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Abstract

We study a simple linear regression problem for grouped variables; we are interested in
methods which jointly perform estimation and variable selection, that is, that automatically
set to zero groups of variables in the regression vector. The Group Lasso (GLasso), a well
known approach used to tackle this problem which is also a special case of Multiple Kernel
Learning (MKL), boils down to solving convex optimization problems. On the other hand,
a Bayesian approach commonly known as Sparse Bayesian Learning (SBL), a version of
which is the well known Automatic Relevance Determination (ARD), lead to non-convex
problems. In this paper we discuss the relation between ARD (and a penalized version
which we call PARD) and Glasso, and study their asymptotic properties in terms of the
Mean Squared Error in estimating the unknown parameter. The theoretical arguments
developed here are independent of the correctness of the prior models and clarify the
advantages of PARD over GLasso.

Keywords: Lasso, Group Lasso, Multiple Kernel Learning, Bayesian regularization,
marginal likelihood

1. Introduction

We consider sparse estimation in a linear regression model where the explanatory factors

θ ∈ Rm are naturally grouped so that θ is partitioned as θ = [θ(1)> θ(2)> . . . θ(p)>]>.
In this setting we assume that θ is group (or block) sparse in the sense that many of the
constituent vectors θ(i) are zero or have a negligible influence on the output y ∈ Rn. In
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addition, we assume that the number of unknowns m is large, possibly larger than the
size of the available data n. Interest in general sparsity estimation and optimization has
attracted the interest of many researchers in statistics, machine learning, and signal pro-
cessing with numerous applications in feature selection, compressed sensing, and selective
shrinkage (Hastie and Tibshirani, 1990; Tibshirani, 1996; Donoho, 2006; Candes and Tao,
2007). The motivation for our study of the group sparsity problem comes from the “dynamic
Bayesian network” scenario identification problem (Chiuso and Pillonetto, 2012, 2010b,a).
In a dynamic network scenario, the explanatory variables are the past histories of different
input signals, with the groups θ(i) representing the impulse responses1 describing the re-
lationship between the i-th input and the output y. This application informs our view of
the group sparsity problem as well as our measures of success for a particular estimation
procedure.

Several approaches have been put forward in the literature for joint estimation and
variable selection problems. We cite the well known Lasso (Tibshirani, 1996), Least Angle
Regression (LAR) (Efron et al., 2004), their group versions Group Lasso (GLasso) and
Group Least Angle Regression (GLAR) (Yuan and Lin, 2006), Multiple Kernel Learning
(MKL) (Bach et al., 2004; Evgeniou et al., 2005; Pillonetto et al.). Methods based on
hierarchical Bayesian models have also been considered, including Automatic Relevance
Determination (ARD) (Mackay, 1994), the Relevance Vector Machine (RVM) (Tipping,
2001), and the exponential hyperprior (Chiuso and Pillonetto, 2010b, 2012). The Bayesian
approach considered by Chiuso and Pillonetto (2010b, 2012) is intimately related to that of
Mackay (1994) and Tipping (2001); in fact the exponential hyperprior algorithm proposed
by Chiuso and Pillonetto (2010b, 2012) is a penalized version of ARD (PARD) in which
the prior on the groups θ(i) is adapted to the structural properties of dynamical systems.
A variational approach based on the golden standard spike and slab prior, also called two-
groups prior (Efron, 2008), has been also recently proposed by Titsias and Lzaro-Gredilla
(2011).

An interesting series of papers (Wipf and Rao, 2007; Wipf and Nagarajan, 2007; Wipf
et al., 2011) provide a nice link between penalized regression problems like Lasso, also called
type-I methods, and Bayesian methods (like RVM, Tipping, 2001 and ARD, Mackay, 1994)
with hierarchical hyperpriors where the hyperparameters are estimated via maximizing the
marginal likelihood and then inserted in the Bayesian model following the Empirical Bayes
paradigm (Maritz and Lwin, 1989); these latter methods are also known as type-II methods
(Berger, 1985). Note that this Empirical Bayes paradigm has also been recently used in the
context of System Identification (Pillonetto and De Nicolao, 2010; Pillonetto et al., 2011;
Chen et al., 2011).

Wipf and Nagarajan (2007) and Wipf et al. (2011) argue that type-II methods have
advantages over type-I methods; some of these advantages are related to the fact that, under
suitable assumptions, the former can be written in the form of type-I with the addition of a
non-separable penalty term (a function g(x1, .., xn) is non-separable if it cannot be written
as g(x1, .., xn) =

∑n
i=1 h(xi)). The analysis of Wipf et al. (2011) also suggests that in the low

noise regime the type-II approach results in a “tighter” approximation to the `0 norm. This
is supported by experimental evidence showing that these Bayesian approaches perform

1. Impulse responses may, in principle, be infinite dimensional.
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well in practice. Our experience is that the approach based on the marginal likelihood is
particularly robust w.r.t. noise regardless of the “correctness” of the Bayesian prior.

Motivated by the strong performance of the exponential hyperprior approach introduced
in the dynamic network identification scenario (Chiuso and Pillonetto, 2010b, 2012), we
provide some new insights clarifying the above issues. The main contributions are as follows:

(i) We first provide some motivating examples which illustrate the superiority of PARD
(and also of ARD) over GLasso both in terms of selection (i.e., detecting block of
zeros in θ) as well as in estimation (i.e., reconstructing the non zero blocks).

(ii) Theoretical findings explaining the reasons underlying the superiority of PARD over
GLasso are then provided. In particular, all the methods are compared in terms
of optimality (KKT) conditions, and tradeoffs between sparsity and shrinkage are
studied.

(iii) We then consider a non-Bayesian point of view, in which the estimation error is
measured in terms of the Mean Squared Error, in the vein of Stein-estimators (James
and Stein, 1961; Efron and Morris, 1973; Stein, 1981). The properties of Empirical
Bayes estimators, which form the basis of the computational schemes, are studied in
terms of their Mean Square Error properties; this is first established in the simplest
case of orthogonal regressors and then extended to more general cases allowing for the
regressors to be realizations from (possibly correlated) stochastic processes. This, of
course, is of paramount importance for the system identification scenario studied by
Chiuso and Pillonetto (2010b, 2012).

Our analysis avoids assumptions on the correctness of the priors which define the
stochastic model and clarifies why PARD is likely to provide sparser and more accurate
estimates in comparison with GLasso (MKL). As a consequence of this analysis, our
study clarifies the asymptotic properties of ARD.

Before we proceed with these results, we need to establish a common framework for
these estimators (GLasso/MKL and PARD); this mostly uses results from the literature,
which are recalled without proof in order to make the paper as self contained as possible.

The paper is organized as follows. In Section 2 we provide the problem statement while
in Section 3 PARD and GLasso (MKL) are introduced in a Bayesian framework. Section
4 illustrates the advantages of PARD over GLasso using a simple example and two Monte
Carlo studies. In Section 5 the Mean Squared Error properties of the Empirical Bayes
estimators are studied, including their asymptotic behavior. Some conclusions end the
paper while the Appendix gathers the proofs of the main results.

2. Problem Statement

We consider a linear model y = Gθ+v where the explanatory factors G used to predict y are
grouped (and non-overlapping). As such we partition θ into p sub-vectors θ(i), i = 1, . . . , p,
so that

θ = [θ(1)> θ(2)> . . . θ(p)>]>.
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Figure 1: Bayesian networks describing the stochastic model for group sparse estimation

For i = 1, . . . , p, assume that the sub-vector θ(i) has dimension ki so that m =
∑p

i=1 ki.
Next, conformally partition the matrix G = [G(1), . . . , G(p)] to obtain the measurement
model

y = Gθ + v =

p∑
i=1

G(i)θ(i) + v. (1)

In what follows, we assume that θ is block sparse in the sense that many of the blocks θ(i)

are zero, that is, with all of their components equal to zero, or have a negligible effect on y.
Our problem is to estimate θ from y while also detecting the null blocks of θ(i).

3. Estimators Considered

The purpose of this Section is to place the estimators we consider (GLasso/MKL and PARD)
in a common framework that unifies the analysis. The content of the section is a collection
of results taken from the literature which are stated without proof; the readers are referred
to previous works for details which are not relevant to our paper’s goal.

3.1 Bayesian Model for Sparse Estimation

Figure 1 provides a hierarchical representation of a probability density function useful for
establishing a connection between the various estimators considered in this paper. In par-
ticular, in the Bayesian network of Figure 1, nodes and arrows are either dotted or solid
depending on whether the quantities/relationships are deterministic or stochastic, respec-
tively. Here, λ denotes a vector whose components {λi}pi=1 are independent and identically
distributed exponential random variables with probability density

pγ(λi) = γe−γλiχ(λi)
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where γ is a positive scalar and

χ(t) =

{
1, t ≥ 0
0, elsewhere.

In addition, let N (µ,Σ) be the Gaussian density of mean µ and covariance Σ while, given a
generic k, we use Ik to denote the k×k identity matrix. Then, conditional on λ, the blocks
θ(i) of the vector θ are all mutually independent and each block is zero-mean Gaussian with
covariance λiIki , i = 1, .., p, that is,

θ(i)|λi ∼ N (0, λiIki).

The measurement noise is also Gaussian, that is,

v ∼ N (0, σ2In).

3.2 Penalized ARD (PARD)

We introduce a sparse estimator, denoted by PARD in the sequel, cast in the framework
of the Type II Bayesian estimators and consisting of a penalized version of ARD (Mackay,
1994; Tipping, 2001; Wipf and Nagarajan, 2007). It is derived from the Bayesian network
depicted in Figure 1 as follows. First, the marginal density of λ is optimized, that is, we
compute

λ̂ = arg max
λ∈Rp+

∫
Rm

p(θ, λ|y)dθ.

Then, using an empirical Bayes approach, we obtain E[θ|y, λ = λ̂], that is, the minimum
variance estimate of θ with λ taken as known and set to its estimate. The structure of
the estimator is detailed in the following proposition (whose proof is straightforward and
therefore omitted).

Proposition 1 (PARD) Define

Σy(λ) := GΛG> + σ2I, (2)

Λ := blockdiag({λiIki}). (3)

Then, the estimator θ̂PA of θ obtained from PARD is given by

λ̂ = arg min
λ∈Rp+

1

2
log det(Σy(λ)) +

1

2
y>Σ−1

y (λ)y + γ

p∑
i=1

λi, (4)

θ̂PA = Λ̂G>(Σy(λ̂))−1y. (5)

where Λ̂ is defined as in (3) with each λi replaced by the i-th component of λ̂ in (4).

�
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One can see from (4) and (5) that the proposed estimator reduces to ARD if γ = 0.2 In
this case, the special notation θ̂A is used to denote the resulting estimator, that is,

λ̂ = arg min
λ∈Rp+

1

2
log det(Σy(λ)) +

1

2
y>Σ−1

y (λ)y, (6)

θ̂A = Λ̂G>(Σy(λ̂))−1y (7)

where Σy is defined in (2), and Λ̂ is defined as in (3) with each λi replaced by the i-th

component of the λ̂ in (6).
Observe that the objective in (4) is not convex in λ. Letting the vector µ denote the

dual vector for the constraint λ ≥ 0, the Lagrangian is given by

L(λ, µ) := 1
2 log det(Σy(λ)) + 1

2y
>Σy(λ)−1y + γ1>λ− µ>λ.

Using the fact that

∂λiL(λ, µ) =
1

2
tr
(
G(i)>Σy(λ)−1G(i)

)
− 1

2
y>Σy(λ)−1G(i)G(i)>Σy(λ)−1y + γ − µi,

we obtain the following KKT conditions for (4).

Proposition 2 (KKT for PARD) The necessary conditions for λ to be a solution of (4)
are

Σy = σ2I +
∑p

i=1 λiG
(i)G(i)>,

WΣy = I,

tr
(
G(i)>WG(i)

)
− ‖G(i)>Wy‖22 + 2γ − 2µi = 0, i = 1, . . . , p,

µiλi = 0, i = 1, . . . , p,
0 ≤ µ, λ.

(8)

3.3 Group Lasso (GLasso) and Multiple Kernel Learning (MKL)

A leading approach for the block sparsity problem is the Group Lasso (GLasso) (Yuan
and Lin, 2006) which determines the estimate of θ as the solution of the following convex
problem

θ̂GL = arg min
θ∈Rm

(y −Gθ)>(y −Gθ)
2σ2

+ γGL

p∑
i=1

‖θ(i)‖ , (9)

where ‖ · ‖ denotes the classical Euclidean norm. Now, let φ be the Gaussian vector with
independent components of unit variance such that

θi =
√
λi φi. (10)

We partition φ conformally with θ, that is,

φ =
[
φ(1)> φ(2)> . . . φ(p)>

]>
. (11)

2. Strictly speaking, what is called ARD in this paper corresponds to a group version of the original
estimator discussed in Mackay (1994). A perfect correspondence is obtained when the dimension of each
block is equal to one, that is, ki = 1 ∀i.
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Then, interestingly, GLasso can be derived from the same Bayesian model in Figure 1
underlying PARD considering φ and λ as unknown variables and computing their maximum
a posteriori (MAP) estimates. This is illustrated in the following proposition which is just
a particular instance of the known relationship between regularization on kernel weights
and block-norm based regularization. In particular, it establishes the known equivalence
between GLasso and Multiple Kernel Learning (MKL) when linear models of the form (1)
are considered, see the more general Theorem 1 of Tomioka and Suzuki (2011) for other
details.

Proposition 3 (GLasso and its equivalence with MKL) Consider the joint density
of φ and λ conditional on y induced by the Bayesian network in Figure 1. Let λ̂ and φ̂ denote,
respectively, the maximum a posteriori estimates of λ and φ (obtained by optimizing their
joint density). Then, for every γGL in (9) there exists γ such that the following equalities
hold

λ̂ = arg min
λ∈Rp+

y>(Σy(λ))−1y

2
+ γ

p∑
i=1

λi, (12)

φ̂(i) =

√
λ̂iG

(i)>(Σy(λ̂))−1y,

θ̂
(i)
GL =

√
λ̂iφ̂

(i). (13)

We warn the reader that MKL is more general than GLasso since it also embodies estimation
in infinite dimensional models; yet in this paper we use interchangeably the nomenclature
GLasso and MKL since they are equivalent for the considered model class.

Comparing Propositions 1 and 3, one can see that the sole difference between PARD
and GLasso relies on the estimator for λ. In particular, notice that the objectives (12) and
(4) differ only in the term 1

2 log det(Σy) appearing in the PARD objective (4). This is the
component that makes problem (4) non-convex but also the term that forces PARD to favor
sparser solutions than GLasso (MKL), making the marginal density of λ more concentrated
around zero. On the other hand, (12) is a convex optimization problem whose associated
KKT conditions are reported in the following proposition.

Proposition 4 (KKT for GLasso and MKL) The necessary and sufficient conditions
for λ to be a solution of (12) are

K(λ) =
∑p

i=1 λiG
(i)G(i)>,

Σy = K(λ) + σ2I,
WΣy = I,

−‖G(i)>Wy‖22 + 2γ − 2µi = 0, i = 1, . . . , p,
µiλi = 0, i = 1, . . . , p,
0 ≤ µ, λ.

(14)

�
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Remark 5 (The LASSO case) When all the blocks are one-dimensional, the estimator
(9) reduces to Lasso and we denote the regularization parameter and the estimate by γL and
θ̂L, respectively. In this case, it is possible to obtain a derivation through marginalization.
In fact, given the Bayesian network in Figure 1 with all the ki = 1 and letting

θ̂ = arg max
θ∈Rm

∫
Rm+

p(θ, λ|y)dλ,

it follows from Section 2 in Park and Casella (2008) that θ̂ = θ̂L provided that γL =
√

2γ.

4. Comparing PARD And GLasso (MKL): Motivating Examples

In this section, we present a sparsity vs. shrinkage example, and a Monte Carlo simulation
to demonstrate advantages of the PARD estimator over GLasso.

4.1 Sparsity vs. Shrinkage: A Simple Experiment

It is well known that the `1 penalty in Lasso tends to induce an excessive shrinkage of
“large” coefficients in order to obtain sparsity. Several variations have been proposed in
the literature in order to overcome this problem, including the so called Smoothly-Clipped-
Absolute-Deviation (SCAD) estimator (Fan and Li, 2001) and re-weighted versions of `1 like
the adaptive Lasso (Zou, 2006). We now study the tradeoffs between sparsity and shrinking
for PARD. By way of introduction to the more general analysis in the next section, we first
compare the sparsity conditions for PARD and GLasso (or, equivalently, MKL) in a simple,
yet instructive, two group example. In this example, it is straightforward to show that
PARD guarantees a more favorable tradeoff between sparsity and shrinkage, in the sense
that it induces greater sparsity with the same shrinkage (or, equivalently, for a given level
of sparsity it guarantees less shrinkage).

Consider two groups of dimension 1, that is,

y = G(1)θ(1) +G(2)θ(2) + v y ∈ R2, θ(1), θ(2) ∈ R,

where G(1) = [1 δ]>, G(2) = [0 1]>, v ∼ N (0, σ2). Assume that the true parameter θ̄
satisfies: θ̄(1) = 0, θ̄(2) = 1. Our goal is to understand how the hyperparameter γ influences
sparsity and the estimates of θ(1) and θ(2) using PARD and GLasso. In particular, we
would like to determine which values of γ guarantee that θ̂(1) = 0 and how the estimator
θ̂(2) varies with γ. These questions can be answered by using the KKT conditions obtained
in Propositions 2 and 4.

Let y := [y1 y2]>. By (8), the necessary conditions for λ̂PA1 = 0 and λ̂PA2 ≥ 0 to be the
hyperparameter estimators for the PARD estimator (for fixed γ = γPA) are

2γPA ≥
[
y1

σ2 + δy2

σ2+λ̂PA2

]2
−
[

1
σ2 + δ

σ2+λ̂PA2

]
and

λ̂PA2 = max

{
−1+
√

1+8γPAy
2
2

4γPA
− σ2, 0

}
.

(15)
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Similarly, by (14), the same conditions for λ̂GL1 = 0 and λ̂GL2 ≥ 0 to be the estimators
obtained using GLasso read as (for fixed γ = γGL):

2γGL ≥
[
y1

σ2 + δy2

σ2+λ̂GL2

]2
and

λ̂GL2 = max
{
|y2|√
2γGL

− σ2, 0
}
.

(16)

Note that it is always the case that the lower bound for γGL is strictly greater than the
lower bound for γPA and that λ̂PA2 ≤ λ̂GL2 when γPA = γGL, where the inequality is strict
whenever λ̂GL2 > 0. The corresponding estimators for θ̂(1) and θ̂(2) are

θ̂
(1)
PA = θ̂

(1)
GL = 0,

θ̂
(2)
PA =

λ̂PA2 y2

σ2+λ̂PA2

and θ̂
(2)
GL =

λ̂GL2 y2

σ2+λ̂GL2

.

Hence, |θ̂(2)
PA| < |θ̂

(2)
GL| whenever y2 6= 0 and λ̂GL2 > 0. However, it is clear that the lower

bounds on γ in (15) and (16) indicate that γGL needs to be larger than γPA in order to set

λ̂GL1 = 0 (and hence θ̂
(1)
GL = 0). Of course, having a larger γ tends to yield smaller λ̂2 and

hence more shrinking on θ̂(2). This is illustrated in Figure 2 where we report the estimators

θ̂
(2)
PA (solid) and θ̂

(2)
GL (dotted) for σ2 = 0.005, δ = 0.5. The estimators are arbitrarily set to

zero for the values of γ which do not yield θ̂(1) = 0. In particular from (15) and (16) we find

that PARD sets θ̂
(1)
PA = 0 for γPA > 5 while GLasso sets θ̂

(1)
GL = 0 for γGL > 20. In addition,

it is clear that MKL tends to yield greater shrinkage on θ̂
(2)
GL (recall that θ̄(2) = 1).

4.2 Monte Carlo Studies

We consider two Monte Carlo studies of 1000 runs. For each run a data set of size n = 100
is generated using the linear model (1) with p = 10 groups, each composed of ki = 4
parameters. For each run, 5 of the groups θ(i) are set to zero, one is always taken different
from zero while each of the remaining 4 groups θ(i) are set to zero with probability 0.5. The
components of every block θ(i) not set to zero are independent realizations from a uniform
distribution on [−ai, ai] where ai is an independent realization (one for each block) from
a uniform distribution on [0, 100]. The value of σ2 is the variance of the noiseless output
divided by 25. The noise variance is estimated at each run as the sum of the residuals from
the least squares estimate divided by n − m. The two experiments differ in the way the
columns of G are generated at each run.

1. In the first experiment, the entries of G are independent realizations of zero mean
unit variance Gaussian noise.

2. In the second experiment the columns of G are correlated, being defined at every run
by

Gi,j = Gi,j−1 + 0.2vi,j−1, i = 1, .., n, j = 2, ..,m,

vi,j ∼ N (0, 1)
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Figure 2: Estimators θ̂(2) as a function of γ. The curves are plotted only for the values of γ
which yield also θ̂(1) = 0 (different for PARD (γPA > 5) and MKL (γGL > 20)).
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Figure 3: Boxplot of the relative errors in the reconstruction of θ obtained by the 2 non-
convex estimators ARD and PARD and by the convex estimator GLasso (MKL)
after the 1000 Monte Carlo runs in Experiment #1 (left panel) and #2 (right
panel).
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where vi,j are i.i.d. (as i and j vary) zero mean unit variance Gaussian and Gi,1 are
i.i.d. zero mean unit variance Gaussian random variables. Note that correlated inputs
renders the estimation problem more challenging.

Define κ̂ ∈ R as the optimizer of the ARD objective (6) under the constraint κ = λ1 =
. . . = λp. Then, we define the following 3 estimators.

• ARD. The estimate θA is obtained by (6,7) using λ1 = . . . = λp = κ̂ as starting point
to solve (7) .

• PARD. The estimate θPA is obtained by (4,5) using cross validation to determine the
regularization parameter γ. In particular, data are split into a training and validation
set of equal size and the grid used by the cross validation procedure to select γ contains
30 elements logarithmically distributed between 10−2 × κ̂−1 and 104 × κ̂−1. For each
value of γ, (6) is solved using λ1 = λ2 = . . . = λp = κ̂ as starting point. Finally, θPA
is obtained using the full data set fixing the regularization parameter to its estimate.

• GLasso (MKL). The estimate θGL is obtained by (12-13) using the same cross
validation strategy adopted by PARD to determine γ.

The three estimators described above are compared using the two performance indexes
listed below:

1. Relative error: this is computed at each run as

‖θ̂ − θ‖
‖θ‖

where θ̂ is the estimator of θ.

2. Percentage of the blocks equal to zero correctly set to zero by the estimator after the
1000 runs.

The left and right panel of Figure 3 displays the boxplots of the 1000 relative errors obtained
by the three estimators in the first and second experiment, respectively. The average relative
error is also reported in Table 1. It is apparent that the performance of PARD and ARD
is similar and that both of these non convex estimators outperform GLasso. Interestingy,
in both of the experiments ARD and PARD return a reconstruction error smaller that that
achieved by GLasso in more than 900 out of the 1000 runs.

In Table 2 we report the sparsity index. One can see that PARD exhibits the best
performance, setting almost 75% of the blocks correctly to zero in the first and second
experiment, respectively, while the performance of ARD is close to 67%. In contrast, GLasso
(MKL) correctly set to zero no more than 40% of the blocks in each experiment.

Remark 6 (Projected Quasi-Newton Method) We now comment on the optimiza-
tion of (4). The same arguments reported below also apply to the objectives (6) and (12)
which are just simplified versions of (4).
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ARD PARD GLasso

Experiment #1 0.097 0.090 0.138
Experiment #2 0.151 0.144 0.197

Table 1: Comparison with MKL/GLasso (section 4.2). Average relative errors obtained by
the three estimators.

ARD PARD GLasso

Experiment #1 66.7% 74.5% 35.5%
Experiment #2 66.6% 74.6% 39.7%

Table 2: Comparison with MKL/GLasso (section 4.2). Percentage of the θ(i) equal to zero
correctly set to zero by the four estimators.

We notice that (4) is a differentiable function of λ. The computation of its derivative

requires a one time evaluation of the matrices G(i)G(i)> , i = 1, . . . , p. However, for each new
value of λ, the inverse of the matrix Σy(λ) also needs to be computed. Hence, the evaluation
of the objective and its derivative may be costly since it requires computing the inverse of
a possibly large matrix as well as large matrix products. On the other hand, the dimension
of the parameter vector λ can be small, and projection onto the feasible set is trivial. We
experimented with several methods available in the Matlab package minConf to optimize (4).
In these experiments, the fastest method was the limited memory projected quasi-Newton
algorithm detailed in Schmidt et al. (2009). It uses L-BFGS updates to build a diagonal
plus low-rank quadratic approximation to the function, and then uses the Projected Quasi-
Newton Method to minimize a quadratic approximation subject to the original constraints to
obtain a search direction. A backtracking line search is applied to this direction terminating
at a step-size satisfying a Armijo-like sufficient decrease condition. The efficiency of the
method derives in part from the simplicity of the projections onto the feasible region. We
have also implemented the re-weighted method described by Wipf and Nagarajan (2007).
In all the numerical experiments described above, we have assessed that it returns results
virtually identical to those achieved by our method, with a similar computational effort. It
is worth recalling that both the projected quasi-Newton method and the re-weighted approach
guarantee convergence only to a stationary point of the objective.

4.3 Concluding Remarks

The results in this section suggest that, when using GLasso, a suitable regularization pa-
rameter γ which does not induce oversmoothing (large bias) in θ̂ is not sufficiently large
to induce “enough” sparsity. This drawback does not affect the nonconvex estimators. In
addition, PARD and ARD seem to have the additional advantage of selecting the regular-
ization parameters leading to more favorable Mean Squared Error (MSE) properties for the
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reconstruction of the non zero blocks. The rest of the paper will be devoted to derivation
of theoretical arguments supporting the intuition gained from these examples.

5. Mean Squared Error Properties of PARD and GLasso (MKL)

In this Section we evaluate the performance of an estimator θ̂ using its MSE, that is, the
expected quadratic loss

tr

[
E
[(
θ̂ − θ

)(
θ̂ − θ

)> ∣∣∣∣ λ, θ = θ̄

]]
,

where θ̄ is the true but unknown value of θ. When we speak about “Bayes estimators” we
think of estimators of the form θ̂(λ) := E [θ | y, λ] computed using the probabilistic model
Figure 1 with γ fixed.

5.1 Properties Using “Orthogonal” Regressors

We first derive the MSE formulas under the simplifying assumption of orthogonal regressors
(G>G = nI) and show that the Empirical Bayes estimator converges to an optimal estimator
in terms of its MSE. This fact has close connections to the so called Stein estimators (James
and Stein, 1961; Stein, 1981; Efron and Morris, 1973). The same optimality properties are
attained, asymptotically, when the columns of G are realizations of uncorrelated processes
having the same variance. This is of interest in the system identification scenario considered
by Chiuso and Pillonetto (2010a,b, 2012) since it arises when one performs identification
with i.i.d. white noises as inputs. We then consider the more general case of correlated
regressors (see Section 5.2) and show that essentially the same result holds for a weighted
version of the MSE.

In this section, it is convenient to introduce the following notation:

Ev[ · ] := E[ · |λ, θ = θ̄] and Varv[ · ] := E[ · |λ, θ = θ̄].

We now report an expression for the MSE of the Bayes estimators θ̂(λ) := E [θ | y, λ] (the
proof follows from standard calculations and is therefore omitted).

Proposition 7 Consider the model (1) under the probabilistic model described in Fig-
ure 1(b). The Mean Squared Error of the Bayes estimator θ̂(λ) := E [θ|y, λ] given λ and
θ = θ̄ is

MSE(λ) = tr
[
Ev
[
(θ̂(λ)− θ)(θ̂(λ)− θ)>

]]
= tr

[
σ2
(
G>G+ σ2Λ−1

)−1 (
G>G+ σ2Λ−1θ̄θ̄>Λ−1

)(
G>G+ σ2Λ−1

)−1
]
(17)

= tr

[
σ2
(

ΛG>G+ σ2
)−1 (

ΛG>GΛ + σ2θ̄θ̄>
)(

G>GΛ + σ2
)−1

]
.

We can now minimize the expression for MSE(λ) given in (17) with respect to λ to
obtain the optimal minimum mean squared error estimator. In the case where G>G = nI
this computation is straightforward and is recorded in the following proposition.
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Corollary 8 Assume that G>G = nI in Proposition 7. Then MSE(λ) is globally minimized
by choosing

λi = λopti :=
‖θ̄(i)‖2

ki
, i = 1, . . . , p.

Next consider the Maximum a Posteriori estimator of λ again under the simplifying
assumption G>G = nI. Note that, under the noninformative prior (γ = 0), this Maximum
a Posteriori estimator reduces to the standard Maximum (marginal) Likelihood approach
to estimating the prior distribution of θ. Consequently, we continue to call the resulting
procedure Empirical Bayes (a.k.a. Type-II Maximum Likelihood (Berger, 1985)).

Proposition 9 Consider model (1) under the probabilistic model described in Figure 1(b),
and assume that G>G = nI. Then the estimator of λi obtained by maximizing the marginal
posterior p(λ|y),

{λ̂1(γ), ..., λ̂p(γ)} := arg max
λ∈Rp+

p(λ|y) = arg max
λ∈Rp+

∫
p(y, θ|λ)pγ(λ) dθ,

is given by

λ̂i(γ) = max

(
0,

1

4γ

[√
k2
i + 8γ‖θ̂(i)

LS‖2 −
(
ki +

4σ2γ

n

)])
, (18)

where

θ̂
(i)
LS =

1

n

(
G(i)

)>
y

is the Least Squares estimator of the i−th block θ(i). As γ → 0 (γ = 0 corresponds to an
improper flat prior) the expression (18) yields:

lim
γ→0

λ̂i(γ) = max

(
0,
‖θ̂(i)
LS‖2

ki
− σ2

n

)
.

In addition, the probability P[λ̂i(γ) = 0 | θ = θ̄] of setting λ̂i = 0 is given by

P[λ̂i(γ) = 0 | θ = θ̄] = P
[
χ2
(
ki, ‖θ̄(i)‖2 n

σ2

)
≤
(
ki + 2γ

σ2

n

)]
, (19)

where χ2(d, µ) denotes a noncentral χ2 random variable with d degrees of freedom and
noncentrality parameter µ.

Note that the expression of λ̂i(γ) in Proposition 9 has the form of a “saturation”. In
particular, for γ = 0, we have

λ̂i(0) = max(0, λ̂∗i ), where λ̂∗i :=
‖θ̂(i)
LS‖2

ki
− σ2

n
. (20)

The following proposition shows that the “unsaturated” estimator λ̂∗i is an unbiased and
consistent estimator of λopti which minimizes the Mean Squared Error while λ̂i(0) is only
asymptotically unbiased and consistent.
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Corollary 10 Under the assumption G>G = nI, the estimator of λ̂∗ := {λ∗1, .., λ∗p} in (20)
is an unbiased and mean square consistent estimator of λopt which minimizes the Mean
Squared Error, while λ̂(0) := {λ1(0), .., λp(0)} is asymptotically unbiased and consistent,
that is:

E[λ̂∗i | θ = θ̄] = λopti lim
n→∞

E[λ̂i(0) | θ = θ̄] = λopti

and

lim
n→∞

λ̂∗i
m.s.
= λopti lim

n→∞
λ̂i(0)

m.s.
= λopti (21)

where
m.s.
= denotes convergence in mean square.

Remark 11 Note that if θ̄(i) = 0, the optimal value λopti is zero. Hence (21) shows that

asymptotically λ̂i(0) converges to zero. However, in this case, it is easy to see from (19)
that

lim
n→∞

P[λ̂i(0) = 0 | θ = θ̄] < 1.

There is in fact no contradiction between these two statements because one can easily show
that for all ε > 0,

P[λ̂i(0) ∈ [0, ε) | θ = θ̄]
n→∞−→ 1.

In order to guarantee that limn→∞ P[λ̂i(γ) = 0 | θ = θ̄] = 1 one must chose γ = γn so that

2σ
2

n γn →∞, with γn growing faster than n. This is in line with the well known requirements
for Lasso to be model selection consistent. In fact, recalling remark 5, the link between γ and
the regularization parameter γL for Lasso is given by γL =

√
2γ. The condition n−1γn →∞

translates into n−1/2γLn → ∞, a well known condition for Lasso to be model selection
consistent (Zhao and Yu, 2006; Bach, 2008).

The results obtained so far suggest that the Empirical Bayes resulting from PARD has
desirable properties with respect to the MSE of the estimators. One wonders whether
the same favorable properties are inherited by MKL or, equivalently, by GLasso. The
next proposition shows that this is not the case. In fact, for θ̄(i) 6= 0, MKL does not yield
consistent estimators for λopti ; in addition, for θ(i) = 0, the probability of setting λ̂i(γ) to zero
(see Equation (24)) is much smaller than that obtained using PARD (see Equation (19));
this is illustrated in Figure 4 (top). Also note that, as illustrated in Figure 4 (bottom),
when the true θ̄ is equal to zero, MKL tends to give much larger values of λ̂ than those
given by PARD. This results in larger values of ‖θ̂‖ (see Figure 4).

Proposition 12 Consider model (1) under the probabilistic model described in Figure 1(b),
and assume G>G = nI. Then the estimator of λi obtained by maximizing the joint posterior
p(λ, φ|y) (see Equations (10) and (11)),

{λ̂(γ), ..., λ̂p(γ)} := arg max
λ∈Rp+,φ∈Rm+

p(λ, φ|y),

is given by

λ̂i(γ) = max

(
0,
‖θ̂(i)
LS‖√
2γ
− σ2

n

)
, (22)
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where

θ̂
(i)
LS =

1

n

(
G(i)

)>
y

is the Least Squares estimator of the i−th block θ(i) for i = 1, . . . , p. For n → ∞ the
estimator λ̂i(γ) satisfies

lim
n→∞

λ̂i(γ)
m.s.
=
‖θ̄(i)‖√

2γ
. (23)

In addition, the probability P[λ̂i(γ) = 0 | θ = θ̄] of setting λ̂i(γ) = 0 is given by

Pθ[λ̂i(γ) = 0 | θ = θ̄] = P
[
χ2
(
ki, ‖θ̄(i)‖2 n

σ2

)
≤ 2γ

σ2

n

]
. (24)

Note that the limit of the MKL estimators λ̂i(γ) as n → ∞ depends on γ. Therefore,
using MKL (GLasso), one cannot hope to get consistent estimators of λopti . Indeed, for

‖θ̄(i)‖2 6= 0, consistency of λ̂i(γ) requires γ → k2
i

2‖θ̄(i)‖2 , which is a circular requirement.

5.2 Asymptotic Properties Using General Regressors

In this subsection, we replace the deterministic matrix G with Gn(ω), where Gn(ω) repre-
sents an n×m matrix defined on the complete probability space (Ω,B,P) with ω a generic
element of Ω and B the sigma field of Borel regular measures. In particular, the rows of
Gn are independent3 realizations from a zero-mean random vector with positive definite
covariance Ψ.

As in the previous part of this section, λ and θ are seen as parameters, and the true
value of θ is θ̄. Hence, all the randomness present in the next formulas comes only from Gn
and the measurement noise.

We make the following (mild) assumptions on Gn. Recalling model (1), assume that
G>G/n is bounded and bounded away from zero in probability, so that there exist constants
∞ > cmax ≥ cmin > 0 with

lim
n→∞

P [cminI ≤ G>G/n ≤ cmaxI] = 1 , (25)

so, as n increases, the probability that a particular realization G satisfies

cminI ≤ G>G/n ≤ cmaxI (26)

increases to 1.
In the following lemma, whose proof is in the Appendix, we introduce a change of

variables that is key for our understanding of the asymptotic properties of PARD under
these more general regressors.

Lemma 13 Fix i ∈ {1, . . . , p} and consider the decomposition

y = G(i)θ(i) +
∑p

j=1,j 6=iG
(j)θ(j) + v

= G(i)θ(i) + v̄
(27)

3. The independence assumption can be removed and replaced by mixing conditions.
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Figure 4: In this example we have two blocks (p = 2) of dimension k1 = k2 = 10 with
θ̄(1) = 0 and all the components of the true θ̄(2) ∈ R10 set to one. The matrix
G is the identity, so that the output dimension (y ∈ Rn) is n = 20; the noise
variance equals 0.5. Top: probability of setting θ̂(1) to zero vs Mean Squared
Error in θ̂(2). Center: Mean Squared Error in θ̂(1) vs. Mean Squared Error in
θ̂(2); both curves are parametrized in γ ∈ [0,+∞). Bottom: Total Mean Squared
Error (on θ̂) as a function of γ.

233



Aravkin, Burke, Chiuso and Pillonetto

of the linear measurement model (1) and assume (26) holds. Define

Σ
(i)
v̄ :=

p∑
j=1,j 6=i

G(j)
(
G(j)

)>
λj + σ2I.

Consider now the singular value decomposition

Σ
(i)
v̄

−1/2
G(i)

√
n

= U (i)
n D(i)

n

(
V (i)
n

)>
, (28)

where each D
(i)
n = diag(d

(i)
k,n) is ki × ki diagonal matrix. Then (27) can be transformed into

the equivalent linear model

z
(i)
n = D

(i)
n β

(i)
n + ε

(i)
n , (29)

where

z
(i)
n :=

(
U

(i)
n

)> Σ
(i)
v̄

−1/2
y√

n
= (z

(i)
k,n), β

(i)
n :=

(
V

(i)
n

)>
θ(i) = (β

(i)
k,n),

ε
(i)
n :=

(
U

(i)
n

)> Σ
(i)
v̄

−1/2
v̄√

n
= (ε

(i)
k,n),

(30)

and D
(i)
n is uniformly (in n) bounded and bounded away from zero.

Below, the dependence of Σy(λ) on Gn, and hence on n, is omitted to simplify the
notation. Furthermore, −→p denotes convergence in probability.

Theorem 14 For known γ and conditional on θ = θ̄, define

λ̂n = arg min
λ∈C

⋂
Rp+

1

2
log det(Σy(λ)) +

1

2
y>Σ−1

y (λ)y + γ

p∑
i=1

λi, (31)

where C is any p-dimensional ball with radius strictly larger than maxi
‖θ̄(i)‖2
ki

. Suppose that
the hypotheses of Lemma 13 hold. Consider the estimator (31) along its i − th component
λi that, in view of (29), is given by:

λ̂ni = arg min
λ∈R+

1

2

ki∑
k=1

[
η2
k,n + vk,n

λ+ wk,n
+ log(λ+ wk,n)

]
+ γλ , (32)

where ηk,n := β
(i)
k,n, wk,n := 1/(n(d

(i)
k,n)2) and vk,n = 2

ε
(i)
k,n

d
(i)
k,n

β
(i)
k,n +

(
ε
(i)
k,n

d
(i)
k,n

)2

. Let

λ̄γi :=
−ki +

√
k2
i + 8γ‖θ̄(i)‖2

4γ
, λ̄i =

‖θ̄(i)‖2

ki
.

We have the following results:

1. λ̄γi ≤ λ̄i for all γ > 0, and limγ→0+ λ̄γi = λ̄i .
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2. If ‖θ̄(i)‖ > 0 and γ > 0, we have λ̂ni −→p λ̄
γ
i .

3. If ‖θ̄(i)‖ > 0 and γ = 0, we have λ̂ni −→p λ̄i .

4. if θ̄(i) = 0, we have λ̂γi −→p 0 for any value γ ≥ 0.

We now show that, when γ = 0, the above result relates to the problem of minimizing
the MSE of the i-th block with respect to λi, with all the other components of λ coming
from λ̂n. For any index i, we define

I
(i)
1 :=

{
j : j 6= i and θ̄(j) 6= 0

}
, I

(i)
0 :=

{
j : j 6= i and θ̄(j) = 0

}
. (33)

If θ̂
(i)
n (λ) denotes the i-th component of the PARD estimate of θ defined in (5), our aim

is to optimize the objective

MSEn(λi) := tr
[
Ev
[
(θ̂(i)
n (λ)− θ̄(i))(θ̂(i)

n (λ)− θ̄(i))>
]]

with λj = λ̄nj for j 6= i

where is λ̄nj is any sequence satisfying condition

lim
n→∞

fn = +∞ where fn := min
j∈I(i)

1

nλnj , (34)

(condition (34) appears again in the Appendix as (47)). Note that, in particular, λ̄nj = λ̂nj
in (31) satisfy (34) in probability.

Lemma 13 shows that we can consider the transformed linear model associated with the
i-th block, that is,

z
(i)
k,n = d

(i)
k,nβ

(i)
k,n + ε

(i)
k,n, k = 1, . . . , ki, (35)

where all the three variables on the RHS depend on λ̄nj for j 6= i. In particular, the vector

β
(i)
n consists of an orthonormal transformation of θ(i) while the d

(i)
k,n are all bounded below

in probability. In addition, by letting

Ev
[
ε
(i)
k,n

]
= mk,n, Ev

[
(ε

(i)
k,n −mk,n)2

]
= σ2

k,n,

we also know from Lemma 20 (see Equations (48) and (49)) that, provided λ̄nj (j 6= i)

satisfy condition (34), both mk,n and σ2
k,n tend to zero (in probability) as n goes to ∞.

Then, after simple computations, one finds that the MSE relative to β
(i)
n is the following

random variable whose statistics depend on n:

MSEn(λi) =

ki∑
k=1

β2
k,n + nλ2

i d
2
k,n(m2

k,n + σ2
k,n)− 2λidk,nmk,nβk,n

(1 + nλid2
k,n)2

with λj = λ̄nj for j 6= i.

Above, except for λi, the dependence on the block number i was omitted to improve read-
ability.

Now, let λ̆ni denote the minimizer of the following weighted version of the MSEn(λi):

λ̆ni = arg min
λ∈R+

ki∑
k=1

d4
k,n

β2
k,n + nλ2

i d
2
k,n(m2

k,n + σ2
k,n)− 2λidk,nmk,nβk,n

(1 + nλid2
k,n)2

.

Then, the following result holds.
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Proposition 15 For γ = 0 and conditional on θ = θ̄, the following convergences in proba-
bility hold

lim
n→∞

λ̆ni =
‖θ̄(i)‖2

ki
= lim

n→∞
λ̂ni , i = 1, 2, . . . , p. (36)

The proof follows arguments similar to those used in last part of the proof of Theorem
14, see also proof of Theorem 6 in Aravkin et al. (2012), and is therefore omitted.

We can summarize the two main findings reported in this subsection as follows. As the
number of measurements go to infinity:

1. regardless of the value of γ (provided γ does not depend on n; in such a case suitable
conditions on the rate are necessary, see also Remark 11), the proposed estimator will
correctly set to zero only those λi associated with null blocks;

2. when γ = 0, results 2 and 3 of Theorem 14 provide the asymptotic properties of ARD,
showing that the estimate of λi will converge to the energy of the i-th block (divided
by its dimension).

This same value also represents the asymptotic minimizer of a weighted version of
the MSE relative to the i-th block. In particular, the weights change with n, as they

are defined by the singular values d
(i)
k,n (raised at fourth power) that depend on the

trajectories of the other components of λ (see (28)). This roughly corresponds to
giving more emphasis to components of θ which excite directions in the output space
where the signal to noise ratio is high; this indicates some connection with reduced
rank regression where one only seeks to approximate the most important (relative to
noise level) directions in output space.

Remark 16 (Consistency of θ̂PA) It is a simple check to show that, under the assump-
tions of Theorem 14, the empirical Bayes estimator θ̂PA(λ̂n) in (5) is a consistent estimator
of θ̄. Indeed, Theorem 14 shows much more than this, implying that for γ = 0, θ̂PA(λ̂n)
possesses some desirable asymptotic properties in terms on Mean Squared Error, see also
Remark 17.

5.3 Marginal Likelihood and Weighted MSE: Perturbation Analysis

We now provide some additional insights on point 2 above, investigating why the weights
d4
k,n may lead to an effective strategy for hyperparameter estimation.

For our purposes, just to simplify the notation, let us consider the case of a single m-
dimensional block. In this way, λ becomes a scalar and the noise εk,n in (35) is zero-mean
of variance 1/n.

Under the stated assumptions, the MSE weighted by dαk,n, with α an integer, becomes

m∑
k=1

dαk,n
n−1β2

k,n + λ2d2
k,n

(n−1 + λd2
k,n)2

,

whose partial derivative with respect to λ, apart from the scale factor 2/n, is

Fα(λ) =
m∑
k=1

dα+2
k,n

λ− β2
k,n

(n−1 + λd2
k,n)3

.
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Let βk = limn→∞ βk,n and dk = limn→∞ dk,n.4 When n tends to infinity, arguments similar
to those introduced in the last part of the proof of Theorem 14 show that, in probability,
the zero of Fα becomes

λ̆(α) =

∑m
k=1 d

α−4
k β2

k∑m
k=1 d

α−4
k

.

Notice that the formula above is a generalization of the first equality in (36) that was
obtained by setting α = 4. However, for practical purposes, the above expressions are not
useful since the true values of βk,n and βk depend on the unknown θ̄. One can then consider
a noisy version of Fα obtained by replacing βk,n with its least squares estimate, that is,

F̃α(λ) =
m∑
k=1

dα+2
k,n

λ−
(
βk,n +

vk,n√
ndk,n

)2

(n−1 + λd2
k,n)3

,

where the random variable vk,n is of unit variance. For large n, considering small additive
perturbations around the model zk = dkβk, it is easy to show that the minimizer tends to
the following perturbed version of λ̆:

λ̆(α) + 2

∑m
k=1 d

α−5
k βkvk,n√

n
∑m

k=1 d
α−4
k

. (37)

We must now choose the value of α that should enter the above formula. This is far
from trivial since the optimal value (minimizing MSE) depends on the unknown βk. On one
hand, it would seem advantageous to have α close to zero. In fact, α = 0 relates λ̆ to the
minimization of the MSE on θ while α = 2 minimizes the MSE on the output prediction,
see the discussion in Section 4 of Aravkin et al. (2012). On the other hand, a larger value
for α could help in controlling the additive perturbation term in (37) possibly reducing its
sensitivity to small values of dk. For instance, the choice α = 0 introduces in the numerator
of (37) the term βk/d

5
k. This can destabilize the convergence towards λ̆, leading to poor

estimates of the regularization parameters, as, for example, described via simulation studies
in Section 5 of Aravkin et al. (2012). In this regard, the choice α = 4 appears interesting: it
sets λ̆ to the energy of the block divided by m, removing the dependence of the denominator
in (37) on dk. In particular, it reduces (37) to

‖β‖2

m
+

2

m

m∑
k=1

βkvk,n√
ndk

=
m∑
k=1

β2
k

m

(
1 + 2

vk,n
βk
√
ndk

)
. (38)

It is thus apparent that α = 4 makes the perturbation on
β2
k
m dependent on

vk,n
βk
√
ndk

, that

is, on the relative reconstruction error on βk. This appears a reasonable choice to account
for the ill-conditioning possibly affecting least-squares.

Interestingly, for large n, this same philosophy is followed by the marginal likelihood
procedure for hyperparameter estimation up to first-order approximations. In fact, under

4. We are assuming that both of the limits exist. This holds under conditions ensuring that the SVD
decomposition leading to (35) is unique, for example, see the discussion in Section 4 of Bauer (2005),
and combining the convergence of sample covariances with a perturbation result for the Singular Value
Decomposition of symmetric matrices (such as Theorem 1 in Bauer, 2005, see also Chatelin, 1983).
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the stated assumptions, apart from constants, the expression for twice the negative log of
the marginal likelihood is

m∑
k=1

log(n−1 + λd2
k,n) +

z2
k,n

n−1 + λd2
k,n

,

whose partial derivative w.r.t. λ is

m∑
k=1

λd4
k,n + n−1d2

k,n − z2
k,nd

2
k,n

(n−1 + λd2
k,n)2

.

As before, we consider small perturbations around zk = dkβk to find that a critical point
occurs at

m∑
k=1

β2
k

m

(
1 + 2

vk,n
βk
√
ndk

)
,

which is exactly the same minimizer reported in (38).

5.4 Concluding Remarks and Connections to Subsection 4.2

We can now give an interpretation of the results depicted in Figure 3 in view of the theo-
retical analyses developed in this section.

When the regressors are orthogonal, which corresponds, asymptotically, to the case of
white noise defining the entries of G, the results in subsection 5.1 (e.g., Corollary 10) show
that ARD has a clear advantage over GLasso (MKL) in terms of MSE. This explains the
outcomes from the first numerical experiment of Section 4.2 which are depicted in the left
panel of Figure 3.

For the case of general regressors, subsection 5.2 provides insights regarding the proper-
ties of ARD, including its consistency. Ideally, a regularized estimator should adopt those
hyperparameters contained in λ that minimize the MSE objective, but this objective de-
pends on θ̄, which is what we aim to estimate. One could then consider a noisy version
of the MSE function, for example, obtained replacing θ̄ with its least squares estimate.
The problem is that this new objective can be very sensitive to the noise, leading to poor
regularizers as, for example, described by simulation studies in Section 5 of Aravkin et al.
(2012). On an asymptotic basis, ARD circumvents this problem using particular weights
which introduce a bias in the MSE objective but make it more stable, that is, less sensi-
tive to noise. This results in a form of regularization introduced through hyperparameter
estimation. We believe that this peculiarity is key to understanding not only the results in
Figure 3 but also the success of ARD in several applications documented in the literature.

Remark 17 [PARD: penalized version of ARD] Note that, when one considers spar-
sity inducing performance, the use of a penalized version of ARD, for example, given by
PARD, clearly may help in setting more blocks to zero, see Figure 4 (top). In compari-
son with GLasso, the important point here is that the non convex nature of PARD permits
sparsity promotion without adopting too large a value of γ. This makes PARD a slightly
perturbed version of ARD. Hence, PARD is able to induce more sparsity than ARD while
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maintaining similar performance in the reconstruction of the non null blocks. This is illus-
trated by the Monte Carlo results in Section 4.2. To better understand the role of γ, consider
the orthogonal case discussed in Section 5.1, for sake of clarity. Recall the observation in
Remark 11 that model selection consistency requires γ = γn. It is easy to show that the or-
acle property (Zou, 2006) holds provided γn

n →∞ and γn
n2 → 0. However, large γ’s tend to

introduce excessive shrinkage, for example, see Figure 4 (center). It is well known (Leeb and
Pötscher, 2005) that shrinkage estimators that possess the oracle property have unbounded
normalized risk (normalized Mean Squared Error for quadratic loss), meaning that they are
certainly not optimal in terms of Mean Squared Error. To summarize, the asymptotic prop-
erties suggest that to obtain the oracle properties γn should go to infinity at a suitable rate
with n while γ should be set equal to zero to optimize the mean squared error. However, for
finite data length n, the optimal mean squared error properties as a function of γ are found
for a finite but nonzero γ. This fact, also illustrated in Figure 4 (bottom), is not in contrast
w.r.t. Corollary 10: γ may induce a useful bias in the marginal likelihood estimator of the
λi which can reduce the variance. This also explains the experimental results showing that
PARD performs slightly better than ARD.

6. Conclusions

We have presented a comparative study of some methods for sparse estimation: GLasso
(equivalently, MKL), ARD and its penalized version PARD, which is cast in the framework
of the Type II Bayesian estimators. They derive from the same Bayesian model, yet in a
different way. The peculiarities of PARD can be summarized as follows:

• in comparison with GLasso, PARD derives from a marginalized joint density with the
resulting estimator involving optimization of a non-convex objective;

• the non-convex nature allows PARD to achieve higher levels of sparsity than GLasso
without introducing too much regularization in the estimation process, thus providing
a better tradeoff between sparsity and shrinking.

• the MSE analysis reported in this paper reveals the superior performance of PARD
in the reconstruction of the parameter groups different from zero. Remarkably, our
analysis elucidates this issue showing the robustness of the empirical Bayes procedure,
based on marginal likelihood optimization, independently of the correctness of the
priors which define the stochastic model underlying PARD. As a consequence of our
analysis, the asymptotic properties of ARD have also been illuminated.

Many variations of PARD are possible, adopting different prior models for λ. In this paper,
the exponential prior is used to compare different estimators that can be derived from the
same Bayesian model underlying GLasso. In this way, it is shown that the same stochastic
framework can give rise to an estimator derived from a posterior marginalization that has
significant advantages over another estimator derived from posterior optimization.
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Appendix A. Proofs

In this Appendix, we present proofs of the main results in the paper.

A.1 Proof of Proposition 9

Under the simplifying assumption G>G = nI, one can use

Σy(λ)−1 = σ−2
[
I −G(σ2Λ−1 +GTG)−1G>

]
which derives from the matrix inversion lemma to obtain

G(i)>Σy(λ)−1 =
1

nλi + σ2
G(i)>,

and so

tr
(
G(i)>Σ−1

y G(i)
)

=
nki

nλi + σ2
and ‖G(i)>Σ−1

y y‖22 =

(
n

nλi + σ2

)2

‖θ̂(i)
LS‖

2 .

Inserting these expressions into (8) with µi = 0 yields a quadratic equation in λi which
always has two real solutions. One is always negative while the other, given by

1

4γ

[√
k2
i + 8γ‖θ̂(i)

LS‖2 −
(
ki +

4σ2γ

n

)]
is non-negative provided

‖θ̂(i)
LS‖2

ki
≥ σ2

n

[
1 +

2γσ2

nki

]
. (39)

This concludes the proof of (18). The limiting behavior for γ → 0 can be easily verified,
yielding

λ̂i(0) = max

(
0,
‖θ̂(i)
LS‖2

ki
− σ2

n

)
i = 1, .., p.

Also note that θ̂
(i)
LS = 1

n

(
G(i)

)>
y and

(
G(i)

)>
G(i) = nIki while

(
G(i)

)>
G(j) = 0, ∀j 6= i.

This implies that θ̂
(i)
LS ∼ N (θ̄(i), σ

2

n Iki). Therefore

‖θ̂(i)
LS‖

2 n

σ2
∼ χ2(d, µ) d = ki, µ = ‖θ̄(i)‖2 n

σ2
.

This, together with (39), proves also (19).
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A.2 Proof of Proposition 10

In the proof of Proposition 9 it was shown that ‖θ̂(i)
LS‖2

n
σ2 follows a noncentral χ2 distribution

with ki degrees of freedom and noncentrality parameter ‖θ̄(i)‖2 n
σ2 . Hence, it is a simple

calculation to show that

E[λ̂∗i | θ = θ̄] =
‖θ̄(i)‖2

ki
Var[λ̂∗i | θ = θ̄] =

2σ4

kin2
+

4‖θ̄(i)‖2σ2

k2
i n

.

By Corollary 8, the first of these equations shows that E[λ̂∗i | θ = θ̄] = λopti . In addition, since

Var{λ̂∗i } goes to zero as n→∞, λ̂∗i converges in mean square (and hence in probability) to
λopti .

As for the analysis of λ̂i(0), observe that

E[λ̂i(0) | θ = θ̄] = E[λ̂∗i | θ = θ̄]−
∫ ki

σ2

n

0

(
‖θ̂(i)
LS‖2

ki
− σ2

n

)
dP (‖θ̂(i)

LS‖
2 | θ = θ̄)

where dP (‖θ̂(i)
LS‖2 | θ = θ̄) is the measure induced by ‖θ̂(i)

LS‖2. The second term in this
expression can be bounded by

−
∫ ki

σ2

n

0

(
‖θ̂(i)
LS‖2

ki
− σ2

n

)
dP (‖θ̂(i)

LS‖
2 | θ = θ̄) ≤ σ2

n

∫ ki
σ2

n

0
dP (‖θ̂(i)

LS‖
2 | θ = θ̄),

where the last term on the right hand side goes to zero as n → ∞. This proves that λ̂i(0)
is asymptotically unbiased. As for consistency, it is sufficient to observe that Var[λ̂i(0) | θ =
θ̄] ≤ Var[λ̂∗i | θ = θ̄] since “saturation” reduces variance. Consequently, λ̂i(0) converges in
mean square to its mean, which asymptotically is λopti as shown above. This concludes the
proof.

A.3 Proof of Proposition 12

Following the same arguments as in the proof of Proposition 9, under the assumption
G>G = nI we have that

‖G(i)>Σ−1
y y‖22 =

(
n

nλi + σ2

)2

‖θ̂(i)
LS‖

2.

Inserting this expression into (14) with µi = 0, one obtains a quadratic equation in λi which
has always two real solutions. One is always negative while the other, given by

‖θ̂(i)
LS‖√
2γ
− σ2

n
.

is non-negative provided

‖θ̂(i)
LS‖

2 ≥ 2γσ4

n2
. (40)

This concludes the proof of (22).
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The limiting behavior for n → ∞ in Equation (23) is easily verified with arguments

similar to those in the proof of Proposition 10. As in the proof of Proposition 9, ‖θ̂(i)
LS‖2

n
σ2

follows a noncentral χ2(d, µ) distribution with d = ki and µ = ‖θ̄(i)‖2 n
σ2 , so that from (40)

the probability of setting λ̂i(γ) to zero is as given in (24).

A.4 Proof of Lemma 13:

Let us consider the Singular Value Decomposition (SVD)∑p
j=1,j 6=iG

(j)
(
G(j)

)>
λj

n
= PSP>, (41)

where, by the assumption (26), using
∑p
j=1,j 6=iG

(j)(G(j))
>
λj

n ≥
∑p
j=1,j 6=i,λj 6=0 G

(j)(G(j))
>

n min{λj , j :
λj 6= 0} and Lemma 19 the minimum singular value σmin(S) of S in (41) satisfies

σmin(S) ≥ cminmin{λj , j : λj 6= 0}. (42)

Then the SVD of Σ
(i)
v̄ =

∑p
j=1,j 6=iG

(j)
(
G(j)

)>
λj + σ2I satisfies

Σ
(i)
v̄

−1
=
[
P P⊥

] [ (nS + σ2)−1 0
0 σ−2I

] [
P>

P>⊥

]

so that

∥∥∥∥Σ
(i)
v̄

−1
∥∥∥∥ = σ−2.

Note now that

D(i)
n =

(
U (i)
n

)> Σ
(i)
v̄

−1/2
G(i)

√
n

V (i)
n

and therefore, using Lemma 19,

‖D(i)
n ‖ ≤

∥∥∥∥Σ
(i)
v̄

−1/2
∥∥∥∥√cmax = σ−1√cmax

proving thatD
(i)
n is bounded. In addition, again using Lemma 19, condition (26) implies that

∀a, b (of suitable dimensions) s.t. ‖a‖ = ‖b‖ = 1, a>
P>⊥G

(i)

√
n

b ≥ k, k =
√

1− cos2(θmin) ≥
cmin
cmax

> 0. This, using (28), guarantees that

D
(i)
n =

(
U

(i)
n

)> Σ
(i)
v̄

−1/2
G(i)

√
n

V
(i)
n =

(
U

(i)
n

)> (
P (nS + σ2)−1/2P> + P⊥σ

−1P>⊥
)
G(i)
√
n

≥
(
U

(i)
n

)> (
P⊥σ

−1P>⊥
)
G(i)
√
n

≥ kσ−1I

and therefore D
(i)
n is bounded away from zero. It is then a matter of simple calculations to

show that with the definitions (30) then (27) can be rewritten in the equivalent form (29).
�
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A.5 Preliminary Lemmas

This part of the Appendix contains some preliminary lemmas which will be used in the proof
of Theorem 14. This first focuses on the estimator (31). We show that when the hypotheses
of Lemma 13 hold, the estimate (31) satisfies the key assumptions of the forthcoming
Lemma 20. We begin with a detailed study of the objective (4).

Let
I1 :=

{
j : θ̄(j) 6= 0

}
, I0 :=

{
j : θ̄(j) = 0

}
.

Note that these are analogous to I
(i)
1 and I

(i)
0 defined in (33), but do not depend on any

specific index i. We now state the following lemma.

Lemma 18 Writing the objective in (4) in expanded form gives

gn(λ) = log σ2+
1

2n
log det(σ−2Σy(λ))︸ ︷︷ ︸

S1

+
1

2n

∑
j∈I1

‖θ̂(j)(λ)‖2

kjλj︸ ︷︷ ︸
S2

+
1

2n

∑
j∈I0

‖θ̂(j)(λ)‖2

kjλj︸ ︷︷ ︸
S3

+
1

n
γ‖λ‖1︸ ︷︷ ︸
S4

+
1

2nσ2
‖y −

∑
j

Gj θ̂(j)(λ)‖2︸ ︷︷ ︸
S5

,

where θ̂(λ) = ΛGTΣ−1
y y (see (5)), kj is the size of the jth block, and dependence on n has

been suppressed. For any minimizing sequence λn, we have the following results:

1. θ̂n →p θ̄.

2. S1, S2, S3, S4 →p 0.

3. S5 →p
1
2 .

4. nλnj →p ∞ for all j ∈ I1.

Proof First, note that 0 ≤ Si for i ∈ {1, 2, 3, 4}. Next,

S5 =
1

2nσ2
‖y −

∑
j

Gj θ̄(j)(λ) +
∑
j

Gj
(
θ̄(j)(λ)− θ̂(j)(λ)

)
‖2

=
1

2nσ2
‖ν +

∑
j

Gj
(
θ̄(j)(λ)− θ̂(j)(λ)

)
‖2

=
1

2nσ2
‖ν‖2 +

1

2nσ2
νT
∑
j

Gj
(
θ̄(j)(λ)− θ̂(j)(λ)

)
+

1

2nσ2
‖
∑
j

Gj
(
θ̄(j)(λ)− θ̂(j)(λ)

)
‖2.

(43)
The first term converges in probability to 1

2 . Since ν is independent of all Gj , the middle

term converges in probability to 0. The third term is the bias incurred unless θ̂ = θ̄. These
facts imply that, ∀ε > 0,

lim
n→∞

P

[
S5(λ(n)) >

1

2
− ε
]

= 1 . (44)
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Next, consider the particular sequence λ̄nj =
‖θ̄j‖2
kj

. For this sequence, it is immediately clear

that Si →p 0 for i ∈ {2, 3, 4}. To show S1 →p 0, note that
∑
λiGiG

T
i ≤ max{λi}

∑
GiG

T
i ,

and that the nonzero eigenvalues of GGT are the same as those of GTG. Therefore, we have

S1 ≤
1

2n

m∑
i=1

log(1 + nσ−2 max{λ}cmax) = OP

(
log(n)

n

)
→p 0 .

Finally S5 →p
1
2 by (43), so in fact, ∀ε > 0,

lim
n→∞

P

[∣∣∣∣gn(λ̄(n))− 1

2
− log(σ2)

∣∣∣∣ < ε

]
= 1 . (45)

Since (45) holds for the deterministic sequence λ̄n, any minimizing sequence λ̂n must satisfy,
∀ε > 0,

lim
n→∞

P

[
gn(λ̂(n)) <

1

2
+ log(σ2) + ε

]
= 1

which, together with (44), implies (45)

Claims 1, 2, 3 follow immediately. To prove claim 4, suppose that for a particular mini-
mizing sequence λ̌(n), we have nλ̌nj 6→p ∞ for j ∈ I1. We can therefore find a subsequence

where nλ̌nj ≤ K, and since S2(λ̌(n)) →p 0, we must have ‖θ̂(j)(λ̌)‖ →p 0. But then there

is a nonzero bias term in (43), since in particular θ̄(j)(λ) − θ̂(j)(λ) = θ̄(j)(λ) 6= 0, which
contradicts the fact that λ̌(n) was a minimizing sequence.

We now state and prove a technical Lemma which will be needed in the proof of Lemma
20.

Lemma 19 Assume (26) holds; then the following conditions hold

(i) Consider I = [I(1), . . . , I(pI)] of size pI to be any subset of the indices [1, . . . , p], so
p ≥ pI and define

G(I) =
[
G(I(1)) . . . G(I(pI))

]
,

obtained by taking the subset of blocks of columns of G indexed by I. Then

cminI ≤
(G(I))TG(I)

n
≤ cmaxI . (46)

(ii) Let Ic be the complementary set of I in [1, . . . , p], so that Ic ∩ I = ∅ and I ∪ Ic =
[1, . . . , p]. Then the minimal angle θmin between the spaces

GI := col span{G(i)/
√
n, i ∈ I} and GIc := col span{G(j)/

√
n : j ∈ Ic}

satisfies:

θmin ≥ acos

(√
1− cmin

cmax

)
> 0.
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Proof Result (46) is a direct consequence of Horn and Johnson (1994), see Corollary
3.1.3. As far as condition (ii) is concerned we can proceed as follows: let UI and UIc be
orthonormal matrices whose columns span GI and GIc , so that there exist matrices TI and
TIc so that

G(I)/
√
n = UITI ,

G(Ic)/
√
n = UIcTIc

where G(Ic) is defined analogously to G(I). The minimal angle between GI and GIc satisfies

cos(θmin) =
∥∥∥U>I UIc∥∥∥ .

Now observe that, up to a permutation of the columns which is irrelevant, G/
√
n =

[UITI UIcTIc ], so that

U>I G/
√
n = [TI U>I UIc TIc ] = [I U>I UIc ]

[
TI 0
0 TIc

]
.

Denoting with σmin(A) and σmax(A) the minimum and maximum singular values of a matrix
A, it is a straightforward calculation to verify that the following chain of inequalities holds:

cmin = σmin(G>G/n) ≤ σ2
min

(
U>
I G/

√
n
)

= σ2
min

(
[I U>

I UIc ]

[
TI 0
0 TIc

])
≤ σ2

min

(
[I U>

I UIc ]
)
σ2
max

([
TI 0
0 TIc

])
= σ2

min

(
[I U>

I UIc ]
)

max
(
σ2
max(TI), σ2

max(TIc)
)

≤ σ2
min

(
[I U>

I UIc ]
)
cmax.

Observe now that σ2
min

(
[I U>I UIc ]

)
= 1− cos2(θmin) so that

cmin ≤ (1− cos2(θmin))cmax

and, therefore,

cos2(θmin) ≤ 1− cmin
cmax

from which the thesis follows.

Lemma 20 Assume that the spectrum of G satisfies (25). For any index i, let I
(i)
1 and I

(i)
0

be as in (33). Finally, assume aλnj , which may depend on n, are bounded and satisfy:

lim
n→∞

fn = +∞ where fn := min
j∈I(i)

1

nλnj . (47)

Then, conditioned on θ, ε
(i)
n in (30) and (29) can be decomposed as

ε(i)n = mεn(θ) + vεn .

The following conditions hold:

Ev
[
ε(i)n

]
= mεn(θ) = OP

(
1√
fn

)
vεn = OP

(
1√
n

)
(48)
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so that ε
(i)
n |θ converges to zero in probability (as n→∞). In addition

V arv{ε(i)n } = Ev
[
vεnv

>
εn

]
= OP

(
1

n

)
. (49)

If in addition5

n1/2

(
G(i)

)>
G(j)

n
= OP (1) ; j ∈ I(i)

1 (50)

then

mεn(θ) = OP

(
1√
nfn

)
. (51)

Proof Consider the Singular Value Decomposition

P̄1S̄1P̄
>
1 :=

1

n

∑
j∈I1

G(j)
(
G(j)

)>
λnj . (52)

Using (47), there exist n̄ so that, ∀ n > n̄ we have 0 < λnj ≤ M < ∞, j ∈ I
(i)
1 . Oth-

erwise, we could find a subsequence nk so that λnkj = 0 and hence nkλ
nk
j = 0, con-

tradicting (47). Therefore, the matrix P̄1 in (52) is an orthonormal basis for the space

G1 := col span{G(j)/
√
n : j ∈ I(i)

1 }. Let also T (j) be such that G(j)/
√
n = P̄1T

(j), j ∈ I(i)
1 .

Note that by assumption (25) and lemma 19

‖T (j)‖ = OP (1) ∀ j ∈ I(i)
1 . (53)

Consider now the Singular Value Decomposition

[
P1 P0

] [ S1 0
0 S0

] [
P>1
P>0

]
:=

1

n

∑
j∈I1

G(j)
(
G(j)

)>
λnj︸ ︷︷ ︸ +

1

n

∑
j∈I0

G(j)
(
G(j)

)>
λnj︸ ︷︷ ︸

= P̄1S̄1P̄
>
1 + ∆.

(54)
For future reference note that ∃TP̄1

: P̄1 =
[
P1 P0

]
TP̄1

. Now, from (28) we have that

Σ
(i)
v̄

−1
G(i)

√
n

V (i)
n

(
D(i)
n

)−1
= Σ

(i)
v̄

−1/2
U (i)
n . (55)

Using (55) and defining

P :=
[
P1 P0

]
S :=

[
S1 0
0 S0

]
,

5. This is equivalent to say that the columns of G(j), j = 1, .., k, j 6= i are asymptotically orthogonal to the
columns of G(i).
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Equation (30) can be rewritten as:

ε
(i)
n =

(
U

(i)
n

)> Σ
(i)
v̄

−1/2
v̄√

n

=
(
D

(i)
n

)−1 (
V

(i)
n

)> (G(i))
>

√
n

Σ
(i)
v̄

−1
v̄√
n

=
(
D

(i)
n

)−1 (
V

(i)
n

)> (G(i))
>

√
n

[
P P⊥

] [ (nS + σ2I)−1 0
0 σ−2I

] [
P>

P>⊥

]
v̄√
n

=
(
D

(i)
n

)−1 (
V

(i)
n

)> (G(i))
>

√
n

[
P P⊥

] [ (nS + σ2I)−1 0
0 σ−2I

] [
P>

P>⊥

]
×

[∑
j∈I(i)

1

G(j)
√
n
θ(j) + v√

n

]
=

(
D(i)
n

)−1 (
V (i)
n

)> (G(i)
)>

√
n

P (nS + σ2I)−1

[
P>1 P1

P>0 P1

]∑
j∈I1

T (j)θ(j)

︸ ︷︷ ︸
mεn (θ)

+

+
(
D(i)
n

)−1 (
V (i)
n

)> (G(i)
)>

√
n

[
P P⊥

] [ (nS + σ2I)−1 0
0 σ−2I

]
vp̄√
n︸ ︷︷ ︸

vεn

where the last equation defines mεn(θ) and vεn , the noise

vP̄ :=

[
P>

P>⊥

]
v

is still a zero mean Gaussian noise with variance σ2I and G(j)
√
n

= P̄1T
(j) provided j 6= i.

Note that mεn does not depend on v and that Evvεn = 0. Therefore mεn(θ) is the mean
(when only noise v is averaged out) of εn. As far as the asymptotic behavior of mεn(θ) is
concerned, it is convenient to first observe that

(nS + σ2I)−1

[
P>1 P̄1

P>0 P̄1

]
=

[
(nS1 + σ2I)−1P>1 P̄1

(nS0 + σ2I)−1P>0 P̄1

]
and that the second term on the right hand side can be rewritten as

(nS0 + σ2I)−1P>0 P̄1 =


(n[S0]1,1 + σ2)−1P>0,1P̄1

(n[S0]22 + σ2)−1P>0,2P̄1

...
(n[S0]m−k,m−k + σ2)−1P>0,m−kP̄1

 (56)

where [S0]ii is the i − th diagonal element of S0 and P0,i is the i − th column of P0. Now,
using Equation (54) one obtains that

n[S0]ii = P>0,iPnSP
>P0,i = P>0,i

(
P̄1nS̄1P̄

>
1 + n∆

)
P0,i

≥ P>0,iP̄1nS̄1P̄
>
1 P0,i

≥ σmin(nS̄1)P>0,iP̄1P̄
>
1 P0,i

= σmin(nS̄1)‖P>0,iP̄1‖2.
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An argument similar to that used in (42) shows that

σmin(nS̄1) ≥ cminmin{nλnj , j ∈ I
(i)
1 } = cminfn (57)

also holds true; denoting ‖P>0,iP̄1‖ = gn, the generic term on the right hand side of (56)
satisfies

‖(n[S0]ii + σ2)−1P>0,iP̄1‖ ≤
‖P>0,iP̄1‖

nσmin(S̄1)‖P>0,iP̄1‖2+σ2

≤ k min(gn, (fngn)−1)

= k√
fn

min(
√
fngn, (

√
fngn)−1)

≤ k√
fn

(58)

for some positive constant k. Now, using Lemma 13, D
(i)
n is bounded and bounded away

from zero in probability, so that ‖D(i)
n ‖ = OP (1) and ‖

(
D

(i)
n

)−1
‖ = OP (1). In addition,

V
(i)
n is an orthonormal matrix and ‖G(i)

√
n
‖ = OP (1). Last, using (57) and (25), we have

‖(nS1 + σ2I)−1‖ = OP (1/n). Combining these conditions with (53) and (58), we obtain
the first expression in (48). As far as the asymptotics on vεn are concerned, it suffices to
observe that

w>n vP̄ /
√
n = OP (1/

√
n) if : ‖wn‖ = OP (1).

The variance (w.r.t. noise v) V arv{εn} = Ev
[
vεnv

>
εn

]
satisfies

V arv{εn} =
σ2

n

(
U (i)
n

)>
Σ

(i)
v̄

−1 (
U (i)
n

)
so that, using the condition

∥∥∥∥Σ
(i)
v̄

−1
∥∥∥∥ = σ−2 derived in Lemma 13, and the fact that U

(i)
n

has orthonormal columns, the condition V arv{εn} = OP
(

1
n

)
in (49) follows immediately.

If, in addition, (50) holds then (53) becomes

‖T (j)‖ = OP (1/
√
n) j = 1, ..., k; j 6= k

so that an extra
√
n appears in the denominator in the expression of mε(θ) yielding (51).

This concludes the proof.

Before we proceed, we review a useful characterization of convergence. While it can be
stated for many types of convergence, we present it specifically for convergence in probabil-
ity, since this is the version we will use.

Lemma 21 The sequence an converges in probability to a (written an →p a) if and only if
every subsequence an(j) of an has a further subsequence an(j(k)) with an(j(k)) →p a.

Proof If an →p a, this means that for any ε > 0, δ > 0 there exists some nε,δ such that
for all n ≥ nε,δ, we have P (|an − a| > ε) ≤ δ. Clearly, if an →p a, then an(j) →p a for every
subsequence an(j) of an. We prove the other direction by contrapositive.

Assume that an 6→p a. That means precisely that there exist some ε > 0, δ > 0 and a
subsequence an(j) so that P (|a − an(j)| > ε) ≥ δ. Therefore the subsequence an(j) cannot
have further subsequences that converge to a in probability, since every term of an(j) stays
ε-far away from a with positive probability δ.

Lemma 21 plays a major role in the proof of the main result.
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A.6 Proof of Theorem 14

Since the hypotheses of Lemma 13 hold, we know wk,n → 0 in (32). Then Lemma 18
guarantees that condition (47) holds true (in probability) so that Lemma 20 applies, and
therefore vk,n →p 0 in (32). We now give the proofs of results 1-4 in Theorem 14.

1. The reader can quickly check that d
dγ λ̄

γ
1 < 0, so λ̄γ1 is decreasing in γ. The limit

calculation follows immediately from L’Hopital’s rule yielding limγ→0+ λγ1 = λ̄1.

2. We use the convergence characterization given in Lemma 21. Pick any subsequence

λ̂
n(j)
1 of λ̂n1 . Since {Vn(j)} is bounded, by Bolzano-Weierstrass it must have a con-

vergent subsequence Vn(j(k)) → V , where V satisfies V TV = I by continuity of the

2-norm. The first-order optimality conditions for λ̂n1 > 0 are given by

0 = f1(λ,w, v, η) =
1

2

k1∑
k=1

−η2
k − vk

(λ+ wk)2
+

1

λ+ wk
+ γ , (59)

and we have f1(λ, 0, 0, V T θ̄(1)) = 0 if and only if λ = λ̄γ1 . Taking the derivative we
find

d

dλ
f1(λ, 0, 0, V T θ̄(1)) =

‖θ̄(1)‖2

λ3
− k1

2λ2
,

which is nonzero at λγ1 for any γ, since the only zero is at 2‖θ̄
(1)‖2
k1

= 2λ̄1 ≥ 2λ̄γ1 .

Applying the Implicit Function Theorem to f at
(
λγ1 , 0, 0, V

>θ̄(1)
)

yields the existence

of neighborhoods U of (0, 0, V >θ̄(1)) and W of λγ1 such that

f(φ(w, v, η), w, v, η) = 0 ∀ (w, v, η) ∈ U .

In particular, φ(0, 0, V >θ̄(1)) = λγ1 . Since (wn(j(k)), vn(j(k)), ηn(j(k)))→p (0, 0, V >θ̄(1)),
we have that for any δ > 0 there exist some kδ so that for all n(j(k)) > n(j(kδ)) we
have P ((wn(j(k), vn(j(k)), ηn(j(k))) 6∈ U) ≤ δ. For anything in U , by continuity of φ we
have

λ̂
n(j(k))
1 = φ(wn(j(k)), vn(j(k)), ηn(j(k)))→p φ(0, 0, V >θ̄(1)) = λγ1 .

These two facts imply that λ̂
n(j(k))
1 →p λ

γ
1 . We have shown that every subsequence

λ̂
n(j)
1 has a further subsequence λ̂

n(j(k))
1 →p λ

γ
1 , and therefore λ̂n1 →p λ

γ
1 by Lemma 21.

3. In this case, the only zero of (59) with γ = 0 is found at λ̄1, and the derivative of the
optimality conditions is nonzero at this estimate, by the computations already given.
The result follows by the implicit function theorem and subsequence argument, just
as in the previous case.

4. Rewriting the derivative (59)

1

2

k1∑
k=1

λ− vk − η2
k + wk

(λ+ wk)2
+ γ ,

we observe that for any positive λ, the probability that the derivative is positive tends
to one. Therefore the minimizer λγ1 converges to 0 in probability, regardless of the
value of γ.
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