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Abstract. We present a Kalman smoothing framework based on modeling errors using the
heavy tailed Student’s t distribution, along with algorithms, convergence theory, implementation,
and several important applications. The computational effort per iteration grows linearly with the
length of the time series, and all smoothers allow nonlinear process and measurement models. Robust
smoothers form an important subclass of smoothers within this framework. These smoothers achieve
reasonable performance when faced with noise misspecification or model error, for example, in situ-
ations where measurements are highly contaminated by outliers or include data unexplained by the
forward model. Robust smoothers are developed by modeling measurement errors using the heavy
tailed Student’s t distribution and outperform the recently proposed �1-Laplace smoother in extreme
situations with data containing 20% or more outliers. A second special application we consider in
detail allows tracking sudden changes in the state. It is developed by modeling process noise using
the Student’s t distribution, and the resulting smoother can track sudden changes in the state. These
features can be used separately or in tandem, and we present a general smoother algorithm and open
source implementation, together with convergence analysis that covers a wide range of smoothers. A
key ingredient of our approach is a technique to deal with the nonconvexity of the Student’s t loss
function. Numerical results for linear and nonlinear models illustrate the potential of the modeling
framework proposed, showcasing new smoothers for robust and tracking applications, as well as for
mixed problems that have both types of features.
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convex-composite
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1. Introduction. The Kalman filter is an efficient recursive algorithm for esti-
mating the state of a dynamic system [22]. Traditional formulations are based on �2
penalties on model deviations and are optimal under assumptions of linear dynamics
and Gaussian noise. Kalman filters are used in a wide array of applications, includ-
ing navigation, medical technologies, and econometrics [13, 32, 36]. Many of these
problems are nonlinear and may require smoothing over past data in both online and
offline applications to significantly improve estimation performance [18].

This paper focuses on two important areas in Kalman smoothing: robustness with
respect to outliers in measurement data, and improved tracking of quickly changing
system dynamics. Robust filters and smoothers have been a topic of significant in-
terest since the 1970s; see, e.g., [23, 27, 31]. Recent efforts have focused on building
smoothers that are robust to outliers in the data [2, 3, 16], using convex loss functions
such as �1, Huber, or Vapnik in place of the �2 penalty [20]. Here we use robustness
in the statistical sense, where it means that the estimator achieves adequate perfor-
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mance when faced with outliers or unexplained events; these may arise either as large
measurement errors or due to misspecification of the dynamic model.

There have also been recent efforts to design smoothers able to better track fast
system dynamics, e.g., jumps in the state values. A contribution can be found in
[26], where the Laplace distribution, rather than the Gaussian, is used to model
transition (process) noise. This introduces an �1 penalty on the state evolution in
time, resulting in an estimator interpretable as a dynamic version of the well-known
LASSO procedure [33].

For known dynamics, all of the smoothers mentioned above can be derived by
modeling the process and the measurement noise using log-concave densities, taking
the form

(1.1) p(·) ∝ exp(−ρ(·)), ρ convex.

Formulations exploiting (1.1) are nearly ubiquitous, in part because they correspond
to convex optimization problems in the linear case. However, in order to model a
regime with large outliers or sudden jumps in the state, we want to look beyond (1.1)
and allow heavy tailed densities, i.e., distributions whose tails are not exponentially
bounded. All such distributions necessarily have nonconvex loss functions [7, Theorem
2.1]. Nonetheless, models with heavy tailed densities have been very useful in appli-
cations related to glint noise [21], air turbulence [17], and asset returns [28] among
others. Heavier tails are also a reasonable model for a contaminated normal distri-
bution where “bad” measurements occur due to equipment malfunction, secondary
noise sources, or other anomalies.

Several interesting candidates are possible; in this contribution we focus on the
Student’s t distribution for its computational properties in the context of the applica-
tions we consider. The Student’s t distribution was successfully applied to a variety
of robust inference applications in [24] and is closely related to redescending influence
functions [19].

We emphasize that Student’s t, as well as other heavy tailed distributions, are
very useful models for errors. In particular, heavy tailed statistical models can take
up the slack for significant deviations between observed and predicted data, allowing
effective smoothing techniques in challenging contexts. It is essential to note that our
concern is not with situations where errors are distributed according to the Student’s t
distribution; rather, we are interested in robust state estimation in a variety of difficult
scenarios, including data contamination as well as sudden changes in the underlying
trend that are not realizations from known or common distributions. This is reflected
in the numerical experiments, where the efficacy of the approach is demonstrated using
simulations where significant contamination is present, and where the contamination
does not arise from the Student’s t distribution.

In this work, we propose a broad smoothing framework that allows any compo-
nent of the measurement residual errors or transition noise to be modeled using either
Gaussians or heavy tailed distributions. We illustrate the framework for several ap-
plications, including robust and trend smoothing. An important simple example
in this family of smoothers is the T-robust smoother, derived from a dynamic sys-
tem with measurement errors modeled by the Student’s t distribution. This is a
further robustification of the estimator proposed by [2], which uses the Laplace den-
sity. The redescending influence function of the Student’s t guarantees that outliers
in the measurements have less of an effect on the smoothed estimate than any convex
loss function. In practice, the T-robust smoother performs better than the smoother
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of [2] for cases with a high proportion of outliers. A second important example is
the T-trend smoother, derived starting from a dynamic system with transition noise
modeled by the Student’s t distribution. This allows T-trend to better track sudden
changes in the state. One may consider using both aspects simultaneously; in addition,
practitioners need the ability to distinguish between different measurements based on
prior information of measurement fidelity, and between different states based on prior
knowledge of trend stability.

In the context of Kalman filtering/smoothing, the idea of using Student’s t dis-
tributions to model the system noise for robust and tracking applications was first
proposed by [15]. However, our work differs from that approach in some important
aspects. First, our analysis includes nonlinear measurement and process models. Sec-
ond, we provide a novel approach to overcome the nonconvexity of the Student’s t-loss
function. Third, the approach we propose can be used to solve any smoothing problem
that uses Student’s t modeling for any process or measurement components.

The basic approach differs significantly from that of [15], who propose using the
random information matrix (i.e., full Hessian) when possible, or its expectation (Fisher
information) when the Hessian is indefinite. Instead, we propose a modified Gauss–
Newton method which builds information about the curvature of the Student’s t-log
likelihood into the Hessian approximation and is guaranteed to be positive definite.
As we show in section 5, the new approach is provably convergent and, unlike the ap-
proach in [15], uses information about the relative sizes of the residuals in computing
descent directions, allowing us to control the effects of outliers on the Hessian ap-
proximation as the optimization proceeds (which is not true of methods using Fisher
information).

The major computational tradeoff in using nonconvex penalties is that the loss
function in the convex case is used directly [2], i.e., is not approximated, whereas in
the nonconvex case, the loss function must be iteratively approximated with a local
convex approximation. This requires a fundamental extension of the convergence
analysis.

A conference proceeding previewing this paper appears in [6]. In the current
work, we present a general smoothing framework that includes the two smoothers
presented in [6] as special cases, together with a generalized convergence theory that
covers the entire range of smoothers under discussion. In doing so, we correct a flaw
in the statement of the main convergence result in [6]. We also provide an open-source
implementation of the general algorithm [1], with a simple interface that enables the
user to customize which measurement or process residual components to model using
the Student’s t penalty. Using this implementation, we present additional numerical
experiments that show how robust and trend smoothing can be implemented simul-
taneously. Finally, we apply the smoothers to real data.

The paper is organized as follows. In section 2, we introduce the multivariate
Student’s t distribution, review its advantages for error modeling over log-concave
distributions, and introduce the dynamic model class of interest for Kalman smooth-
ing. In section 3, we describe a statistical modeling framework, where we can use
Student’s t to model any process or measurement residual components. We describe
all objectives that can arise this way and provide a comprehensive method for ob-
taining approximate second order information for these objectives. In section 4, we
provide details for three important special smoothers: T-robust (robust against large
measurement noise), T-trend (able to follow sharp changes in the state), and the
double-T smoother (incorporates both aspects). In section 5, we present the algo-
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Fig. 1. Gaussian, Laplace, and Student’s t densities, corresponding negative log likelihoods,
and influence functions.

rithm and a convergence theory for the entire framework, which also extends the
convergence theory developed in [2]. In section 6, we present numerical experiments
that illustrate the behavior of all three special smoothers, including illustrations of
linear and nonlinear models and results for real and simulated data. We end the paper
with concluding remarks.

2. Error modeling with Student’s t. For a vector u ∈ R
n and any positive

definite matrix M ∈ R
n×n, let ‖u‖M :=

√
uTMu. We use the following generalization

of the Student’s t distribution:

p(vk|μ) =
Γ( s+m

2 )

Γ( s2 ) det[πsR]1/2

(
1 +

‖vk − μ‖2
R

−1

s

)−(s+m)
2

,(2.1)

where μ is the mean, s is the degrees of freedom, m is the dimension of the vector
vk, and R is a positive definite matrix. A comparison of this distribution with the
Gaussian and Laplacian distribution appears in Figure 1. Note that the Student’s t
distribution has much heavier tails than the others and that its influence function is
redescending; see [25] for a discussion of influence functions. This means that as we
pull a measurement further and further away, its “influence” decreases to 0, so it is
eventually ignored by the model. Note also that the �1-Laplace is peaked at 0, while
the Student’s t distribution is not, and so a Student’s t fit will not in general drive
residuals to be exactly 0.

Before we proceed with the Kalman smoothing application, we review a result
from [7], illustrating the fundamental modeling advantages of heavy tailed distribu-
tions.

Theorem 2.1. Consider any scalar density p arising from a symmetric convex
coercive and differentiable penalty ρ via p(x) = exp(−ρ(x)), and take any point t0 with
ρ′(t0) = α0 > 0. Then for all t2 > t1 ≥ t0, the conditional tail distribution induced by
p(x) satisfies

(2.2) Pr(|y| > t2 | |y| > t1) ≤ exp(−α0[t2 − t1]) .

When t1 is large, the condition |y| > t1 indicates that we are looking at an
outlier. However, as shown by the theorem, any log-concave statistical model treats
the outlier conservatively, dismissing the chance that |y| could be significantly bigger
than t1. Contrast this behavior with that of the Student’s t distribution. When
s = 1, the Student’s t distribution is simply the Cauchy distribution, with a density
proportional to 1/(1 + y2). Then we have that

lim
t→∞Pr(|y| > 2t | |y| > t) = lim

t→∞

π
2 − arctan(2t)
π
2 − arctan(t)

=
1

2
.
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Heavy tailed distributions thus provide a fundamental advantage in cases where out-
liers may be particularly large, or, in the second application we discuss, very sudden
trend changes may be present.

We now turn to the Kalman smoothing framework. We use the following general
model for the underlying dynamics: for k = 1, . . . , N

(2.3)
xk = gk(xk−1) + wk,
zk = hk(xk) + vk

with initial condition g1(x0) = g0 + w1, with g0 a known constant, and where gk :
R

n → R
n are known smooth process functions, and hk : Rn → R

m are known smooth
measurement functions. Moreover, wk and vk are mutually independent, and with
known covariance matrices Qk ∈ R

n×n and Rk ∈ R
m×m, respectively. Note that here

we assume all the measurement vectors have consistent dimension m. The variable
dimension case is a straightforward extension.

We now briefly explain how to use Student’s t error modeling to design smoothers
with two important characteristics. In order to obtain smoothers that are robust to

heavily contaminated data, the vector vk ∈ R
m(k) can be modeled zero-mean Student’s

t measurement noise (2.1) of known covariance Rk ∈ R
m(k)×m(k) and degrees of

freedom s. To design smoothers that can track sudden changes in the state, the
process residuals wk are modeled using Student’s t noise. These features may be
employed separately or in tandem, and we always assume that the vectors {wk}∪{vk}
are all mutually independent.

In the next section, we design a smoother that finds the maximum a posteriori
(MAP) estimates of {xk} for a general formulation, where Student’s t or least squares
modeling can be used for any or all process and measurement residuals. We then
specialize it to recover the applications discussed above.

3. Generalized smoothing framework. Given a sequence of column vectors
{uk} and matrices {Tk} we use the notation

vec({uk}) =

⎡⎢⎢⎢⎣
u1

u2
...

uN

⎤⎥⎥⎥⎦ , diag({Tk}) =

⎡⎢⎢⎢⎢⎣
T1 0 · · · 0

0 T2

. . .
...

...
. . .

. . . 0
0 · · · 0 TN

⎤⎥⎥⎥⎥⎦ .

We also make the definitions

R = diag({Rk}),
Q = diag({Qk}),
x = vec({xk}),

w(x) = vec({xk − gk(xk−1)}),
v(x) = vec({zk − hk(xk)}),

and, as in (2.3), write

wk = xk − gk(xk−1) and vk = zk − hk(xk) .

In the most general case, we suppose that any of the components wi
k or vik can be

modeled using either Gaussian or Student’s t distributions.
For the sake of modeling clarity, assume that subcomponents of measurement and

process residuals are consistently modeled across time points k; this gives the user
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the ability to select which subvectors of process and measurement residuals to model
using Student’s t, but not to assign different penalties to different time points.

Denote by wN
k and wS

k the subvectors of the process residuals wk, and denote by
vNk and vSk the subvectors of the measurement residuals vk that are to be modeled
using the Gaussian and Student’s t distributions, respectively. Assume that all of
these subvectors are mutually independent, and denote the corresponding covariance
submatrices by QN

k , QS
k , R

N
k , and RS

k . Maximizing the likelihood for this model is
equivalent to minimizing the associated negative log likelihood

− lnp({vNk }, {vSk }, {wN
k }, {wS

k }),

where p({vNk }, {vSk }, {wN
k }, {wS

k }) is the probability density function evaluated at
the observed data, that is, it is the product of the individual Gaussian and Student
t densities at the given data points. By dropping those terms associated with the
normalizing constants, this negative log likelihood can be explicitly written as follows:

(3.1)
N∑

k=1

s ln

⎡⎣1 + ‖vSk ‖2(RS
k )

−1

s

⎤⎦+ ‖vNk ‖2
(R

N
k )

−1 + r ln

⎡⎣1 + ‖wS
k ‖2(QS

k )
−1

r

⎤⎦+ ‖wN
k ‖2

(Q
N
k )

−1 ,

where s and r are degree of freedom parameters corresponding to vSk and wS
k .

A first-order accurate affine approximation to our model with respect to direction
d = vec{dk} near a fixed state sequence x is given by

w̃(x; d) = vec({xk − gk(xk−1)−Gkdk}),
ṽ(x; d) = vec({zk − hk(xk)−Hkdk}),

where

Gk = g
(1)
k (xk−1) and Hk = h

(1)
k (xk) .

Set QN+1 = In and gN+1(xN ) = 0 (where In is the n×n identity matrix) so that the
formulas are also valid for k = N + 1.

We minimize the nonlinear nonconvex objective in (3.1) by iteratively solving
quadratic programming (QP) subproblems of the form

(3.2) min 1
2d

TCd+ aTd w.r.t. d ∈ R
nN ,

where a is the gradient of objective (4.1) with respect to x and C has the form

(3.3) C =

⎡⎢⎢⎢⎣
C1 +Φ1 AT

2 0

A2 C2 +Φ2 AT
3 0

0
. . .

. . .
. . .

0 AN CN +ΦN

⎤⎥⎥⎥⎦ .

Note that this matrix is symmetric block tridiagonal. This structure is essential to the
computational results for a wide variety of Kalman filtering and smoothing algorithms;
it was noted early on in [14, 38].

In order to fully describe Ck and Ak, first let WN , WS denote the indices associ-
ated to all subvectors wN

k and wS
k within wk. For example, if the Student’s t density
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is used for all measurement residuals, and the Gaussian penalty is used for all process
residuals, then WN = {1, . . . , n}, WS = ∅.

Now define Ak, Ck,Φk ∈ R
n×n as follows:

Ak(WS ,WS) = − r(QS
k )

−1GS
k

r + ‖wS
k ‖2(QS

k )
−1

,

Ak(WN ,WN )= −(QN
k )−1GN

k ,(3.4)

Ck(WN ,WN )= (GN
k+1)

T(QN
k+1)

−1GN
k+1 + (QN

k )−1,

Ck(WS ,WS) =
r(GS

k+1)
T(QS

k+1)
−1GS

k+1

r + ‖wS
k+1‖2(QS

k+1)
−1

+
r(QS

k )
−1

r + ‖wS
k ‖2(QS

k )
−1

,(3.5)

Φk =
s(HS

k )
T(RS

k )
−1HS

k

(s+ ‖vSk ‖2(RS
k )

−1)
+ (HN

k )T(RN
k )−1HN

k .(3.6)

The entries of Ak and Ck not explicitly defined in (3.4) and (3.5) are set to 0.
The Hessian approximation terms Φk in (3.6) are motivated in section 5 and

are crucial to both practical performance and theoretical convergence analysis. The
solutions to the subproblem (3.2) have the form d = −C−1a and can be found in an
efficient and numerically stable manner in O(n3N) steps, since C is tridiagonal and
positive definite (see [9]).

4. Special cases. We now show how the general framework of the previous
section can be specialized to obtain three smoothers. The first two are T-robust
and T-trend, which are presented in [6]. The third is a new smoother where all
measurement and process residuals are modeled using Student’s t.

The objective corresponding to T-robust is obtained from (3.1) by taking wN
k =

wk, w
S
k = 0, vNk = 0, vSk = vk:

1

2

N∑
k=1

s ln

[
1 +

‖vk‖2R−1
k

s

]
+ ‖wk‖2Q−1

k
.(4.1)

The terms Ak, Ck,Φk in (3.4)–(3.6) become

Ak = −Q−1
k Gk,

Ck = Q−1
k +GT

k+1Q
−1
k+1Gk+1,

Φk =
sHT

k R
−1
k Hk

(s+ ‖vk‖2R−1
k
)
.(4.2)

The objective corresponding to T-trend is obtained from (3.1) by taking wN
k = 0,

wS
k = wk, v

N
k = vk, v

S
k = 0:

(4.3)
1

2

N∑
k=1

r ln

[
1 +

‖wk‖2Q−1
k

r

]
+ ‖vk‖2R−1

k
.
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The terms Ak, Ck,Φk in (3.4)–(3.6) become

Ak = − rQ−1
k Gk

r + ‖wk‖2Q−1
k

,

Ck =
rQ−1

k

r + ‖wk‖2Q−1
k

+
rGT

k+1Q
−1
k+1Gk+1

r + ‖wk+1‖2Q−1
k+1

,

Φk = HT
k R

−1
k Hk.(4.4)

Finally, we can apply Student’s t to all process and measurement residuals by
taking wN

k = 0, wS
k = wk, v

N
k = 0, vSk = vk to obtain

(4.5)
1

2

N∑
k=1

rk ln

[
1 +

‖wk‖2Q−1
k

rk

]
+ sk ln

[
1 +

‖vk‖2R−1
k

sk

]
.

The terms Ak, Ck,Φk in (3.4)–(3.6) become

Ak = − rQ−1
k Gk

r + ‖wk‖2Q−1
k

,

Ck =
rQ−1

k

r + ‖wk‖2Q−1
k

+
r(Gk+1)

TQ−1
k+1Gk+1

r + ‖wk+1‖2Q−1
k+1

,

Φk =
sHT

k R
−1
k Hk

(s+ ‖vk‖2R−1
k
)
.(4.6)

5. Algorithm and global convergence. When models gk and hk are linear,
we can compare the algorithmic scheme proposed in the previous sections with the
method in [15]. The latter uses the random information matrix (random Hessian)
in place of the matrix C defined above and recommends using the expected (Fisher)
information when the full Hessian is indefinite. When the densities for wk and vk are
Gaussian, this is equivalent to using Newton’s method when possible, and using Gauss–
Newton when the Hessian is indefinite. In general, using the expected information is
known as the method of Fisher’s scoring. In the Student’s t case, the scalar Fisher
information matrix is computed in [24] to be

(5.1)
s+ 1

s+ 3
σ−2 ,

where σ2 is the variance and s is the degrees of freedom. The authors of [15] proposed
using (5.1) as the Hessian approximation when the full Hessian is indefinite. Imple-
menting this approach would effectively replace the terms ‖wk‖22 or ‖vk‖22, present in
the denominators of Φk and Ak (see (4.2) and (4.4)), with terms that depend only on
sk and rk, the degrees of freedom. So while the random information (Hessian) matrix
can become indefinite, the Fisher information is insensitive to outliers and fails to
downweigh their contributions to the Hessian approximation.

To overcome these drawbacks and find a middle ground between the full Hessian
and a very rough approximation, we propose a Gauss–Newton method that is able
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to incorporate the relative size information of the residuals into the Hessian approx-
imation. In the rest of this section we provide the details for the application of this
method and a proof of convergence.

As in [2], the convergence theory is based upon the versatile convex-composite
techniques developed in [10]. We begin by choosing the convex-composite structure
for objective (3.1). We write it in the convex-composite form K = ρ◦F , with smooth
F and convex ρ:

ρ

(
c
u

)
= |c|+ 1

2
‖u‖2

B
−1,(5.2)

F (x) =

⎛⎝ f(x)[
wN (x)

vN (x)

] ⎞⎠ ,(5.3)

f(x) =
1

2

N∑
k=1

s ln

⎡⎣1 + ‖vSk ‖2(RS
k )

−1

s

⎤⎦+
N∑

k=1

r ln

⎡⎣1 + ‖wS
k ‖2(QS

k )
−1

r

⎤⎦ .(5.4)

Note that the range of f is R+, and ρ is coercive on its domain. The terms
indexed with superscript S in (3.5) and (3.6) combine to form a positive definite
approximation to the Hessian of f . To see this, consider the scalar function

κ(x) :=
1

2
ln(1 + x2/r) .

The second derivative of this function in x is given by

(5.5)
(r + x2)− 2x2

(r + x2)2
=

r − x2

(r + x2)2

and is only positive on (−√
r,
√
r). There are two reasonable globally positive approx-

imations to take. The first,

r

(r + x2)2
,

simply ignores the subtracted term −x2. In practice, we found this approximation
to be too aggressive. Instead, we drop the 2x2 from the left of (5.5) to obtain the
approximation

(5.6)
(r + x2)

(r + x2)2
=

1

(r + x2)
.

Similarly, the terms indexed by superscript S in (3.5) and (3.6) provide globally posi-
tive definite approximations to the Hessian of f , using the strategy in (5.6). This strat-
egy offers a significant computational advantage—the Hessian approximation that is
built up downweighs the contributions of outliers, helping the algorithm proceed faster
to the solution. As we shall see, these terms are also essential for the general conver-
gence theory.

Our approach exploits the objective structure by iteratively linearizing F about
the iterates xk and solving the direction finding subproblem

(5.7) min
d∈R

nN
ρ(F (xk) + F (1)(xk)d) + 1

2d
TU(xk)d,
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where U(xk) is a symmetric positive semidefinite matrix that depends continuously

on xk. The matrix function U(x) is intended to approximate the Hessian with respect
to x of the convex-composite Lagrangian [11] at a point (F (x), y) ∈ graph(∂ρ) where
∂ρ is the convex subdifferential of ρ. At points x where ρ is differentiable at F (x), y =
∇ρ(F (x)) and U(x) ≈ ∇2

xxL(x, y) =
∑p

j=1(∇ρ(F (x)))j∇2Fj(x). For any smoother in
the framework of section 3, problem (5.7) can be solved with a single block-tridiagonal
solve of the system (3.2), yielding descent directions d for the objective K(x).

We now develop a general convergence theory for convex-composite methods to
establish the overall convergence to a stationary point of K(x). This theory is in the

spirit of [2] and [10] and allows the inclusion of the quadratic term 1
2d

TU(xk)d in (5.7).
This term was not necessary in [2] but is crucial here. Note that the theory does not
rely at all on the technique used to solve the direction finding subproblem, and so the
theory in this paper applies to the algorithm in [2] by taking U = 0.

Recall from [10] that the first-order necessary condition for optimality in the
convex-composite problem involving K(x) is

0 ∈ ∂K(x) = F (1)(x)∂ρ (F (x)) ,

where ∂K(x) is the generalized subdifferential of K at x [30] and ∂ρ (F (x)) is the
convex subdifferential of ρ at F (x) [29]. Elementary convex analysis gives us the
equivalence

0 ∈ ∂K(x) ⇔ K(x) = inf
d
ρ
(
F (x) + F (1)(x)d

)
.

For the general smoothing class of interest, it is desirable to modify this objec-
tive by including curvature information, yielding the problem (5.7). We define the
difference function

(5.8) Δ(x; d) = ρ
(
F (x) + F (1)(x)d

)
+

1

2
dTU(x)d −K(x),

where U(x) is positive semidefinite and varies continuously with x. Note that Δ(x; d)
is a convex function of d that is bounded below; hence the optimal value

(5.9) Δ∗(x) = inf
d
Δ(x; d)

is well defined regardless of the existence of a solution. If Δ∗(x) = 0, then 0 ∈
argmindΔ(x; d). Hence, by [10, Theorem 3.6], Δ∗(x) = 0 if and only if 0 ∈ ∂K(x).

Given η ∈ (0, 1), we define a set of search directions at x by

(5.10) D(x, η) =
{
d
∣∣ Δ(x; d) ≤ ηΔ∗(x)

}
.

Note that if there is a d ∈ D(x, η) such that Δ(x; d) ≥ −ηε, then Δ∗(x) ≥ −ε. We
use the following generalized Gauss–Newton algorithm to solve the problem.

Algorithm 5.1. Generalized Gauss–Newton algorithm.
The inputs to this algorithm are
• x0 ∈ R

Nn: initial estimate of state sequence,
• ε ≥ 0: overall termination criterion,
• η ∈ (0, 1): search direction selection parameter,
• β ∈ (0, 1): step size selection parameter,
• γ ∈ (0, 1): line search step size factor.
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The steps are as follows:
1. Set the iteration counter ν = 0.
2. (Generalized Gauss–Newton step)

Find descent direction dν ∈ D(xν , η) in (5.10) by solving (5.7).
Set Δν = Δ(xν ; dν) in (5.8), and Terminate if Δν ≥ −ε.

3. (Line search) Set

tν = max γi

s.t. i ∈ {0, 1, 2, . . .} and

s.t. ρ
(
F (xν + γidν)

)
≤ ρ (F (xν)) + βγiΔν .

4. (Iterate) Set xν+1 = xν + tνd
ν , and return to Step 2.

We now present a general global convergence theorem that covers any smoother in
section 3. This theorem also generalizes [2, Theorem 5.1] to include positive semidef-
inite curvature terms in the Gauss–Newton framework.

Theorem 5.1. Define

(5.11) Λ := {u|ρ(u) ≤ K(x0)},
and suppose that there exists a τ > 0 such that F (1) is bounded and uniformly contin-
uous on the set

(5.12) S0 := co
(
F−1(Λ)

)
+ τB,

where B := { x | ‖x‖ ≤ 1 }. If {xν} is a sequence generated by the Gauss–Newton
algorithm, Algorithm 5.1, with initial point x0 and ε = 0, then one of the following
must occur:

(i) The algorithm terminates finitely at a point xν with 0 ∈ ∂K(xν).
(ii) The sequence ‖dν‖ diverges to +∞.
(iii) limν∈I Δν = limν∈I Δ

∗(xν) = 0 for every subsequence I for which the set
{ dν | ν ∈ I } is bounded.

Moreover, if x̄ is any cluster point of a subsequence I ⊂ Z+ such that the subse-
quence {dν |ν ∈ I} is bounded, then 0 ∈ ∂K(x̄).

Remark 5.2. We note that this theorem also corrects a flaw in the statement
of [2, Theorem 5.1]. In that theorem it was only stated that F (1) need be uniformly

continuous on the set co(F−1(Λ)). Here we require that F (1) be both bounded and
uniformly continuous on a slightly larger set. In particular, the proof given here fills
a gap in the proof appearing in the technical report [5].

Proof. We will assume that none of (i), (ii), (iii) occur and establish a contradic-
tion. Then there is a subsequence I such that

sup
ν∈I

‖dν‖ < ∞ and sup
ν∈I

Δν ≤ ζ < 0.

Since K(xν) is a decreasing sequence that is bounded below by 0, we know that the
differences K(xν+1)−K(xν) → 0. Therefore, by Step 3 of Algorithm 5.1, ζtνΔν → 0,
which implies that tν∈I → 0. Without loss of generality we may assume that tν ≤ 1
and tν‖dν‖ ≤ γτ for all ν ∈ I. Hence, for all ν ∈ I,

‖F (xν + tνγ
−1dν)− F (xν)‖ ≤ tνγ

−1

∫ 1

0

∥∥∥F ′(xν + stνγ
−1dν)

∥∥∥ ‖dν‖ds
≤ τM,
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where M is a bound on F ′ over S0. Let K be a Lipschitz constant for ρ over the
compact set Λ + τMB. Again by Step 3 of Algorithm 5.1, for all ν ∈ I,

βγ−1tνΔν ≤ ρ(F (xν + tνγ
−1dν))− ρ(F (xν))

≤ tνγ
−1Δν +K‖F (xν + tνγ

−1dν)− F (xν)− tνγ−1F (1)(xν)dν‖

= tνγ
−1Δν + tνγ

−1K

∥∥∥∥∫ 1

0

(
F (1)(xν + stνγ

−1dν)− F (1)(xν)
)
dνds

∥∥∥∥
≤ tνγ

−1
(
Δν +Kω(tνγ

−1‖dν‖)‖dν‖
)
,

where ω is the modulus of continuity of F ′ on S0. Rearranging, we obtain

0 ≤ (1− β)Δν +Kω(tνγ
−1‖dν‖)‖dν‖.

Taking the limit for ν ∈ I, we obtain the contradiction 0 ≤ (1 − β)ζ. Hence,
limν∈I Δν = 0, which implies that limν∈I Δ

∗(xν) = 0, since Δν ≤ ηΔ∗(xν) ≤ 0.
Finally, suppose that x̄ is a cluster point of a sequence I ⊂ Z+ for which {dν} is

bounded. Without loss of generality, there exists a d̄ such that (xν , dν)ν∈I → (x̄, d̄).

For all d ∈ R
Nn,

Δν = ρ
(
F (xν) + F (1)(xν)dν

)
+ 1

2‖dν‖2Uν − ρ (F (xν))

≤ ηΔ∗(xν)

≤ η
(
ρ
(
F (xν) + F (1)(xν)d

)
+ 1

2‖d‖2Uν − ρ (F (xν))
)
,

where Uν = U(xν). Taking the limit over I gives

0 = ρ
(
F (x̄) + F (1)(x̄)d̄

)
+ 1

2‖d̄‖2Ū − ρ (F (x̄))

≤ η
(
ρ
(
F (x̄) + F (1)(x̄)d

)
+ 1

2‖d‖2Ū − ρ (F (x̄))
)

,

where U = U(x̄). Since d was chosen arbitrarily, it must be the case that Δ∗(x̄) = 0,
which implies that 0 ∈ ∂K by [10, Theorem 3.6].

We can guarantee convergence to a stationary point under additional assumptions.
The details are given in the following corollary.

Corollary 5.2. Suppose that F−1(Λ) = { x | F (x) ∈ Λ } is bounded, and there
exists 0 < λmin such that

∀ x ∈ F−1(Λ), 0 < λmin‖d‖2 ≤ dTU(x)d ∀d ∈ Null(F (1)(x)) .(5.13)

If {xν} is a sequence generated by Algorithm 5.1 with initial point x0 and ε = 0, then
{xν} and {dν} are bounded, and either the algorithm terminates finitely at a point xν

with 0 ∈ ∂K(xν) or Δν → 0 as ν → ∞, and every cluster point x̄ of the sequence
{xν} satisfies 0 ∈ ∂K(x̄).

Proof. First note that F−1(Λ) is closed since F is continuous, and therefore
F−1(Λ) is compact, since by assumption it is bounded. Hence S0 (see (5.12)) is also

compact. Therefore, F (1) is uniformly continuous and bounded on S0, which implies
that the hypotheses of Theorem 5.1 are satisfied, and so one of (i)–(iii) must hold. If
(i) holds, we are done, and so we will assume that the sequence {xν} is infinite. Since
{xν} ⊂ F−1(Λ), this sequence is bounded. We now show that the sequence {dν} of
search directions is also bounded.
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Suppose that (5.13) holds. For any direction dν , note that dν satisfies

(5.14) ρ
(
F (xν) + F (1)(xν)dν

)
+

1

2
‖dν‖2Uν ≤ ρ (F (xν)) ≤ ρ(F (x0)).

Since ρ ≥ 0, we have

(5.15) {F (xν)} ⊂ Λ and {F (xν) + F (1)(xν)dν} ⊂ Λ

and

(5.16)

{
1

2
(dν)TUνdν

}
≤ ρ

(
F (x0)

)
∀ν.

Suppose that the {dν} is unbounded. Then, without loss of generality, there exist a
subsequence I, a unit vector u, and a vector x̄ ∈ F−1(Λ) such that limν∈I d

ν/‖dν‖ → u

and limν∈I x
ν → x̄. Since Λ is bounded, (5.15) implies that F (1)(x̄)u = 0, and so

u ∈ Nul(F (1)(x̄)), and therefore

0 < λmin ≤ uTU(x̄)u.

On the other hand, by (5.16), 1
2 (

d
ν

‖dν‖ )
TUν( d

ν

‖dν‖ ) ≤ ρ(F (x
0
))

‖dν‖2 , and so in the limit we

have the contradiction

0 < λmin ≤ uTU(x̄)u ≤ 0.

Hence dν are bounded. The result now follows from Theorem 5.1.
We now show that all smoothers of section 3 satisfy the required assumptions of

Theorem 5.1 and Corollary 5.2.
Corollary 5.3 (smoother satisfaction). Suppose that the process and measure-

ment functions gk and hk in (2.3) are twice continuously differentiable. Then for F

given in (5.3), F (1) is bounded and uniformly continuous on S0 in (5.12). Moreover,
the hypotheses of Corollary 5.2 hold if for all x in F−1(Λ) and for all k there exists η
such that

0 < η < σmin(G
S(x)), GS(x) :=

⎡⎢⎢⎢⎣
I 0 0

−(G2(x1))
S I 0 0

0
. . .

. . .
. . .

0 −(GN (xN−1))
S I

⎤⎥⎥⎥⎦ .

Proof. We first show that both Λ and F−1(Λ) are bounded. The first claim
follows immediately by the coercivity of ρ in (5.2). To verify the second claim, we
will show that for any sequence of xν with ‖xν‖ → ∞, we can find a subsequence J
such that limν∈J ‖wν‖ = ∞, which implies the existence of subsequence I such that

either limν∈I ‖wN ‖ = ∞ or limν∈I f(x
ν) = ∞. In particular, there does not exist an

unbounded sequence {xν} with F (xν) ⊂ Λ , and therefore F−1(Λ) must be bounded.
If ‖xν‖ → ∞, we can find an index k ⊂ [1, . . . , N ] and subsequence J such that

limν∈J ‖xν
k‖ = ∞. Either limν∈J wν

k = ∞ and we are done, or limν∈J ‖gk(xν
k−1)‖ = ∞,

and so limν∈J ‖xν
k−1‖ = ∞. Iterating this argument, we arrive at the limiting case

wν
1 = xν

1 − x0
1, and so if all ‖wν

j ‖ are bounded for j > 1, we can guarantee that
limν∈J ‖wν

1‖ = ∞.
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Since F is twice continuously differentiable by the hypotheses on g and h, the

boundedness of F−1(Λ) establishes the boundedness and uniform continuity of F (1)

on S0 in (5.12) for any τ > 0.

It remains to show that condition (5.13) is satisfied. Let WN , WS denote the

indices associated to all subvectors wN
k and wS

k within wk. If d ∈ Null(F (1)(x)), then

necessarily dWN = 0. This is simply because F (1) is nonsingular on WN , since it
contains the submatrix

GN (x) :=

⎡⎢⎢⎢⎢⎣
I 0

−(G2(x1))
N I

. . .

. . .
. . . 0

−(GN (xN−1))
N I

⎤⎥⎥⎥⎥⎦ ,

which is the standard process matrix G projected to those coordinates where Gaussian
modeling is applied. To finish the analysis, we present the full form of the matrix U
restricted to WS :

(5.17) U =

⎡⎢⎢⎢⎣
U1 AT

2 0

A2 U2 AT
3 0

0
. . .

. . .
. . .

0 AN UN

⎤⎥⎥⎥⎦+ diag({Φk},

where

Ak= − r(QS
k )

−1GS
k

r + ‖wS
k ‖2(QS

k )
−1

,

Uk=
r(GS

k+1)
T(QS

k+1)
−1GS

k+1

r + ‖wS
k+1‖2(QS

k+1)
−1

+
r(QS

k )
−1

r + ‖wS
k ‖2(QS

k )
−1

,

Φk=
s(HS

k )
T(RS

k )
−1HS

k

(s+ ‖vSk ‖2(RS
k )

−1)
.

(5.18)

Note that we can write the first summand in (5.17) as (GS)T Q̃−1GS , where

Q̃−1 := diag({Q̃−1
k }), Q̃−1

k =
r(QS

k )
−1

r + ‖wS
k ‖2(QS

k )
−1

.

Since F−1(Λ) is bounded, the denominators of Q̃−1
k are bounded, and so eigenvalues

of Q̃−1
k are bounded from below, and the singular values of GS are bounded from

above.
We have

0 < ηmin ≤ σmin(G
S) ≤ σmax(G

S) ≤ ηmax

for all x, where the upper bound follows from [4, Theorem 2.2] together with com-
pactness of F−1(Λ).
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Then, by [4, Theorem 2.1], we have

κ((GS)T Q̃−1GS) ≤ λmax(Q̃
−1)η2max

λmin(Q̃
−1)η2min

for all x ∈ F−1(Λ). This completes the proof.

Remark 5.3. One can also consider conditions on the individual gSk that can
produce a lower bound η on GS , as required by Corollary 5.3. One such condition is

(5.19) 0 < η ≤
{
1 + σ2

min(g
(1)
k+1)− σmax(g

(1)
k )− σmax(g

(1)
k+1)

}
.

If this condition is satisfied, then by [4, Theorem 2.2], η < σmin(G
S). This condition

is sufficient, but not necessary in general.

6. Numerical experiments.

6.1. T-robust smoother: Function reconstruction using splines. In this
section we compare the new T-robust smoother with the �2-Kalman smoother [9] and
with the �1-Laplace robust smoother [2], both implemented in [1]. The ground truth
for this simulated example is

x(t) =
[− cos(t) − sin(t)

]T
.

The time between measurements is a constant Δt. We model the two components of
the state as the first and second integrals of white noise, so that

gk(xk−1) =

[
1 0
Δt 1

]
xk−1, Qk =

[
Δt Δt2/2

Δt2/2 Δt3/3

]
.

This stochastic model for function reconstruction underlies the Bayesian interpretation
of cubic smoothing splines; see [35] for details.

The measurement model for the conditional mean of measurement zk given state
xk is defined by

hk(xk) =
[
0 1

]
xk = x2,k, Rk = σ2,

where x2,k denotes the second component of xk, σ
2 = 0.25 for all experiments, and

the degrees of freedom parameter was set to 4 for the Student’s t methods.
The measurements {zk} were generated as a sample from

zk = x2(tk) + vk, tk = 0.04π × k,

where k = 1, 2, . . . , 100. The measurement noise vk was generated according to the
following schemes.

1. Nominal: vk ∼ N(0, 0.25).

2. Gaussian contamination:

vk ∼ (1− p)N(0, 0.25) + pN(0, φ)

for p ∈ {0.1, 0.2, 0.5} and φ ∈ {1, 4, 10, 100}.
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Table 1

Function reconstruction via spline: Median MSE over 1000 runs and intervals containing 95%
of MSE results.

Outlier p �2 MSE �1 MSE Student’s t MSE
Nominal — .04(.02, .1) .04(.01, .1) .04(.01, .09)
N(0, 1) .1 .06(.02, .12) .04(.02, .10) .04(.02, .10)
N(0, 4) .1 .09(.04, .29) .05(.02, .12) .04(.02, .11)
N(0, 10) .1 .17(.05, .55) .05(.02, .13) .04(.02, .11)
N(0, 100) .1 1.3(.30, 5.0) .05(.02, .14) .04(.02, .11)
U(−10, 10) .1 .47(.12, 1.5) .05(.02, .13) .04(.02, .10)
N(0, 10) .2 .32(.11, .95) .06(.02, .19) .05(.02, .16)
N(0, 100) .2 2.9(.94, 8.5) .07(.02, .22) .05(.02, .14)
U(−10, 10) .2 1.1(.36, 3.0) .07(.03, .26) .05(.02, .13)
N(0, 10) .5 .74(.29, 1.9) .13(.05, .49) .10(.04, .45)
N(0, 100) .5 7.7(2.9, 18) .21(.06, 1.6) .09(.03, .44)
U(−10, 10) .5 2.6(1.0, 5.8) .20(.06, 1.4) .10(.03, .44)

3. Uniform contamination:

vk ∼ (1− p)N(0, 0.25) + pU(−10, 10)

for p ∈ {0.1, 0.2, 0.5}.
Each experiment was performed 1000 times. Table 1 presents the results for our

simulated fitting showing the median mean squared error (MSE) value and a quantile
interval containing 95% of the results. The MSE is defined by

(6.1)
1

N

N∑
k=1

[x1(tk)− x̂1,k]
2 + [x2(tk)− x̂2,k]

2,

where {x̂k} is the corresponding estimating sequence.
From Table 1 one can see that T-robust and the �1-smoother perform as well as

the (optimal) �2-smoother at nominal conditions and that both continue to perform
at that same level for a variety of outlier generating scenarios. T-robust always
performs at least as well as the �1-smoother, and it gains an advantage when either
the probability of contamination is high or the contamination is uniform. This is
likely due to the redescending influence function of the Student’s t distribution; the
smoother effectively throws out bad points rather than simply decreasing their impact
to a certain threshold, as is the case for the �1-smoother. As an example, results
coming from a single run for the case where 50% of measurements are contaminated
with the uniform distribution on [−10, 10] are displayed in Figure 2. Notice that
T-robust has an advantage over the �1-smoother.

6.2. T-robust smoother: Van Der Pol oscillator. In this section, we present
results for the Van Der Pol (VDP) oscillator, described in detail in [2]. The VDP
oscillator is a coupled nonlinear ODE defined by

ẋ1(t) = x2(t),

ẋ2(t) = μ[1− x1(t)
2]x2(t)− x1(t).

The process model here is the Euler approximation for X(tk) given X(tk−1):

gk(xk−1) =

(
x1,k−1 + x2,k−1Δt

x2,k−1 + {μ[1− x2
1,k]x2,k − x1,k}Δt

)
.
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Fig. 2. Function reconstruction via spline: Performance of �2 Kalman smoother (dash), �1-
Laplace robust smoother (dash-dot), and T-robust (staircase solid) on contaminated normal model
with 50% outliers distributed uniformly on [−10, 10]. True state x(t) is drawn as solid line. Mea-
surements appear as “o” symbols, and all measurements visible off of the true state are outliers in
this case. Values outside [−5, 5] are plotted on the axis limits.

For this simulation, the ground truth is obtained from a stochastic Euler approxima-
tion of the VDP oscillator. To be specific, with μ = 2, N = 164, and Δt = 16/N ,

the ground truth state vector xk at time tk = kΔt is given by x0 = (0,−0.5)T, and
for k = 1, . . . , N , xk = gk(xk−1) + wk, where {wk} is a realization of independent
Gaussian noise with variance 0.01.

In [2], the �1-Laplace smoother was shown to have a performance superior to that
of the �2-smoother, both implemented in [1]. We compared the performance of the
nonlinear T-robust and nonlinear �1-Laplace smoothers and found that T-robust gains
an advantage in the extreme cases of 70% outliers. Figure 3 illustrates results coming
from a single representative run. For 40% or fewer outliers, it is hard to differentiate
the performance of the two smoothers for this nonlinear example.

6.3. T-robust smoother: Underwater tracking application. This appli-
cation is described in detail in [2], so we just give a brief overview here. In [2] we
used the application to test the �1-Laplace smoother. Here we use it for a qualita-
tive comparison between the T-robust smoother, the �1-Laplace smoother, and the �2
smoother with outlier removal.

In this experiment, a tracking target was hung on a steel cable approximately 200
meters below a ship. The pilot was attempting to keep the ship in place (hold station)
at specific coordinates, but the ship was pitching and rolling due to wave action. The
measurements for the smoother were sound travel times between the tracking target
and four bottom mounted transponders at known locations, and pressure readings
from a gauge that was placed on the target. Tracking data was independently verified
using a GPS antenna mounted on a ship, and the GPS system provided submeter
accuracy in position.

Pressure measurements in absolute bars were converted to depth in meters by the
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Fig. 3. VDP oscillator: Smoother fits for X-component (left) and Y-component (right), with
70% outliers N(0, 100). The black solid line is truth, the magenta dash-dot line is the �1 smoother
result, and the blue dashed line is T-robust. Measurements on the X-component are shown as dots,
with outliers outside the range [−5, 5] plotted on top and bottom axes.

formula

depth = 9.9184(pressure− 1).

We use N to denote the total number of time points at which we have tracking data.
For k = 1, . . . , N , the state vector at time tk is defined by xk = (ek, nk, dk, ėk, ṅk, ḋk)

T,
where (ek, nk, dk) is the (east, north, depth) location of the object (in meters from
the origin), and (ėk, ṅk, ḋk) is the time derivative of this location.

The measurement vector at time tk is denoted by zk. The first four components of
zk are the range measurements to the corresponding bottom mounted transponders,
and the last component is the depth corresponding to the pressure measurement. For
j = 1, . . . , 4, the model for the mean of the corresponding range measurements was

hj,k(xk) = ‖(ek, nk, dk)− bj‖2 −Δrj .

These measurements were assumed independent with standard deviation 3 meters.
These depth measurements were assumed to have standard deviation of 0.05 meters.
We use Δtk to denote tk+1 − tk. The model for the mean of xk+1 given xk was

gk+1(xk)

= (ek + ėkΔtk, nk + ṅkΔtk, dk + ḋkΔtk, ėk, ṅk, ḋk)
T .

The process noise corresponding to east, north, and depth components of the condi-
tional distribution of xk+1 given xk was assumed to be Gaussian, with mean zero and
standard deviation .01Δtk. The process noise corresponding to the derivative vector
of east, north, and depth components of the conditional mean xk+1 given xk was also
assumed Gaussian with mean zero and standard deviation .2Δtk.
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Fig. 4. Track: Independent GPS verification (thick line and +); �2-smoother estimate (thin
line). Note the large outliers in the data.

�2-smoother results without outlier removal are shown in Figure 4. There are
three large peaks (two in the east component and one in the north component of the
state) that are due to measurement outliers, and require either an outlier removal
strategy or robust smoothing.

Three fits are shown in Figure 5: �1-Laplace, T-robust, and �2-smoother with
outlier removal. The darker curves appearing below the track are independent veri-
fications using the GPS tracking near the top of the cable. A depth of 198 meters
was added to the depth location of the GPS antenna so that the depth comparison
can use the same axis for both the GPS data and the tracking results. Note that the
time scale for the depth plots is different from (much finer than) the north, east, and
down plots and demonstrates the accuracy of the GPS tracking as validated by the
pressure sensor.

T-robust, like the �1-Laplace smoother, was able to use the whole data sequence,
despite large outliers in the data. The fits look very similar, and it is clear that
T-robust can also be used for smoothing in the presence of outliers. Note that the
T-robust track (b) is smoother than the �1-Laplace track (a) but has more detail than
the �2-smoother track with outlier removal (c). This is easiest to see by comparing
the east coordinates in (a), (b), and (c) of Figure 5 between 7.2 and 7.25 hours.

The residual plots in Figure 5 are quite revealing. Outliers are defined as mea-
surements corresponding to residuals with absolute value greater than three standard
deviations from the mean. All outliers are shown as “o” characters, and those that
fall outside the axis limits are plotted on the vertical axis limit lines. Note that the
�2-smoother with outlier removal detects outliers after the first fit that are not outliers
after the second fit. The peaks in Figure 4 are large enough to influence the entire fit,
and so some points which are actually “good” measurements are removed by the 3-σ
edit rule, resulting in “oversmoothing” of the outlier removal track and more detail
in both of the robust smoothers in Figure 5.

The �1-Laplace smoother pushes more of the residuals to zero, particularly those
corresponding to depth measurements, which are the most reliable and frequent. The
T-robust smoother is somewhere in between; the residuals for the depth track are
smaller in comparison to the residuals of the �2-smoother but are not set to zero as by
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Fig. 5. Track: Independent GPS verification (thick line and +) and residuals for (a) �1-Laplace
smoother (thin line), (b) T-Robust smoother (thin line), (c) �2-smoother with outlier removal. All
residuals lying outside of the given interval are graphed on the boundary of the interval.

the �1-Laplace smoother. As discussed previously, these features are artifacts of the
behavior of the distributions at zero, and the choice of smoother should be guided by
particular applications.

6.4. T-trend smoother: Reconstruction of a sudden change in state.
We present a proof of concept result for the T-trend smoother using two Monte Carlo
studies of 200 runs. In the first study, the state vector, as well as the process and
measurement models, are the same as in section 6.1. At any run, x2 has to be
reconstructed from 20 measurements corrupted by a white Gaussian noise of variance
0.05 and collected on [0, 2π] using a uniform sampling grid. The top panel of Figure 6
reports the boxplot of the 200 root-MSE errors for the �2-, �1-, and T-trend smoothers,
while the top right panel of Figure 6 displays the estimate obtained in a single run.
It is apparent that the performance of the three estimators is very similar.

The second experiment is identical to the first except that we introduce a “jump”
at the middle of the sinusoidal wave. The bottom panel of Figure 6 reveals the superior
performance of the T-trend smoother under these perturbed conditions. The result
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Fig. 6. Reconstruction of a sudden change in state obtained by �2, �1, and T-trend smoothers.
Left: Boxplot of reconstruction errors under nominal (top) and perturbed (bottom) conditions. Right:
Reconstructions obtained using �2 (dashed), �1 (dashdot), and T-trend (thin line) smoother. The
thick line is the true state.

depicted in the bottom right panel of Figure 6 for a single run of the experiment is
representative of the average performance of the estimators. The estimate achieved
by the �2-smoother (dashed line) does not follow the jump well (the true state is the
solid line). The �1-smoother (dashdot) does a better job than the �2-smoother, and
the T-trend smoother outperforms the �1-smoother, following the jump very closely
while still providing a good solution along the rest of the path.

6.5. Reconstruction of a sudden change in state in the presence of
outliers. Until now, we have considered robust and trend applications separately in
order to compare with previous robust smoothing formulations and to highlight the
main features of the trend-filtering problem. A natural extension is to consider these
features in tandem; in other words, can we smooth a track which has both outliers and
a sudden change in state? In fact, smoothers of this nature (but exploiting convex
formulations) have already been proposed [16].

The challenge to building such a strong smoother is that without prior knowledge,
it is difficult to tell the difference between a bad measurement (an outlier) and a good
measurement that may be consistent with a sudden change in the state. In many
cases, the user will be aware that some sensors are reliable, while others are subject
to contamination. This kind of prior information can now easily be incorporated
using the generality and flexibility of section 3, so that the user may specify trustwor-
thy sensors (by modeling corresponding residual indices with Gaussians) as well as
stable state components (by modeling corresponding transition residual indices with
Gaussians). Note that this is very different from specifying which of the individual
measurements are reliable or which individual transitions follow the process model.

In this section, we consider a situation where we have a trustworthy sensor s1 and
an occasionally malfunctioning sensor s2. Sensor s2 gives frequent measurements, but
some proportion of the time is subject to heavy contamination, while sensor s1 gives
measurements rarely, but they are trustworthy (i.e., only subject to small Gaussian
noise). Using the flexible interface implemented in [1], we can model s1 errors as
Gaussian and s2 errors as Student’s t.

We use the setup in section 6.4 together with the Gaussian outlier contamination
scheme described in section 6.1. Both measurements are direct, so the measurement
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Fig. 7. Tracking a sudden change in the presence of outliers. Measurements are plotted using
diamonds, with s1 measurements (rare, reliable) represented by large symbols, and s2 measurements
(frequent, contaminated) represented by small symbols. Outliers appear on the axes when they are
out of range of the plot limits. Ground truth is shown using a sold black line, and smoother results
are shown using a red dashed line. (a) Least squares smoother (Gaussian errors for process and
measurements) is very vulnerable to outliers. (b) All-T smoother (Student’s t errors for all compo-
nents) follows sudden change in state quite well and ignores most outliers; however, it is fooled by
a cluster of outliers, since it cannot distinguish them from sudden changes in state. (c) Differential
T-robust (Student’s t errors for s2, Gaussian for all others) exploits differential properties of s1 and
s2; however, because it uses the Gaussian model for transition errors, accuracy decreases around
the jump. (d) Trend-following differential robust (Student’s t errors for process components and s2;
Gaussian for s1) ignores outliers and follows sudden change in state, using both information in the
reliable measurements and appropriate process noise model to improve on (b) and (c). (e) Result
obtained using only good (s1) measurements with least squares smoothing to recover the track. The
sparse (good) measurements alone do not give good recovery, which shows that smoothers in (b)–(d)
must be extracting useful information from the noisy s2 dataset.
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matrix in this case is

Hkxk =

[
0 1
0 1

]
xk , Rk =

[
σ2

σ2

]
.

Since, in the ckbs interface, the user specifies R−1
k rather than Rk, missing measure-

ments are easily specified by setting the corresponding component of R−1
k to 0.

For the contaminated sensor s2, we consider p = .2 contamination level, and
φ = 200, a very large contaminating variance. We have s2 measurements at every
time step, but s1 measurements only at every 10th time step. It is important to
note that there is not enough information in s2 measurements alone to recover the
state; a smoother result using only s2 measurements is shown in panel (e) of Figure 7.
The challenge here is to supplement the rare reliable observations with information
extracted from frequent but highly contaminated observations.

Measurements are plotted using diamonds, with s2 measurements represented by
small symbols, while s1 measurements are represented by large symbols. Ground
truth is shown using a sold black line, and smoother results are shown using a red
dashed line. Results in panel (a) were obtained using the least squares smoother,
which cannot handle outliers.

Results in panel (b) were obtained by the all-T smoother, which modeled all
measurement and process residuals using Student’s t. The all-T smoother does a
great job, except for a problem that occurs around 12 seconds into the track. A
clump of outliers fools the all-T smoother, which treats them as a true change in state.
This result is pictorial proof of the claim made earlier—that one cannot perfectly
distinguish between outliers and sudden changes; extra information is needed to make
the call.

Results in panel (c) were obtained using a differential T-robust smoother, which
used Student’s t modeling for the contaminated s2 measurement component and Gaus-
sian for the process model as well as the s1 measurement component. The resulting
fit is quite good, but the classic model for transition errors results in a slight loss in
accuracy around the jump. Note that this smoother exploits the additional informa-
tion that s1 measurements are good. Finally, results in panel (d) were obtained using
Student’s t modeling for all process residuals as well as for the s2 measurements, and
using a Gaussian model for the reliable s1 measurement component. This smoother
ignores the outliers and is able to follow the jump very well; it does not get fooled by
the small outlier cluster.

The file used to generate the subplots in the figure is noisy_jump_two_meas.m,
which can be accessed through the example subdirectory of [1].

7. Discussion and conclusions. We have presented a generalized Student’s t
smoothing framework, which allows modeling any process or measurement residuals
using Student’s t errors and includes T-robust, T-trend, and double-T smoothers as
important special cases. All of the smoothers in the framework efficiently solve for the
MAP estimates of the states in a state-space model with any selected set of residuals
modeled using Student’s t or Gaussian noise. We have shown that these features can
be used independently and in tandem, work for linear and nonlinear process models,
and can be used both for outlier-robust smoothing and for tracking sudden changes
in the state.

Similar to contributions in other applications, e.g., sparse system identification
[12, 34, 37], our results underscore the significant advantages of using heavy tailed
distributions in statistical modeling. These distributions force the use of nonconvex
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loss functions to solve for the associated MAP estimates [7, Theorem 2]. The resulting
objective is nonconvex even when the system dynamics are linear, and an iterative
smoother is required to solve it. The convergence analysis for these methods is still de-
veloped within the general framework of convex-composite optimization [10], although
the details of the analysis differ.

Because the problems are nonconvex, iterative methods may converge to local
rather than global minima. This problem can be mitigated by an appropriate initial-
ization procedure; for example, in the presence of outliers, the �1-Laplace smoother
can be used to obtain a starting point for the optimizer, in which case we can improve
on the �1 solution when the data is highly contaminated with outliers. This approach
was not taken in our numerical experiments, which used the same initial points. For
all the linear experiments, the initial point was simply the null state sequence. For the
VDP, the initial state x0 was correctly specified in all experiments, and the remaining
state estimates in the initial sequence were null.

The T-robust smoother compares favorably to the �1-Laplace smoother described
in [2] and outperforms it in our experiments when the data is heavily contaminated
by outliers. The T-trend smoother was designed for tracking signals that may exhibit
sudden changes and therefore has many potential applications in areas such as navi-
gation and financial trend tracking. It was demonstrated to follow a fast jump in the
state better than a smoother with a convex penalty on model deviation. Finally, we
demonstrated the power of a new method by tracking a fast change in the presence
of outliers using the full flexibility of the presented framework, which allowed us to
differentially model residuals for sensors which we knew to be reliable versus unreli-
able and to design a smoother that was robust to outliers yet able to track sudden
changes.

We do not provide theoretical recovery guarantees for the proposed robust
smoothers. Doing so would require making strong assumptions on the kinds of “un-
known errors” one could observe, and we leave these developments to future work.
Our empirical tests simulate outliers from contaminated Gaussian distributions that
are quite unlike the model distributions used to model the smoother, and our empirical
performance metric is the MSE between ground truth signal and the estimate.

Kalman filters and smoothers are known to be MSE optimal under the assumption
that the dynamics are linear and the errors are Gaussian. Even though these mathe-
matical assumptions rarely occur in practice, the Kalman filter has long been a valued
tool in a number of applications. Our focus in this contribution is intended for cases
where the linearity and Gaussian assumptions fail, and recovery through the classical
Kalman filters and smoothers also fails. Nonetheless, the reader may be concerned
that there may be a significant loss in the performance of robust smoothers in those
cases where the dynamics are linear and the errors are indeed Gaussian. However,
this does not appear to be the case in our experiments since robust smoothers have
nearly identical performance to the standard RTS smoother under nominal conditions
in Table 1.

An important question in the design and implementation of Student’s t–based
smoothers is how to estimate the degree of freedom parameter ν. In all of our exper-
iments, we have treated this parameter as fixed and known. We note that there are
established expectation maximization (EM)-based methods in the literature for esti-
mating these parameters [15, 24], as well as other recently proposed methods [8], and
we leave the implementation of these extensions in the Kalman smoothing framework
to future work.



ROBUST AND TREND-FOLLOWING KALMAN SMOOTHERS 2915

Acknowledgments. The authors would like to thank Bradley Bell and North
Pacific Acoustic Laboratory (NPAL) investigators of the Applied Physics Laboratory,
University of Washington, for the underwater tracking data used in this paper (NPAL
is sponsored by the Office of Naval Research code 321OA). We are also grateful to
Michael Gelbart for insightful discussions about the numerical experiments.

REFERENCES

[1] A. Y. Aravkin, B. M. Bell, J. V. Burke, and G. Pillonetto, CKBS: Matlab/Octave pack-
age for constrained and robust Kalman smoothing, http://www.coin-or.org/CoinBazaar/
ckbs/ckbs.xml, 2007–2013.

[2] A. Y. Aravkin, B. M. Bell, J. V. Burke, and G. Pillonetto, An �1-Laplace robust Kalman
smoother, IEEE Trans. Automat. Control, 56 (2011), pp. 2898–2911.

[3] A. Y. Aravkin, B. M. Bell, J. V. Burke, and G. Pillonetto, Learning using state space
kernel machines, in Proceedings of the IFAC World Congress 2011, Milan, Italy, 2011.

[4] A. Y. Aravkin, B. M. Bell, J. V. Burke, and G. Pillonetto, New stability results and
algorithms for block tridiagonal systems, with applications to Kalman smoothing, http://
arxiv.org/abs/1303.5237, 2013.

[5] A. Y. Aravkin, J. V. Burke, and G. Pillonetto, Robust and trend-following Kalman
smoothers using Student’s t, preprint, http://arxiv.org/abs/1001.3907v3, 2011.

[6] A. Y. Aravkin, J. V. Burke, and G. Pillonetto, Robust and trend following Kalman
smoothers using Student’s t, in Proceedings of SYSID, 2012.

[7] A. Y. Aravkin, M. P. Friedlander, F. Herrmann, and T. van Leeuwen, Robust inversion,
dimensionality reduction, and randomized sampling, Math. Program., 134 (2012), pp. 101–
125.

[8] A. Y. Aravkin and T. van Leeuwen, Estimating nuisance parameters in inverse problems,
Inverse Problems, 28 (2012), 115016.

[9] B. M. Bell, J. V. Burke, and G. Pillonetto, An inequality constrained nonlinear Kalman-
Bucy smoother by interior point likelihood maximization, Automatica J. IFAC, 45 (2009),
pp. 25–33.

[10] J. V. Burke, Descent methods for composite nondifferentiable optimization problems, Math.
Program., 33 (1985), pp. 260–279.

[11] J. V. Burke, Second order necessary and sufficient conditions for convex composite NDO,
Math. Program., 38 (1987), pp. 287–302.

[12] A. Chiuso and G. Pillonetto, Learning sparse dynamic linear systems using sta-
ble spline kernels and exponential hyperpriors, in Advances in Neural Informa-
tion Processing Systems (NIPS), available online from http://papers.nips.cc/book/
advances-in-neural-information-processing-systems-23-2010, 2010.

[13] C. Chui and G. Chen, Kalman Filtering, Springer, New York, 2009.
[14] L. Fahrmeir and H. Kaufmann, On Kalman filtering, posterior mode estimation, and Fisher

scoring in dynamic exponential family regression, Metrika, 38 (1991), pp. 37–60.
[15] L. Fahrmeir and R. Kunstler, Penalized likelihood smoothing in robust state space models,

Metrika, 49 (1998), pp. 173–191.
[16] S. Farahmand, G. B. Giannakis, and D. Angelosante, Doubly robust smoothing of dy-

namical processes via outlier sparsity constraints, IEEE Trans. Signal Process., 59 (2011),
pp. 4529–4543.

[17] J. Fernándes, J. L. Speyer, and M. Idan, A stochastic controller for vector linear systems
with additive Cauchy noise, in Proceedings of the 52nd IEEE Conference on Decision and
Control, Florence, Italy, 2013, pp. 1872–1879.

[18] A. Gelb, Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974.
[19] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust Statistics:

The Approach Based on Influence Functions, Wiley Ser. Probab. Math. Statist., John
Wiley and Sons, New York, 1986.

[20] T. J. Hastie, R. J. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Data
Mining, Inference and Prediction, Springer, New York, 2001.

[21] G. A. Hewer, R. D. Martin, and J. Zeh, Robust preprocessing for Kalman filtering of glint
noise, IEEE Trans. Aerospace Electron. Syst., 23 (1987), pp. 120–128.

[22] R. E. Kalman, A new approach to linear filtering and prediction problems, Trans. AMSE J.
Basic Engrg., 82 (1960), pp. 35–45.

[23] S. A. Kassam and H. V. Poor, Robust techniques for signal processing: A survey, Proc. IEEE,

http://www.coin-or.org/CoinBazaar/ckbs/ckbs.xml
http://www.coin-or.org/CoinBazaar/ckbs/ckbs.xml
http://arxiv.org/abs/1303.5237
http://arxiv.org/abs/1303.5237
http://arxiv.org/abs/1001.3907v3
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-23-2010
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-23-2010


2916 A. Y. ARAVKIN, J. V. BURKE, AND G. PILLONETTO

73 (1985), pp. 433–481.
[24] K. L. Lange, R. J. A. Little, and J. M. G. Taylor, Robust statistical modeling using the t

distribution, J. Amer. Statist. Assoc., 84 (1989), pp. 881–896.
[25] R. A. Maronna, D. Martin, and V. J. Yohai, Robust Statistics, Wiley Ser. Probab. Math.

Statist., John Wiley and Sons, New York, 2006.
[26] H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd, Smoothed state estimates under abrupt

changes using sum-of-norms regularization, Automatica J. IFAC, 48 (2012), pp. 595–605.
[27] I. R. Petersen and A. V. Savkin, Robust Kalman Filtering for Signals and Systems with

Large Uncertainties, Control Engineering, Birkhäuser, Basel, 1999.
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