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Brief Papers

The Connection Between Bayesian Estimation
of a Gaussian Random Field and RKHS

Aleksandr Y. Aravkin, Bradley M. Bell, James V. Burke, and Gianluigi Pillonetto

Abstract— Reconstruction of a function from noisy data is key in
machine learning and is often formulated as a regularized optimization
problem over an infinite-dimensional reproducing kernel Hilbert space
(RKHS). The solution suitably balances adherence to the observed data
and the corresponding RKHS norm. When the data fit is measured using
a quadratic loss, this estimator has a known statistical interpretation.
Given the noisy measurements, the RKHS estimate represents the poste-
rior mean (minimum variance estimate) of a Gaussian random field with
covariance proportional to the kernel associated with the RKHS. In this
brief, we provide a statistical interpretation when more general losses are
used, such as absolute value, Vapnik or Huber. Specifically, for any finite
set of sampling locations (that includes where the data were collected),
the maximum a posteriori estimate for the signal samples is given by
the RKHS estimate evaluated at the sampling locations. This connection
establishes a firm statistical foundation for several stochastic approaches
used to estimate unknown regularization parameters. To illustrate this,
we develop a numerical scheme that implements a Bayesian estimator
with an absolute value loss. This estimator is used to learn a function
from measurements contaminated by outliers.

Index Terms— Gaussian processes, kernel-based regularization,
Markov chain Monte Carlo (MCMC), regularization networks,
representer theorem, reproducing kernel Hilbert spaces (RKHSs),
support vector regression.

I. INTRODUCTION

Reconstruction of a function F : X → R from noisy data
is key in machine learning [1], [2]. A popular approach to this
problem is minimizing a regularized functional with respect to a
reproducing kernel Hilbert space (RKHS) H [3]–[6]. To be specific,
regularization in H estimates F using F̂ defined by

F̂ = arg min
F∈H

⎛
⎝

N∑
i=1

Vi [yi − F(xi )] + γ ‖F‖2
H

⎞
⎠ (1)

where γ ∈ R+ is the regularization parameter, X is a set (finite or
infinite), xi ∈ X is the location where yi ∈ R is measured, Vi : R →
R+ is the loss function for yi , and ‖·‖H is the RKHS norm induced
by the positive definite reproducing kernel K : X × X → R [3].
Here, yi is the i th element of a vector y, which is the default meaning
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for subscripts. Note that xi is the i th measurement location (not the
i th element of a vector x), and Vi is the loss function corresponding
to the i th residual.

One of the important features of the above approach is that,
even if the dimension of H is infinite, the solution belongs
to a finite-dimensional subspace. In fact, under mild assump-
tions on the loss, according to the representer theorem [7], [8],
F̂ in (1) is the sum of kernel sections Ki : X → R defined by
Ki (x) = K (xi , x). To be specific

F̂(·) =
N∑

i=1

ĉi Ki (·) (2)

where ĉ is defined by

ĉ = arg min
c∈RN

⎛
⎝

N∑
i=1

Vi

⎡
⎣yi −

N∑
j=1

K (xi , x j )c j

⎤
⎦+ γ cT K c

⎞
⎠. (3)

Here and below, K ∈ RN×N denotes the kernel matrix, or Gram
matrix, defined by K ij = K (xi , x j ). When the component loss
functions Vi are quadratic, the problem in (1) admits the structure of
a regularization network [1] and also has a statistical interpretation.
Specifically, suppose that F is a zero-mean Gaussian random field
with a prior covariance proportional to K , and that F is independent
of white Gaussian measurement noise. Then, given the measurements,
for every x , the value F̂(x) is the posterior mean, and hence the
minimum variance estimate of F(x) [9, Sec. 2.3]. This connection,
briefly reviewed in Section III, is well known in the literature and
was initially studied in [10] in the context of spline regression [5],
[11], [12]. It can be proved using the representer theorem. In the case
of quadratic loss functions, it also yields the following closed form
expression for the coefficients ĉi in (2):

ĉ = (K + γ IN )−1y (4)

where y ∈ RN is the vector of measurements yi and IN is the N × N
identity matrix. Typically, a closed from expression of this type is not
available when the component loss functions Vi are not quadratic.

A formal statistical model for more general loss functions (e.g., the
Vapnik ε-insensitive loss used in support vector regression [13]–[15])
is missing from the literature. After interpreting the Vi as alternative
statistical models for the observation noise, many papers argue that
F̂ in (1) can be viewed as a maximum a posteriori (MAP) estimator
assuming the a priori probability density of F is proportional to
exp(−‖F‖2

H ) [14, Sec. 7]. These kinds of statements are informal,
since in an infinite-dimensional function space, the concept of prob-
ability density is not well defined, see [16] for a thorough treatment
of Gaussian measures.

The main contribution of this note is to provide a rigorous statistical
model that justifies F̂ as an estimate of a Gaussian random field. This
connection provides a firm statistical foundation for several stochastic
approaches for estimating unknown regularization parameters. Exam-
ples of such parameters include γ in (1) and possibly other parameters
used to specify K . As an illustration of such approaches, we make
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another contribution by developing a new Bayesian estimator. The
estimator uses the absolute value (�1) loss and the Markov chain
Monte Carlo (MCMC) framework [17] to recover a function from
measurements contaminated by outliers. It compares favorably with
tuning approaches that rely on cross validation, and with recently
proposed techniques in [18], where γ is determined by combining
Mallows C p statistic with the concept of equivalent degrees of
freedom (EDF).

The structure of this brief is as follows. In Section II, we formulate
the statistical model. In Section III, we review the connection between
regularized estimation in RKHS and estimation in the quadratic case,
and then extend this connection to more general losses. Section IV
uses this connection to describe Bayesian approaches that estimate
regularization parameters, in addition to the unknown function.
A numerical experiment is then reported in Section V to illustrate the
theoretical results. Section VI contains a summary and conclusion.
The proofs are presented in Section VI.

II. STATISTICAL MODEL

Here and below, E[·] indicates the expectation operator, and given
(column) random vectors u and v , we define

cov[u, v] = E[(u − E[u])(v − E[v])T].
We assume that the measurements yi are obtained by measuring the
function F at sampled points xi in the presence of additive noise

yi = F(xi ) + ei , i = 1, . . . , n (5)

where each xi is a known sampling location. We make the following
assumptions.

Assumption 1: We are given a known strictly positive definite1

autocovariance function K on X × X and a scalar λ > 0 such
that for any sequence of points {x j : j = 1, . . . , J }, the vector
f = [F(x1), . . . , F(xJ )] is a Gaussian random variable with mean
zero and covariance given by

cov( f j , fk) = λK (x j , xk ). �
A random function F that satisfies Assumption 1 is often referred

to as a zero-mean Gaussian random field on X .
Assumption 2: We are given a sequence of measurement pairs

(xi , yi ) ∈ X × R and corresponding loss functions Vi for
i = 1, . . . , N . In addition, we are given a scalar σ > 0 such that

p(y|F) ∝
N∏

i=1

exp

(
− Vi [yi − F(xi )]

2σ 2

)
.

Furthermore, the measurement noise random variables ei =
yi − F(xi ) are independent of the the random function F . �

For example, Vi (r) = r2 corresponds to Gaussian noise, while
using Vi (r) = |r | corresponds to Laplacian noise. These loss
functions (and corresponding standardized densities) are pictured in
Fig. 1. The statistical interpretation of an ε-insensitive Vi in terms
of Gaussians with mean and variance described by suitable random
variables can be found in [19].

III. ESTIMATION IN RKHSS

A. Gaussian Measurement Noise

We first consider the case of Gaussian measurement noise, i.e.,
Vi (r) = r2. This corresponds to modeling the {ei } as independent

1This means that the kernel matrix is invertible given any set of distinct
input locations. This assumption is made to simplify the exposition. With
minor modifications, all the results reported in the sequel hold also assuming
that the covariance is just positive definite.

Fig. 1. Left: quadratic and absolute losses are solid and dashed lines. Right:
mean zero variance one Gaussian (solid) and Laplace (dashed) densities. Note
that Laplace has heavier tails than the Gaussian, which explains its robustness
properties.

identically distributed. Gaussian random variables with variance σ 2.
In view of the independence of F and e, it turns out that F(x) and y
are jointly Gaussian for any x ∈ X . Hence, the posterior p[F(x)|y]
is also Gaussian. The mean and variance for this posterior can be
calculated using the following proposition [9, Example 3.6].

Proposition 3: Suppose u and v are jointly Gaussian random
vectors. Then, p(u|v) is also Gaussian with mean and autocovariance
given by

E(u|v) = E(u) + cov(u, v)cov(v, v)−1[v − E(v)]
cov(u, u|v) = cov(u, u) − cov(u, v)cov(v, v)−1cov(v, u). �

Suppose Assumptions 1 and 2 hold with Vi (r) = r2 and Ki as
given in (2) for i = 1, . . . , N . It follows that y is Gaussian. Applying
Proposition 3 with u = F(x) and v = y, we obtain E(u) = 0,
E(v) = 0, and

E[F(x)|y] = λ[K1(x) . . . KN (x)](λK + σ 2IN )−1 y.

Using the notation γ = σ 2/λ, one obtains

E[F(x)|y] = [K1(x) . . . KN (x)](K + γ IN )−1 y

=
N∑

i=1

ĉi Ki (x)

where ĉ is computed using (4). This shows that in the Gaussian
case the minimum variance estimate coincides with F̂ defined by (1).
We formalize this result in the following proposition.

Proposition 4: Suppose that F satisfies Assumption 1 and p(y|F)

satisfies Assumption 2 with Vi (r) = r2. Then, the minimum variance
estimate of F(x) given y is F̂(x) defined by (1), with γ = σ 2/λ
and H , the RKHS induced by K . �

B. Non-Gaussian Measurements: MAP Estimate

We now consider what happens when the Gaussian assumptions
on ei are removed. If the probability density function for F was well
defined and given by

p(F) ∝ exp

(
−‖F‖2

H
2λ

)
.

Then, the posterior density conditional on the data would be

p(F|y) ∝ exp

⎛
⎝−

N∑
i=1

Vi [yi − F(xi )]
2σ 2

− ‖F‖2
H

2λ

⎞
⎠ .

In this case, the negative log of p(F|y) would be proportional to
the objective in (1). Hence, one could immediately conclude that F̂
is the MAP estimator. Unfortunately, the posterior density of F on
a function space is not well defined. However, one can consider the
MAP estimates corresponding to any finite sample of F that includes
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the observations yi (since these are finite-dimensional estimation
problems). The following proposition shows that F̂ solves all such
problems.

Proposition 5: Suppose that F satisfies Assumption 1 and p(y|F)

satisfies Assumption 2. Let {xi : i = N + 1, . . . , N + M}
be an arbitrary set of points in X where M is a given nonnegative
integer, and define

f = [F(x1), . . . , F(xN+M )]T.

Then, the MAP estimate for f given y is

arg max
f

p(y| f )p( f ) = [F̂(x1), . . . , F̂(xN+M )]T

where F̂ is defined by (1), with γ = σ 2/λ, and H is the RKHS
induced by K . �

C. Non-Gaussian Measurements: Minimum Variance Estimate

When considering non-Gaussian measurement loss functions, the
minimum variance estimate E[F(·)|y] and the MAP estimate F̂(·)
are different.

Example 6: Consider the case where N = 1, M = 0, V1(r) = |r |,
y = 1, and λ = 1, σ = 1, K (x1, x1) = 1. For this case, f = F(x1),
and the MAP estimate for f given y is

f̂ = arg min
f

( f 2 + |1 − f |) = 1/2.

Define A > 0 by

A =
∫ +∞
−∞

exp(− f 2 − |1 − f |)d f.

The difference between the minimum variance estimate and the
MAP estimate is (see Appendix D for details)

E( f |y) − f̂ = exp(−3/4)

A

∫ +∞
1/2

s
exp(1 − 2s) − 1

exp(s2)
ds. (6)

For s > 1/2, the integrand in (6) is negative, so the right-hand
side is negative, and E( f |y) < f̂ .

The linear span of the kernel sections Ki contains every possible
MAP estimate of F ; see Proposition 5 and (2). The following
proposition shows that the minimum variance estimate E[F(·)|y] also
belongs to this subspace of H .

Proposition 7: Suppose that F satisfies Assumption 1 and p(y|F)

satisfies Assumption 2. Define

g = [F(x1), . . . , F(xN )]T
d̂ = K

−1E(g|y).

For each x ∈ X , the minimum variance estimate of F(x) is

E[F(x)|y] =
N∑

i=1

d̂i Ki (x). (7)

�
Note that, given σ and λ, the vector E(g|y) can be approximated

using the relation

p(g|y) ∝ exp

⎛
⎝−

N∑
i=1

Vi [yi − gi ]
2σ 2 − gT K

−1
g

2λ

⎞
⎠

together with random sampling technique, such as MCMC.

IV. FUNCTION AND REGULARIZATION

PARAMETER ESTIMATION

In real applications, the regularization parameter γ = σ 2/λ

is typically unknown and needs to be inferred from data. In the
case of Gaussian measurement noise, this problem is often solved
by exploiting the stochastic interpretation given by Proposition 4.
For example, following an empirical Bayes approach, the marginal
likelihood can be computed analytically and the unknown parameters
(often called hyperparameters) can be estimated by optimizing this
likelihood [12, Sec. 5.4.1], [20]. The regularization parameter γ is
then set to its estimated value, and F̂ in (1) is obtained using (4)
and (2). Propositions 5 and 7 provide the statistical foundations that
extend this technique to non-Gaussian measurement noise.

In the more general case of Assumption 2 (non-Gaussian measure-
ment noise), the marginal likelihood cannot be computed analytically.
Let η denote the vector of unknown hyperparameters (σ and/or λ) and
recall the notation g = [F(x1), . . . , F(xN )]T. Following a Bayesian
approach, we model η as a random vector with prior probability
density p(η). The conditional density for the data y and the unknown
function samples g, given the hyperparameters η is

p(y, g|η) ∝
N∏

i=1

exp

(
− Vi (yi − gi )

2σ 2 − gT K
−1

g

2λ

)

where the proportionality factor may depend on η. The difficulty
underlying the estimation of η is that p(η|y) is not, in general, avail-
able in closed form. One possibility is to use stochastic simulation
techniques, e.g., MCMC [17] or particle filters [21], which can sample
from p(η, g|y) provided that a suitable proposal density for η and g
can be designed. An MCMC scheme for sampling from the posterior
for g and η (corresponding to the �1 measurement model) is described
in Appendix E and applied in Section V. Proposition 7 is especially
important because it shows how to compute E[F(x)|y] for any x from
the minimum variance estimate for g. Similarly, given an estimate
of η, we can use Proposition 5 to compute the corresponding F̂(x)

for any x .

V. SIMULATION EXAMPLE

We consider the simulated problem in [18, Sec. 5.1]. The unknown
function to be estimated is

F0(x) = exp[sin(8x)] , 0 ≤ x ≤ 1

which is displayed as the thick line in the bottom two panels of Fig. 2.
This function is reconstructed from the measurements

yi = F0(xi ) + ei with xi = (i − 1)/63 , i = 1, . . . , 64.

We include two Monte Carlo experiments, each consisting of 300
function reconstructions. In the first experiment, for each reconstruc-
tion, measurements yi are generated using ei ∼ N(0, 0.09). A typical
data set is plotted as circles ◦ in the bottom left panel of Fig. 2. In the
second experiment, we simulate measurement outliers by adding, with
probability 0.1, a random offset equal to ±3 to each measurement
generated in the first experiment. A typical data set is plotted as
circles in the bottom right panel of Fig. 2.

Both experiments compare five different methods for modeling the
measurement noise and estimating the kernel scale factor λ (described
below). All the methods model the function correlations using a cubic
spline kernel [5, Ch. 1], shifted by 1 to deal with f (0) 
= 0. To be
specific

K (xi , x j ) = (xi + 1)(x j + 1) min(xi + 1, x j + 1)/2

− min(xi + 1, x j + 1)3/6.
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Fig. 2. Simulation. Top: boxplot of relative errors, nominal conditions (left), and in the presence of outliers (right). Bottom: true function (thick line), noisy
output samples (◦), estimate using L2 + OML (solid line), estimate using L1 + Bayes (dotted line), nominal conditions (left), and in the presence of outliers
(right).

In addition, once an estimate for λ is determined, all methods use
the MAP estimator (1) to reconstruct the function F0(x) by solving
the problem in (3).

1) L2 + O M L: The measurement noise is modeled by a quadratic
loss with σ 2 = 0.09. (During the second experiment, mea-
surement outliers represent unexpected model noise.) For each
reconstruction, the kernel scale factor λ is estimated using
marginal likelihood optimization [12, Sec. 5.4.1]. Once the
estimate for λ is determined, the solution of (3) is obtained
using (4).

2) L1 + Bayes: The measurement noise is modeled by the �1
loss with σ chosen so the variance of the corresponding
Laplace distribution is 0.09. The kernel scale factor λ is
estimated by following the Bayesian approach discussed (for
non-Gaussian noise) in Section IV. More details can be found in
Appendix E. Once the estimate for λ is determined, the problem
in (3) is solved using the interior point (IP) method described
in [22].

3) L1 + E DF: The measurement noise is modeled by the �1 loss
with σ chosen so the variance of the corresponding Laplace
distribution is 0.09. The kernel scale factor λ is estimated
using the approach described in [18], i.e., relying on C p-like
statistic and the concept of EDF. The notation C in
[18, eq. (1)], corresponds to σ−2/2 in this brief. The objective
in [18, eq. (19)] is optimized on a grid containing 50 values
of log10(C) uniformly distributed on [1, 6]. The number of

degrees of freedom entering [18, eq. (19)], as a function of C ,
is determined at every run as described in [18, Remark 1] (with
ε = 0). Once the estimate for λ is determined, the problem
in (3) is solved using the IP method [22].

4) L1 + CV : The measurement noise is modeled by the �1
loss and the regularization parameter γ is estimated using
cross validation. To be specific, given a value for γ , the data
with odd indices {xi , yi }i=1,3,... are used to define F̂γ (x)
by solving problem (3) using the IP method [22]. Given
F̂γ , the data with even indices {xi , yi }i=2,4,... define the
corresponding prediction errors yi − F̂γ (xi ). The regularization
parameter is chosen to minimize the sum of the squares of
the prediction errors. Given this optimal γ , the final function
estimate F̂(x) is obtained by solving problem (3) using all
64 measurements.

5) L1 + GCV : The regularization parameter γ is chosen to
optimize the generalized cross validation score (defined, e.g.,
[23, p. 325, eq. (9.20)]) with the EDF computed as described
in [18, Remark 1] (with ε = 0). The parameter γ is searched
on the same grid as used for the L1 + EDF above. The final
function estimate is then obtained by setting γ to its optimal
value and solving (3) using the IP method [22].

If these tests were a real data examples, we would do an out of
sample prediction comparison. Since they are simulations, we know
the true function F0, and hence use it to measure the accuracy of the
estimated function F̂ . The top panels of Fig. 2 are boxplots, for the



1522 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 7, JULY 2015

five methods, of the 300 relative errors defined by
√√√√√√√√√

64∑
i=1

[F0(xi ) − F̂(xi )]2

64∑
i=1

F2
0 (xi )

.

Each boxplot has a line for the median, box surrounding the 25th
and 75th percentiles, and whiskers that extend to the most extreme
data. Relative errors, that the plotting system considers outliers,
are plotted beyond the whiskers. In the absence of measurement
outliers (top left panel), all the methods provide accurate function
reconstructions, and the L2+OML method performs best. The bottom
left panel contains the results of a single reconstruction using the
L2 + OML and L1 + Bayes methods.

The situation dramatically changes in the presence of measurement
outliers (top right panel). As expected, the errors for the L2 + OML
method increase significantly. The estimate obtained by the
L2 + OML method for a single reconstruction is displayed in the
bottom-right panel (solid line). It is apparent that the quadratic loss
is very vulnerable to unexpected model deviations. On the other hand,
the estimate obtained by L1 + Bayes method is much closer to the
truth. This remarkable performance is confirmed by the top-right
panel. The errors corresponding to the L1 + Bayes method with
outliers is similar to the performance obtained in the absence of
outliers. In addition, the L1 +Bayes method outperforms all the other
estimators.

Remark 8: The MCMC scheme discussed in the last part of
Appendix E was also used to compute the minimum variance estimate
of F . The performance of this estimator is virtually identical to that
of L1 + Bayes. Once the MCMC samples are computed, there is
very little extra computation required to obtain the minimum variance
estimate of F . In addition, it does not require the somewhat complex
optimization procedure described in [22].

Remark 9: We also considered a third experiment, where the true
value of the noise variance, i.e., σ 2 = 0.99, is provided to L2 +
OML, L1 + EDF and L1 + Bayes methods. The average error of the
L2 + OML method decreases from 0.53 to 0.22, while that of the
L1 +EDF method decreases from 0.25 to 0.15. The average error of
the L1 +Bayes method does not change significantly, staying around
0.1 in both the second and third experiments. As a final note, both
L1 +CV and L1 +GCV do not use (or require) the level of the noise
variance, so their average errors (0.14 and 0.15, respectively) are not
influenced.

VI. CONCLUSION

When the RKHS induced by K is infinite dimensional, the realiza-
tions of the Gaussian random field with autocovariance K do not fall
in H with probability one, see [24, eq. (34)] and also [25]–[27] for
generalizations. A simple heuristic argument illustrating this fact can
be also found in [5, Ch. 1]. The intuition here is that the realizations
of F are much less regular than functions in the RKHS whose kernel
is equal to the autocovariance K . On the other hand, in the case
of Gaussian measurement noise, F̂ defined in (1) is the minimum
variance estimate, see Proposition 4. In this note, we proved a formal
connection between Bayesian estimation and the more general case
prescribed by Assumption 2. Given the training set {(xi , yi )}, for any
finite set of locations that include the training locations {xi }, the MAP
estimate of F at the locations is the RKHS estimate evaluated at these
locations. We have also shown that every possible MAP estimate
of F , in the sense of Proposition 5, belongs to a finite-dimensional
subspace of H . In addition, the minimum variance estimate of F is

also in this subspace. These results can be extended to more general
cases using more general versions of the representer theorem (2).
This link between statistical estimation and RKHS regularization
provides a foundation for the application of statistical approaches
to joint estimation of the function and the regularization parameters.
The simulation example in this brief illustrates the utility of this
connection.

APPENDIX

A. Lemmas

We begin the appendix with two lemmas that are instrumental in
proving Proposition 5.

Lemma 10: Suppose that g and h are jointly Gaussian random
vectors. It follows that:

max
h

log p(h|g)

=−log det{2π[cov(h, h)−cov(h, g)cov(g, g)−1cov(g, h)]}/2

and this maximum does not depend on the value of g.
Proof: The proof comes from well-known properties of joint

Gaussian vectors [9]. The conditional density p(h|g) is Gaussian and
is given by

−2 log p(h|g) = log det[2πcov(h, h|g)]
+[h − E(h|g)]Tcov(h, h|g)−1[h − E(h|g)]

where recalling also Proposition 3

cov(h, h|g) = cov(h, h) − cov(h, g)cov(g, g)−1cov(g, h).

Thus, cov(h, h|g) does not depend on the value of g (and it would
not make sense for it to depend on the value of h). Hence, one has

arg max
h

p(h|g) = E(h|g)

max
h

log p(h|g) = − log det[2πcov(h, h|g)]/2.

This equation, and the representation for cov(h, h|g) above com-
pletes the proof of this lemma.

Lemma 11: Assume that g and h are jointly Gaussian random
vectors and that y is a random vector such that p(y|g, h) = p(y|g),
and suppose we are given a value for y. Define the corresponding
estimates for g and h by

(ĝ, ĥ) = arg max
g,h

p(y, g, h)

and assume the above maximizers are unique. It follows that:
ĝ = arg max

g
p(y|g)p(g) (8)

ĥ = arg max
h

p(h|g = ĝ). (9)

Proof: We have

p(y, g, h) = p(y|g, h) p(h|g) p(g)

= p(y|g) p(g) p(h|g)

max
g,h

p(y, g, h) = max
g

{[p(y|g) p(g)] max
h

p(h|g)}.

It follows from Lemma 10 that maxh p(h|g) is constant with
respect to g. Hence ĝ = arg maxg[p(y|g) p(g)], which completes
the proof of (8), and

max
g,h

p(y, g, h) = p(y|ĝ) p(ĝ) max
h

p(h|g = ĝ)

which completes the proof of (9).
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B. Proof of Proposition 5

The kernel matrix K is invertible (Assumption 1). Define the
random vectors g and h by

g = [F(x1), . . . , F(xN )]T
h = [F(xN+1), . . . , F(xN+M )]T.

It follows that f in Proposition 5 is given by f = (gT, hT)T.
Notice that p(y| f ) = p(y|g) and that Lemma 11 can be applied.
From (8) and the hypotheses above, we obtain

ĝ = arg max
g

p(y|g)p(g)

= arg max
g

⎛
⎝ 1

2σ 2

N∑
i=1

Vi [yi − gi ] + gT K
−1

g

2λ

⎞
⎠ .

Using the representation g = K c, we obtain

ĉ = arg max
c

⎛
⎝ 1

2σ 2

N∑
i=1

Vi

⎡
⎣yi −

N∑
j=1

K (xi , x j )c j

⎤
⎦+ cT Kc

2λ

⎞
⎠.

This agrees with (3), because γ = σ 2/λ, and thereby shows

ĝ = [F̂(x1), . . . , F̂(xN )]T.

Finally, by Proposition 3 and Lemma 10 in conjunction with (2)
and (9), and the expression for ĝ above, we obtain

ĥ = cov(h, g)cov(g, g)−1 ĝ

= cov(h, g)(λK )−1(K ĉ)

=
⎛
⎜⎝

K1(xN+1) … KN (xN+1)
...

. . .
...

K1(xN+M ) … KN (xN+M )

⎞
⎟⎠

⎛
⎜⎝

ĉ1
...

ĉN

⎞
⎟⎠

= [F̂(xN+1), . . . , F̂(xN+M )]T.

Combining this with the formula for ĝ above, we conclude

[F̂(x1), . . . , F̂(xN+M )]T = arg max
f

p(y, f )

which completes the proof of Proposition 5.

C. Proof of Proposition 7

To obtain the representation (7), we compute E[F(x)|y] by first
projecting F(x) onto g and then onto y, i.e., using the equivalence

E[F(x)|y] = E( E[F(x)|g] |y).

Exploiting Proposition 3, and recalling that cov(g, g) = K , the
first projection is given by

E[F(x)|g] = cov[F(x), g]cov(g, g)−1g = aT K
−1

g

where a ∈ RN and ai = cov[F(x), gi ] = Ki (x). The second
projection yields

E( E[F(x)|g] |y) = aT K
−1E(g|y) =

N∑
i=1

d̂i Ki (x)

where d̂ = K
−1E(g|y), which completes the proof.

D. Proof of (6)

It follows from N = 1, γ = 1, that c is a scalar,
f = F(x1) = c, and using (3), we have:

f̂ = ĉ = arg min
c

|1 − c| + c2 = 1/2.

It also follows that:
p(y| f )p( f ) ∝ exp(− f 2 − |1 − f |).

The minimum variance estimate E( f |y), and its difference from
the map estimate f̂ , are given by

E( f |y) = 1

A

∫ +∞
−∞

f exp(− f 2 − |1 − f |)d f

E( f |y) − f̂ = 1

A

∫ 1

−∞
( f − 1/2) exp(− f 2 − 1 + f )d f

+ 1

A

∫ +∞
1

( f − 1/2) exp(− f 2 + 1 − f )d f.

Multiplying both sides of the equation by A and using the change
of variables s = f − 1/2, we obtain

A(E( f |y) − f̂ )

=
∫ 1/2

−∞
se−(s+1/2)2+s−1/2ds

+
∫ +∞

1/2
se−(s+1/2)2−s+1/2ds

=
∫ 1/2

−∞
se−s2−3/4ds +

∫ +∞
1/2

se−s2−2s+1/4ds

=
∫ −1/2

−∞
se−s2−3/4ds +

∫ +∞
1/2

se−s2−2s+1/4ds

=
∫ +∞

1/2
se−s2−3/4[e1−2s − 1]ds.

This completes the proof of (6).

E. Details of the MCMC Scheme for L1 + Bayes

If Assumptions 1 and 2 hold with Vi (r) = 2(2)1/2σ |r |, the noise ei
is Laplacian with variance σ 2. In this case, it can be difficult to build
an efficient MCMC scheme to sample from the posterior of η and g.
This is because, a posteriori, the components of g are generally
strongly correlated. It is useful to use a scaled mixture of normal
representation because for each normal, the posterior distribution can
be represented in closed form. To be specific, each p(ei ) admits the
representation [28]

p(ei ) = 1√
2σ

exp(−√
2 |ei | / σ )

=
∫ +∞

0

1√
2πτi

exp

(
− e2

i
2τi

)
1

σ 2
exp

(
− τi

σ 2

)
dτi .

Hence, we can model Laplacian noise ei as a mixture of
Gaussians with variances τi that are exponential random variables
with probability density

p(τi ) =
{

exp
(
−τi / σ 2

)
/σ 2 if τi ≥ 0

0 otherwise
p(τ) = p(τ1) · · · p(τN ). (10)

We restrict our attention to the case where η = λ, and use τ =
(τ1, . . . , τN )T to denote the independent random variables (which
are also independent of λ). We have

p(τ, λ|y) ∝ p(y|τ, λ)p(τ)p(λ).
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Given τ and λ, we have the linear Gaussian model y = g + ξ ,
where g and ξ are independently distributed according to

g ∼ N(0, λK ) and ξ ∼ N[0, diag(τ)]
where diag(τ) is the diagonal matrix with τ along its diagonal. Note
that p(y|τ, λ) can be computed in closed from using the classical
Gaussian marginal likelihood result [12, Sec. 5.4.1]. To be specific,
using the notation C(τ, λ) = λK + diag(τ)

p(y|τ, λ) = 1√
2π det[C(τ, λ)] exp

[
−1

2
yTC(τ, λ)−1y

]
. (11)

Using an improper flat prior on λ ≥ 0, we obtain

p(τ, λ|y) ∝
{

p(y|τ, λ)p(τ) if λ ≥ 0
0 otherwise

were p(y|τ, λ) can be computed using (11) and p(τ) can be computed
using (10). We are now in a position to describe the MCMC
scheme used for the L1+Bayes method in Section V. The scale
factor λ, and all the components of τ are simultaneously updated
using a random walk Metropolis scheme [17]. The proposal density
is independent normal increments with standard deviation 30 and
σ 2/30 for λ and τi , respectively. This simple scheme has always
led to an acceptance rate over 20%. We have assessed that this
follows from the fact that the components of λ and τ have low
correlation a posteriori. For each function reconstruction, L = 106

MCMC realizations from p(τ, λ|y) were obtained by the MCMC
scheme (which we denote by {τ�, λ�} below). Using the convergence
diagnostics described in [29], this allowed us to estimate the quantiles
q = 0.025, 0.25, 0.5, 0.75, 0.975 of the marginal posterior of λ
with precision r = 0.02, 0.05, 0.01, 0.05, 0.02, respectively, with
probability 0.95.

Now consider recovering the minimum variance estimate
E[F(x)|y]. We have seen from Proposition 7 that this reduces to
computing E(g|y). Note that, given a value for λ and τ , g, and y are
jointly Gaussian. Applying Proposition 3

E(g|y, τ, λ) = cov(g, y|τ, λ)cov(y, y|τ, λ)−1y

= λK C(τ, λ)−1 y.

Hence, it follows that E(g|y) can be approximated as:

E(g|y) ≈ K
1

L

L∑
�=1

λ�C(τ�, λ�)−1 y

where {τ�, λ�}L
�=1 are the realizations from p(τ, λ|y) achieved by

the MCMC scheme above described above.
Remark 12: In general, MCMC is more computationally expensive

than optimization because MCMC needs to represent the entire
support of a probability density to reconstruct it in sampled form.
Another complexity of the L1 + Bayes MCMC method is the need
to evaluate the marginal likelihood in (11), every time the proposal
density is evaluated (which requires O(N3) operations). Note that the
same strategies used to reduce the computational load of optimization
methods can be used with MCMC methods. In particular, one can
replace the marginal likelihood in (11) with suitable approximations
as described in [30] and [31].
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