibit superlinear convergence.
We leave it a subject of future research to investigate ways in which inexactness can
be incorporated into the subproblem solves and negative curvature can be handled,
knowing that the algorithm and analysis presented in this paper provides a strong
backbone for rapid infeasibility detection when such additional features are devel-
oped.
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