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Abstract This paper concerns smoothing by infimal convolution for two large classes of
functions: convex, proper and lower semicontinous as well as for (the nonconvex class
of) convex-composite functions. The smooth approximations are constructed so that they
epi-converge (to the underlying nonsmooth function) and fulfill a desirable property with
respect to graph convergence of the gradient mappings to the subdifferential of the original
function under reasonable assumptions. The close connection between epi-convergence of
the smoothing functions and coercivity properties of the smoothing kernel is established.
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1 Introduction

The idea of smoothing extended real-valued (hence nonsmooth) convex functions by means
of infimal convolution with sufficiently smooth kernels dates back to the early works of
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Moreau [20]. The Moreau envelope (or Moreau-Yosida regularization) uses the squared
Euclidean norm as a smoothing kernel, and is a well-established tool in convex anal-
ysis and optimization. In this note we study the epi-convergence properties of smooth
approximations obtained through infimal convolution.

When the concept of epi-convergence arose in the 1960s, it was quickly proven that,
in particular, the Moreau envelope converges epi-graphically to the convex function that
it smoothes as the regularization/smoothing parameter goes to zero, see [1, 23]. Epi-
convergence was designed so that epi-limits inherit certain desirable variational properties.
In general, it is different from pointwise convergence, and strictly weaker than uniform
convergence (on compact subsets). In a sense, it is the weakest convergence concept for
sequences of functions which assures the (set-)convergence of minimizers and optimal
values. This property makes it very attractive from an optimization perspective. Excel-
lent accounts on this topic can be found in, e.g., [1] in infinite and [23, Ch. 7] in finite
dimensions.

In [6], smoothing kernels (with Lipschitz gradient) different from the square of the
Euclidean norm are employed to construct infimal convolution smoothing functions. Build-
ing on the work in [6], a notion of epi-smoothing, compatible with epi-convergence, is
introduced in [8] where conditions for establishing the gradient consistency [12] of an epi-
smoothing function are given. One of the major contributions of [8] is the construction of
epi-convergent, gradient consistent smoothing functions for the important and broad class
of nonconvex functions called convex-composite functions. Their construction is based on
epi-convergent smooth approximations for convex functions, established as a preliminary
result. In the context of epi-smoothing functions constructed through infimal convolution,
we have recently discovered that the convex results in [8] were partially established ear-
lier (under slightly different assumptions) by Strömberg in his doctoral dissertation [24].
In particular, Strömberg shows that, for the purposes driven by epi-convergence, Lipschitz
continuity of the gradient of the smoothing kernels is not required . This hypothesis is used
in [6] as part of the definition of smoothable functions (see [6, Definition 2.1]) in order to
establish certain complexity properties which is the focus of that study.

In this paper we unify, refine, and extend results on the epi-convergence properties of
smoothing by infimal convolution, and clarify the origins of these results. In particular,
the authors highlight the important early result by Strömberg [24]. As noted, we restrict
ourselves to infimal convolution smoothing schemes for extended real-valued convex and
convex-composite functions. This includes as a special case the Moreau-Yosida regulariza-
tion. This is distinct from [8] which considers a more general epi-smoothing framework that
includes infimal convolution as an important special case. In addition, we omit considera-
tion of other smoothing techniques such as integral convolution (cf. see [9, 12, 13, 17, 18]),
Lasry-Lions regularization (cf. [4, 19, 25]), or self-dual smoothing [15].

More concretely, the objective of this paper is the study of parametrized families of
smoothing functions {fλ : Rn → R | λ > 0 } built through infimal convolution that epi-
converge to an underlying nonsmooth mapping f : Rn → R∪{+∞}. A primary goal is that
this family of smooth approximations possesses the gradient consistency property defined
by Chen in [12] at a given point x̄ ∈ dom f , i.e.,

lim sup
x→x̄, λ↓0

∇fλ(x) = ∂f (x̄) . (1)

In the fully convex case, gradient consistency is an immediate consequence of Attouch’s
Theorem [1] when the family {fλ} epi-converges to f since, in this case, we have graph
convergence of the gradient mapping, gph∇fλ → gph ∂f which is much stronger.
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In the convex-composite case, the graph convergence of the sequence of gradients has
to be established independently. We follow the approach taken in [22] and [14], where an
extension of Attouch’s Theorem is provided for certain classes of convex-composites.

We would also like to mention the early contribution [7], which is also in the spirit of the
contents of this paper, but with a different approach.

The paper is organized as follows: In Section 2, we provide the necessary tools and ter-
minology from variational analysis. Section 3 contains the main results on epi-convergent,
infimal convolution based regularizations for convex functions as well as a discussion of
and comparison with existing results. In particular, the crucial role of supercoercivity for
obtaining epi-convergent approximations is highlighted. Here, the major tool for proving
epi-convergence of the infimal convolutions is provided by the duality correspondence for
epi-convergent sequences of convex functions established by Wijsman, see [26, 27]. Due to
the special role of supercoercivity, Section 4 provides an elementary calculus for supercoer-
civity as well as examples of supercoercive (smooth and convex) kernels. In Section 5, the
results from Section 3 are applied to the class of convex-composite functions, also providing
a graph convergence result using the techniques of Poliquin [22] in the spirit of Attouch’s
Theorem.

We close with some final remarks in Section 6.
Notation: The notation used is quite standard. The extended real numbers are given by
R := R ∪ {±∞}.

The open Euclidean ball with radius r > 0 around x̄ ∈ Rn is denoted by Bε(x̄).
Moreover, we put B := clB1(0).

The standard inner product on Rn is denoted by ⟨·, ·⟩, i.e.
⟨x, y⟩ = xT y ∀x, y ∈ Rn.

For a differentiable function H : Rn → Rm its derivative is written as H ′, hence the
Jacobian of H at x ∈ Rn is given by H ′(x) ∈ Rm×n. For the case m = 1, the gradient of H
at x ∈ Rn is a column vector labeled by ∇H(x) ∈ Rn, i.e. ∇H(x) = H ′(x)T .

For a matrix A ∈ Rm×n, its kernel will be denoted by kerA.
Moreover, for a sequence {xk ∈ Rn} and a infinite subset K ⊂ N, we write

xk →K x̄,

to indicate that the subsequence {xk}k∈K converges to x̄ ∈ Rn.

2 Preliminaries

For a function f : Rn → R ∪ {+∞} its epigraph is given by
epi f := {(x,α) ∈ Rn × R | f (x) ≤ α},

and its domain is the set

dom f := {x ∈ Rn | f (x) < +∞}.
The notion of the epigraph allows for very handy definitions of a number of properties

for extended real-valued functions (see,e.g., [5, 23]). For example, a function f : Rn →
R ∪ {+∞} is said be lower semicontinuous (lsc) (or closed) if epi f is a closed set and it is
called convex if epi f is a convex set. A convex function f : Rn → R ∪ {+∞} is said to be
proper if dom f ̸= ∅.
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The main technique of our study is the smoothing of convex functions by infimal convo-
lution. For two functions f, g : Rn → R ∪ {+∞}, their infimal convolution (or epi-sum) is
the function f #g : Rn → R defined by

(f #g)(x) := inf
u∈Rn

{f (u)+ g(x − u)} .

The operation is referred to as epi-addition since

{(x,α) | (f #g)(x) < α } = {(x,α) | f (x) < α } + {(x,α) | g(x) < α } ,
with epi (f #g) = epi f + epi g whenever the infimum defining f #g is attained when finite
[23, Exercise 1.28]. In our study, we focus on the infimal convolution over the class of
closed proper convex functions:

% :=
{
f : Rn → R ∪ {+∞} | f proper, lsc and convex

}
.

An important extended real-valued function is the indicator function of a set C ⊂ Rn

given by δC : Rn → R ∪ {+∞} with

δC(x) :=
{

0 if x ∈ C,

+∞ if x /∈ C.

The indicator function δC is convex if and only if C is convex, and lsc if and only if C is
closed.

For a proper function f : Rn → R ∪ {+∞}, its conjugate f ∗ : Rn → R ∪ {+∞} is
given by

f ∗(y) := sup
x∈dom f

{
xT y − f (x)

}
.

Note that, if f is proper, then f ∗, (f ∗)∗ ∈ %, and f = (f ∗)∗ if and only if f ∈ %, cf.
[23, Theorem 11.1].

We now introduce epi-convergence concepts for sequences of extended real-valued func-
tions. Let {fk : R → R ∪ {+∞}} be a sequence of functions, then the epigraphical lower
limit of {fk} is given by

e- lim inf
k→∞

fk : x ∈ R 2→ min
{
α ∈ R ∪ {+∞}

∣∣∣∣ ∃xk → x : lim inf
k→∞

fk(x
k) = α

}
,

whereas the epi-graphical upper limit is the function

e- lim sup
k→∞

fk : x ∈ R 2→ min
{
α ∈ R ∪ {+∞}

∣∣∣∣ ∃xk → x : lim sup
k→∞

fk(x
k) = α

}
.

If these funtions coincide we call {fk} epi-convergent to (the epi-limit)

e- lim
k→∞

fk := e- lim inf
k→∞

fk(= e- lim sup
k→∞

fk).

Hence, {fk} epi-converges to a function f : R → R ∪ {+∞} if and only if

∀x ∈ R
{ ∀{xk} → x : lim infk→∞ fk(x

k) ≥ f (x),

∃{xk} → x : lim supk→∞ fk(x
k) ≤ f (x),

(2)

and we write
e- lim

k→∞
fk = f or fk

e→ f.

Two further notions of functional convergence will also be of use to us. The sequence
{fk} is said to converge continuously to f if

∀x ∈ R and {xk} → x : lim
k→∞

fk(x
k) = f (x),
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and we write
c- lim

k→∞
fk = f or fk

c→ f.

Furthermore, {fk} is said to converge pointwise to f if

∀x ∈ R : lim
k→∞

fk(x) = f (x),

and we write
p- lim

k→∞
fk = f or fk

p→ f.

We extend these notions of functional convergence to families of functions {fλ}{λ↓0}
by requiring the respective convergence properties to hold for all sequences {λk} ↓ 0. For
instance,

fλ
e→ f ⇐⇒ ∀{λk} ↓ 0 : fλk

e→ f,

and so forth.
The notion of set-convergence that we are going to invoke is Painlevé-Kuratowski set

convergence: For a sequence of sets {Ck} with Ck ⊂ Rn for all k ∈ N, we define the outer
limit as

Lim sup
k→∞

Ck :=
{
x | ∃K ⊂ N(infinite), {xk} →K x : xk ∈ Ck ∀k ∈ K

}

and the inner limit as

Lim inf
k→∞

Ck :=
{
x | ∃k0 ∈ N, {xk} → x : xk ∈ Ck ∀k ≥ k0

}
.

By definition, it is always the case that Lim infk→∞ Ck ⊂ Lim supk→∞ Ck . We say that
{Ck} converges if the outer and inner limit are equal, i.e.:

Lim
k→∞

Ck := Lim sup
k→∞

Ck = Lim inf
k→∞

Ck.

Note that, by means of this convergence concept, we have

fk
e→ f ⇐⇒ epi fk → epi f,

e.g., see [23].
Building on the notion of set-convergence in the sense of Painlevé-Kuratowski, we define

the outer limit and inner limit for a set-valued mapping.
For S : Rn ⇒ Rm and X ⊂ Rn the outer limit of S at x̄ relative to X is given by

Lim sup
x→Xx̄

S(x) :=
⋃

{xk}→x̄

Lim sup
k→∞

S(xk)

=
{
v | ∃{xk} →X x̄, {vk} → v : vk ∈ S(xk) ∀k ∈ N

}
,

and the inner limit of S at x̄ relative to X is defined by

Lim inf
x→Xx̄

S(x) :=
⋂

{xk}→x̄

Lim inf
k→∞

S(xk)

=
{
v | ∀{xk} →X x̄, ∃{vk} → v, k0 ∈ N : vk ∈ S(xk) ∀k ≥ k0

}
.

In case that outer and inner limit coincide, we write

Lim
x→Xx̄

S(x) := Lim sup
x→Xx̄

S(x).
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Definition 2.1 (Subdifferentials and Clarke regularity) Let f : Rn → R ∪ {+∞} and
x̄ ∈ dom f .

a) The regular subdifferential of f at x̄ is the set given by

∂̂f (x̄) :=
{
v | f (x) ≥ f (x̄)+ vT (x − x̄)+ o(∥x − x̄∥)

}
.

b) The proximal subdifferential of f at x̄ is the set given by

∂pf (x) :=
{
v

∣∣∣ ∃ρ, δ > 0 : f (x) ≥ f (x̄)+ vT (x − x̄) − ρ

2
∥x − x̄∥2 ∀x ∈ Bδ(x̄)

}
.

c) The limiting subdifferential of f at x̄ is the set given by

∂f (x̄) := Lim sup
x→f x̄

∂̂f (x).

d) The horizon subdifferential of f at x̄ is the set given by

∂∞f (x̄) :=
{
v | ∃{xk} →f x̄, {µk} ↓ 0, vk ∈ ∂̂f (xk) : µkv

k → v} ∪ {0}.

Clearly, by definition, for an arbitrary function f : Rn → R,

∂pf (x̄) ⊂ ∂̂f (x̄) ⊂ ∂f (x̄) ∀x̄ ∈ dom f.

Note that for a proper, convex function f : Rn → R ∪ {+∞},

∂f (x̄) :=
{
v ∈ Rn

∣∣∣ f (x) ≥ f (x̄)+ vT (x − x̄) ∀x ∈ Rn
}
= ∂̂f (x̄) = ∂pf (x),

for all x̄ ∈ dom f , see [23, Proposition 8.12]. For a convex set C ⊂ Rn, the normal cone to
C at x̄ ∈ C is given by

NC(x̄) := ∂δC(x̄) =
{
v ∈ Rn

∣∣∣ vT (x − x̄) ≤ 0 ∀x ∈ C
}
.

In turn, for f ∈ % we have

Ndom f (x̄) = ∂∞f (x̄) ∀x̄ ∈ dom f, (3)

Rockafellar and Wets [23, Proposition 8.12].

3 Epi-Multiplication, Infimal Convolution, and Supercoercivity

Given ω ∈ %, define

ωλ : x ∈ Rn 2→ λω
(x

λ

)
(λ > 0). (4)

In the literature, the operation

λ ⋆ ω := ωλ (λ > 0),

is often called epi-multiplication, cf., e.g., [23, p. 24], which is closely related to perspective
functions, see, e.g., [16, p. 90].

Note that

ω∗
λ = λω∗ (λ > 0), (5)

cf. [23, Equation 11(3)].
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Lemma 3.1 (Exercise 2.24 [23]) Let f,ω ∈ %. Then the following holds:

a) f #ω is convex.
b) ωλ is convex for all λ > 0.
c) ωλ+µ = ωλ#ωµ for all λ, µ > 0. In particular, it holds that

f #ωλ#ωλ = f #ωλ+µ ∀λ, µ > 0.

The next result, on which large parts of our reasoning relies, is due to Wijsman [26, 27].
See also [23, Theorem 11.37] for the version stated here.

Theorem 3.2 (Wijsman) Given fk, f ∈ % (k ∈ N) one has

fk
e→ f ⇐⇒ f ∗

k
e→ f.

More generally, if e- lim infk→∞ fk > −∞ and there exists a bounded set B ⊂ Rn such
that lim supk→∞ infB fk < ∞, one has

lim inf
k→∞

fk ≥ f ⇐⇒ lim sup
k→∞

f ∗
k ≤ f ∗

lim sup
k→∞

fk ≤ f ⇐⇒ lim inf
k→∞

f ∗
k ≥ f ∗

The next two results build the basis for establishing the intimate connection between
epi-convergence of the epi-multiplication λ ⋆ ω (ω ∈ *) to δ{0} as λ ↓ 0.

Lemma 3.3 Let ω ∈ % with 0 ∈ domω. Then for all {λk} ↓ 0 and all x̄ ∈ Rn, we have

lim inf
k→∞

λkω
∗(xk) ≥ 0 ∀{xk} → x̄,

i.e.
e- lim inf

λ↓0
λω∗ ≥ σ{0}(≡ 0).

Proof Let {λk} ↓ 0, x̄ ∈ Rn and {xk} → x̄. Then, noticing that

infω∗ = −ω(0) ∈ R,
see [23, Theorem 11.8 (a)], we have

lim inf
k→∞

λkω
∗(xk) ≥ lim inf

k→∞
λk(−ω(0)) = 0.

Corollary 3.4 Let ω ∈ % with 0 ∈ domω. Then

e- lim sup
λ↓0

ωλ ≤ δ{0},

i.e. for all {λk} ↓ 0 and all x̄ ∈ Rn, we have

∃{xk} → x̄ : lim sup
k→∞

ωλk (x
k) ≤ δ{0}(x̄).

Proof Let {λk} ↓ 0. By Lemma 3.3 (and (5)) we know that e- lim infk→∞(ωλk )
∗ ≥ δ∗

{0}.
Moreover, by assumption and [23, Theorem 11.8 (a)],

−∞ < −ω(0) = infw∗ ≤ w∗(v) < ∞,
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for any v ∈ domw∗. We infer that

(ωλk )
∗(v) = λkω

∗(v) → 0,

where {v} is clearly a bounded set. Hence lim supk→∞(ωλk )
∗(v) = 0. Therefore, the

assertion follows from Wijsman’s Theorem 3.2.

The key assumption on ω for the remainder is supercoercivity. A function φ : Rn →
R ∪ {+∞} is called coercive (or 0-coercive, level-bounded) if

lim
∥x∥→∞

f (x) = +∞.

In turn, φ is said to be supercoercive (or 1-coercive) if

lim
∥x∥→∞

φ(x)

∥x∥ = +∞.

The following result summarizes a collection of characterizations of supercoercivity
useful to our study.

Lemma 3.5 Let ω ∈ %. Then the following statements are equivalent:

i) ω is supercoercive.
ii) domω∗ = Rn.
iii) ωλ

e→ δ{0} (λ ↓ 0).

iv) λω∗ e→ σ{0} ≡ 0 (λ ↓ 0).

v) λω∗ c→ σ{0} ≡ 0 (λ ↓ 0).

Proof The equivalence i) ⇔ ii) follows from [23, Theorem 11.8 (d)], while iii) ⇔ iv)
follows from Theorem 3.2 and (5).

We now show that ii) ⇔ iv): Let {λk} ↓ 0, and let us first assume that domω∗ = Rn: For
x̄ ∈ Rn, by Lemma 3.3, we have

lim inf
k→∞

λkω
∗(xk) ≥ 0 ∀{xk} → x̄.

On the other hand, for {xk := x̄}, we have
lim sup
k→∞

λkω
∗(xk) = 0,

as x̄ ∈ domω∗ = Rn. This shows that e- limλ↓0 λω∗ = 0.
Now assume that domω∗ ! Rn, take x̄ /∈ cl (domω∗).Then for all {xk} → x̄, we have

xk /∈ domω∗ for all k sufficiently large. Hence,

lim sup
k→∞

λkω
∗(xk) = +∞ > 0,

so that e- lim supλ↓0 λω∗ ̸= 0, in particular e- limλ↓0 λω∗ ̸= 0, which proves the converse
implication.

To complete the proof, it suffices to show that λω∗ e→ σ{0} ≡ 0 implies λω∗ c→ σ{0} ≡ 0
(since the reverse implication is clear). However, this implication follows immediately from
[23, Theorem 7.14/7.17] since domω∗ = Rn.

Using the duality correspondences for epi-convergence due to Wijsman (Theorem 3.2),
the implication i) ⇒ v) ⇒ iii) was already proved by Strömberg (see the proof of [24,
Theorem 5.10 (c)]), while the equivalence i) ⇔ iii) was provided independently in [8,
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Lemma 4.3] with a more elementary technique of proof using the geometric characterization
of epi-convergence via set-convergence (in the Painlevé-Kuratowski sense) of the epigraphs.

The following result is key.

Proposition 3.6 Let f,ω ∈ %. Then, for all λ > 0, the following hold:

a) We have
(f #ωλ)

∗ = f ∗ + λω∗.

b) If ω is supercoercive, then
(f ∗ + λω∗)∗ = f #wλ.

c) If ω is supercoercive (or coercive and f bounded from below), then f #ωλ is exact, that
is,

∀x ∈ Rn ∃uλ(x) : (f #ωλ)(x) = f (uλ(x))+ ωλ(x − uλ(x)) ∈ R ∪ {+∞},
or equivalently,

argmin
u∈Rn

{
f (u)+ λω

(x − u

λ

)}
̸= ∅ ∀x ∈ Rn.

In particular, if ω is also finite-valued, f #ωλ is finite-valued (and convex), hence
locally Lipschitz.

d) If ω is supercoercive, then for x̄ ∈ dom f and

uλ(x̄) ∈ argmin
u∈Rn

{
f (u)+ λω

(x − u

λ

)}
(̸= ∅)

we have
uλ(x̄) → x̄ and f (uλ(x̄)) → f (x̄) (λ ↓ 0).

Proof a) Follows immediately from [23, Theorem 11.23 (a)] (without acutally using the
convexity and lower semicontinuity of f and ω) and (5).

b) This follows also from [23, Theorem 11.23 (a)] and (5), while using the fact that
domω∗ = Rn as ω is supercoercive (see Lemma 3.5).

c) The exactness result(s) follows from [5, Proposition 12.14]. If, in addition, ω is finite-
valued, then for x̄ ∈ dom f ̸= ∅, we have

−∞ < (f #ωλ)(x) ≤ f (x̄)+ ωλ(x − x̄) < +∞ ∀x ∈ Rn, λ > 0,

where the first (proper) inequality is due to the exactness. Hence, f #ωλ is finite-valued.
Since it is convex, see Lemma 3.1 a), it is locally Lipschitz, see, e.g., [23, Example 9.14].

d) Let x 2→ aT x + β be an affine minorant of f (see, e.g., [5, Theorem 9.19]) and
x̄ ∈ dom f . Then, for all λ > 0, we have

f (x̄) ≥ (f #ωλ)(x̄)

= f (uλ(x̄))+ λω

(
x̄ − uλ(x̄)

λ

)

≥ aT uλ(x̄)+ γ + λω

(
x̄ − uλ(x̄)

λ

)

≥ −∥a∥ · ∥uλ(x̄)∥ + γ + λω

(
x̄ − uλ(x̄)

λ

)
.

Here, the first inequality uses Lemma 3.7, where the last one uses Cauchy-Schwarz.
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Rearranging and dividing by ∥x̄ − uλ(x̄)∥ (while neglecting (sub-)sequences {uλk (x̄)}
with uλk (x̄) = x̄ for all k ∈ N) gives

f (x̄)

∥x̄ − uλ(x̄)∥
+ ∥a∥ · ∥uλ(x̄)∥

∥x̄ − uλ(x̄)∥
− γ

∥x̄ − uλ(x̄)∥
≥

ω
(
x̄−uλ(x̄)

λ

)

∥x̄−uλ(x̄)∥
λ

. (6)

Now, assume that {uλk (x̄)} for some sequence (λk ↓ 0)were unbounded (i.e. {x̄−uλk (x)}
and hence,

{
x̄−uλk

(x̄)

λk

}
unbounded). As f (x̄) < +∞ and ω is supercoercive, (6) gives the

contradiction

+∞ > ∥a∥ lim sup
k→∞

∥uλk (x̄)∥
∥x̄ − uλk (x̄)∥

≥ lim sup
k→∞

ω
(
x̄−uλk

(x̄)

λk

)

∥x̄−uλk
(x̄)∥

λk

= +∞.

Hence, {uλ(x̄)} (λ ↓ 0) is bounded. Using this fact again in (6), while assuming that
uλ(x̄) ̸→ x̄ gives another contradiction, due to the 1-coercivity of ω. Hence, uλ(x̄) → x̄ as
λ ↓ 0, which proves the first assertion.

In order to see the second statement, we first point out that

lim sup
λ↓0

λω

(
x̄ − uλ(x̄)

λ

)
≥ 0, (7)

as ω is supercoercive. Hence, it follows that

f (x̄) ≥ lim sup
λ↓0

{
f (uλ(x̄))+ λω

(
x̄ − uλ(x̄)

λ

)}

≥ lim sup
λ↓0

f (uλ(x̄))

≥ lim inf
λ↓0

f (uλ(x̄))

≥ f (x̄).

Here, the first inequality is, again, due to Lemma 3.7, the second one uses (7), while the
last one follows from the fact that f is lsc and uλ(x̄) → x̄.

Next we recall that the net {(f #ωλ)(x)}(λ>0) for x ∈ Rn is monotonic.

Lemma 3.7 [8, Lemma 4.4] Let f,ω ∈ % such that ω(0) ≤ 0. Then for all x ∈ Rn the net
{(f #ωλ)(x)}(λ>0) is monotonically increasing as λ ↓ 0 and bounded above by f (x).

The following theorem captures the basic properties of epi-convergence for infimal
convolution with supercoercive kernels in the convex case.

Theorem 3.8 Let f,ω ∈ % with 0 ∈ domω and ωλ (λ > 0) defined as in (4). Then the
following hold:

a) e- lim infλ↓0(f ∗ + λω∗) ≥ f ∗.
b) If ω is supercoercive, then

e- lim
λ↓0

f ∗ + λω∗ = f ∗, e- lim
λ↓0

f #ωλ = f.

and
gph ∂(f #ωλ) → gph ∂f.
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c) If ω is supercoercive and ω(0) ≤ 0, we also have

lim
λ↓0

(f #ωλ)(x) ↑ f (x) ∀x ∈ Rn.

In particular,
p- lim

λ↓0
f #ωλ = f.

Proof a) We know from Lemma 3.3 that e- lim infλ↓0 λω∗ ≥ σ{0} ≡ 0. Moreover, as f ∗ is
lsc, we also have e- limλ↓0 f ∗ = f ∗. Hence, invoking [23, Theorem 7.46] (or, [10, Theorem
3.2]), we get

e- lim inf
λ↓0

(f ∗ + λω∗) ≥ f ∗.

b) If ω is coercive, we know, from Lemma 3.5, that c- limλ↓0 λω∗ ≡ 0. Hence, as
e- limλ↓0 f ∗ = f ∗, [23, Theorem 7.46 (b)] (or [10, Theorem 3.2]) yields

e- lim
λ↓0

(f ∗ + λω∗) = f ∗.

To prove the next assertion, simply note that (f ∗ +λω∗)∗ = f #ωλ by Proposition 3.6 b)
and apply Wijsman’s Theorem 3.2.

The graphical convergence of the subdifferentials is due to Attouch’s Theorem, see [1,
Theorem 3.66] or [23, Theorem 12.35].

c) If, in addition, ω(0) ≤ 0, Lemma 3.7 tells us that the net {(f #ωλ)(x)}λ>0 is bounded
above by f (x) and monotonically increasing as λ ↓ 0. Hence it is pointwise convergent. By
part b), we have

f (x) ≥ lim
λ↓0

(f #ωλ)(x) ≥ f (x),

hence (f #ωλ)(x) ↑ f (x) as λ ↓ 0.

Part b) of this result was already establish in [8, Proposition 4.5 and Theorem 4.6] using
a different proof technique.

In the infinite dimensional case, a similiar result was furnished by Beer in [11, Theorem
7.3.8], using a so-called regularizing family of smoothing kernels, see [11, Definition 7.3.5].
Beer’s smoothing kernels are required to be non-negative and to take the value zero at the
origin. This is slightly more restrictive than is required by Theorem 3.8 c). In addition, since,
in Lemma 3.5, we establish the equivalence

ωλ
e→ δ{0} ⇐⇒ ω supercoercive,

the smoothing kernels in [11, Theorem 7.3.8] are necessarily supercoercive in our finite-
dimensional setting. Moreover, by Proposition 3.6, the supercoercivity assumption, gives
the full duality correspondence

(f #ωλ)
∗ = f + λω∗ and (f + λω∗)∗ = f #ωλ,

a fact, which seems to be missing in the infinite dimensional setting of cite[Theorem
7.3.8]Bee 96.

It is important to note that the result [23, Theorem 7.46] on the epi-convergence of sums
of epi-convergent sequences, is flawed and cannot be applied off-hand even in the convex
setting. A corrected version of this result can be found in [10, Theorem 3.2], and it is this
corrected version that we invoke in the proof of Theorem 3.8.

Theorem 3.8 tells us that if 0 ∈ domω and ω is supercoercive, then f = e- limλ↓0 f #ωλ,
or equivalently, f ∗ = e- limλ↓0 f ∗ + λω∗. We now consider the question of wether one
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can relax the supercoercivity hypothesis on ω and still obtain the desired epiconvergence of
f #ωλ to f . The following proposition clarifies what is possible in this regard.

Proposition 3.9 Let f ∈ %.

a) If ω ∈ % is such that f #ωλ
e→ f , then dom f ∗ ⊂ cl (domω∗). In particular, if f is

supercoercive, then ω must also be supercoercive.
b) If f is not supercoercive, then there exists ω ∈ % that is not supercoercive and for

which f #ωλ
e→ f .

Proof a) If dom f ∗ ̸⊂ cl domω∗, then there is an x̄ ∈ dom f ∗ \cl domω∗. Hence, for every
sequence {xk} → x̄, we know that xk /∈ domω∗ for all k sufficiently large. Therefore,
lim supk→∞ f ∗(xk) + λkω∗(xk) = +∞ > f (x̄). Consequently, by (2), f ∗ + λω cannot
epiconverge to f ∗, or equivalently, f #ωλ does not epiconverge to f . Finally, note that if ω is
supercoercive, then, by Lemma 3.5, domω∗ = Rn, and so trivially dom f ∗ ⊂ cl (domω∗).

b) If f is not supercoercive, dom f ∗ ! Rn. Define ω := σdom f ∗ . Then ω∗ =
δconv (dom f ∗) = δcl (dom f ∗), and, hence, ω is not supercoercive (as domω∗ ̸= Rn). Yet, we
have

f ∗ + λω∗ = f ∗ e→ f ∗,

which proves the assertion.

The following theorem is the main result on infimal-convolution smoothing. It resembles
a result obtained by Strömberg [24, Theorem 5.10] (see the discussion following the proof).
However, due in part to finite dimensionality, the proof we give here is self-contained,
whereas, the technique of proof in [24] makes use of results for viscosity functions obtained
by Attouch in [2, 3].

Theorem 3.10 Let f,ω ∈ % be such that ω is differentiable on Rn (and consequently
continuously differentiable by [23, Corollary 9.20]) and supercoercive. Then the following
hold:

a) ω∗ is strictly convex and supercoercive with domω∗ = Rn.
b) For all x̄ ∈ Rn the points

uλ(x̄) ∈ argmin
u∈Rn

{
f (u)+ λω

(x − u

λ

)}
(λ > 0)

are characterized by

∇ω

(
x̄ − uλ(x̄)

λ

)
∈ ∂f (uλ(x̄)) (λ > 0).

c) f #ωλ is continuously differentiable for all λ > 0 with

∇(f #ωλ)(x̄) = ∇ω

(
x̄ − uλ(x̄)

λ

)
.

d) We have

f #ωλ
e→ f and gph∇(f #ωλ) → gph ∂f (λ ↓ 0);

hence, in particular

Lim sup
λ↓0,x→x̄

∇(f #ωλ)(x) = ∂f (x̄) ∀x̄ ∈ Rn.
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e) For all x ∈ Rn and all λ > 0, we have

argmin
y∈Rn

{f ∗(y)+ λω∗(y) − x̄T y} = {∇(f #ωλ)(x̄)} ∀x̄ ∈ Rn.

f) For all x̄ ∈ dom ∂f , we have

ω∗(∇(f #ωλ)(x̄)) ≤ min{ω∗(y) | y ∈ ∂f (x̄)} ∀ λ > 0.

g) If ω(0) ≤ 0, then
(f #ωλ)(x) ↑ f (x) (λ ↓ 0) ∀x ∈ R.

In particular,

f #ωλ
p→ f (λ ↓ 0).

h) If ω(0) ≤ 0, then, for all x̄ ∈ dom ∂f , we have

lim
λ↓0

∇(f #ωλ)(x̄) = argmin{ω∗(y) | y ∈ ∂f (x̄)},

and, in particular,

lim
λ↓0

ω∗(∇(f #ωλ)(x̄)) = min{ω∗(y) | y ∈ ∂f (x̄)}.

Proof a) By [23, Theorem 11.1], ω = ω∗∗; hence, since domω = Rn, Lemma 3.5 tells us
that ω∗ is supercoercive. In addition, since ω is differentiable on Rn, [23, Theorem 11.13]
tells us that ω∗ is strictly convex on every convex subset of dom ∂ω∗. But, again by Lemma
3.5, domw∗ = Rn, so ω∗ is strictly convex onRn. We use these facts freely in the remainder
of the proof.

b) Since

min
u∈Rn

{
f (u)+ λω

(
x − u

λ

)}
(λ > 0),

is an unconstrained convex optimization problem, the condition

0 ∈ ∂f (u) − ∇ω

(
x − u

λ

)

characterizes its solutions, which exist by Proposition 3.6 c).
c) As in Proposition 3.6 c), f #ωλ is exact, so differentiability and the derivative formula

follow from [5, Proposition 18.7 /Corollary 18.8]. Continuous differentiability follows from
[23, Corollary 9.20].

d) This follows from Theorem 3.8 b), since trivially 0 ∈ domω = Rn.
e) We have

argmin
y∈Rn

{
f ∗(y)+ λω∗(y) − x̄T y

}
= argmax

y∈Rn

{
xT y − f ∗(y) − λω∗(y)

}

= argmax
y∈Rn

{
xT y − (f #ωλ)

∗(y)
}

= ∂(f #ωλ)(x̄)

= {∇(f #ωλ)(x̄)},
where the third equality follows from, e.g., [23, Proposition 11.3].

f) For λ > 0, set yλ := ∇(f #ωλ)(x̄). By part d),

f ∗(yλ)+ λω∗(yλ) − x̄T yλ ≤ f ∗(y) − xT y + λω∗(y) ∀y ∈ Rn.
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Hence,

λw∗(yλ) ≤ f ∗(y) − f ∗(yλ) − x̄T (y − yλ)+ λω∗(y) ∀y ∈ Rn.

Now if y ∈ ∂f (x̄), or equivalently x̄ ∈ ∂f ∗(y), we have

f ∗(y) − f ∗(yλ) − xT (y − yλ) ≤ 0.

Consequently,
ω∗(yλ) ≤ ω∗(y) ∀y ∈ ∂f (x̄).

This proves the assertion, since the minimum in fact exists, due to the (1-)coercivity and
lower semicontinuity of ω∗ as well as the closedness of ∂f (x̄).

g) See Theorem 3.8 c).
h) Again, for λ > 0, set yλ := ∇(f #ωλ)(x̄). By part e),

ω∗(yλ) ≤ min{ω∗(y) | y ∈ ∂f (x̄)}, (8)

and so the (1-)coercivity of ω∗ implies that the set {yλ : λ > 0} is necessarily bounded. Let
ȳ be an accumulation point of {yλ : λ > 0}. By parts a) and b),

yλ ∈ ∂f (uλ(x̄)) ∀λ > 0,

and, by Proposition 3.6 d), uλ(x̄) → x̄. Hence, by the outer semicontinuity of ∂f , ȳ ∈
∂f (x̄). Thus, in view of (8) and the lower semi-continuity of ω∗,

ȳ ∈ argmin{ω∗(y) | y ∈ ∂f (x̄)}.
On the other hand, as ω∗ is strictly convex and ∂f (x̄) is (closed and) convex, the set

argmin{ω∗(y) | y ∈ ∂f (x̄)} is a singleton. Therefore, the bounded set {yλ | λ > 0} has
exactly one accumulation point ȳ = argmin{ω∗(y) | y ∈ ∂f (x̄)}, and hence yλ → ȳ as
λ ↓ 0.

We point out that due to item b) and c) of the above result, the functions f #ωλ constitute
gradient consistent epi-smoothing functions for f in the sense of [8].

As previously stated, Theorem 3.10 is closely related to Strömberg’s result [24, Theorem
5.1]. While the assertions are basically the same, the assumptions differ. However some of
these differences only stem from the fact that in [24] general normed spaces are considered,
while here we focus our attention on finite-dimensional spaces.

In order to compare the assumptions of Theorem 3.10 and [24, Theorem 5.1], we first
need to recall that ω is differentiable and supercoercive if and only if ω∗ is strictly convex,
supercoercive and domω∗ = Rn. Hence, the coercivity and differentiabililty assumptions
essentially coincide in both Theorems. However, we do not impose the assumptions that
ω be nonnegative and ω(0) = 0, but merely demand ω(0) ≤ 0. In addition, while we
assume ω∗ to be strictly convex (by assuming ω to be differentiable), [24, Theorem 5.1]
uses locally uniform convexity of ω∗ in order to obtain the Fréchet differentiability of f #ωt

[24, Theorem 3.8 (b)]. However, if one assumes that ω∗ is strictly convex, then f #ωt is
Gâteaux differentiable [24, Theorem 3.8(a)], which, in finite-dimensions, is equivalent to
Fréchet differentiability.

Theorem 3.10 shows that if ω is differentiable on Rn and supercoercive, then f #ωλ is
continuously differentiable and epi-converges to f . The following very elementary result
shows that, without further knowledge of f , these hypotheses on ω are required for such a
result.

Proposition 3.11 Let ω ∈ %. Then f #ωλ is continuously differentiable and epi-converges
to f for all f ∈ % if and only if ω is differentiable on Rn and supercoercive.
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Proof One direction has already been established in Theorem 3.10. The reverse direction
follows by taking f = δ{0}. Indeed, in this case f #ωλ = ωλ, so we must have that ω

is differentiable on Rn. In addition, ωλ = f #ωλ
e→ f = δ{0}, so, by Lemma 3.5, ω is

supercoercive.

The following corollary, which was partly covered in [8, Theorem 4.6], shows that the
function f #ωλ (λ > 0) has Lipschitz gradient if the smoothing kernel ω has a Lipschitz
gradient. In what follows, we call a function φ : Rn → R ∪ {+∞} strongly convex [23,
Exercise 12.59] if

∃ σ > 0 : φ − σ

2
∥ · ∥2 is convex.

Corollary 3.12 Let the assumptions of Theorem 3.10 hold, and let ω have Lipschitz gradi-
ent (with Lipschitz modulus L > 0). Then, in addition to all the properties from Theorem
3.10, ∇(f #ωλ) is also Lipschitz (with modulus L

λ ) for all λ > 0.

Proof We have the following chain of implications

ω is differentiable with ∇ω Lipschitz (with modulus L)
⇐⇒ ∇ωλ is Lipschitz (with modulus L

λ )
⇐⇒ (ωλ)

∗ = λω∗ is strongly convex (with modulus λ
L )

=⇒ f ∗ + λω∗ is strongly convex (with modulus λ
L )

⇐⇒ (f ∗+λω∗)∗ = ∇f #ωλ is differentiable with∇(f ∗+λω∗)∗ Lipschitz (with modulus
L
λ ).

Here the first and the last equivalence employ [23, Proposition 12.60].

The question immediately arises as to whether further smoothness properties of the ker-
nel ω can increase the smoothness of f #ωλ. However, in general, this is not the case as the
following example illustrates.

Example 3.13 Let C ∈ Rn be a closed convex set. With f := δC and ω := 1
2∥ · ∥2, we have

that ω

∇(δC#ωλ) =
1
λ
(id − /C),

cf., [23], where /C is the Euclidean projector onto C, which is Lipschitz (with modulus
L = 1), but not differentiable in general [23, Exercise 2.25].

4 Supercoercive Kernels

The results of the previous section establish supercoercivity as an essential hypothesis in
obtaining the epi-convergence and smoothness of the the family f #ωλ. Hence, for the pur-
poses of applications, it is important to understand this class of functions. The following
proposition is provided in order to give some insight into the nature and richness of this
class.

Proposition 4.1 Let ω ∈ %. Then the following hold:

a) If ω is supercoercive, then
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i) ∀φ ∈ % : φ + ω (∈ %) is supercoercive;
ii) ∀α > 0 : αω is supercoercive.

b) If ω is strongly convex, then ω is supercoercive.
c) Suppose ω is supercoercive and θ : R → R∪{+∞} is a proper, lsc, and nondecreasing

convex function that is nonconstant on its domain. If there exists x̂ ∈ domω such that
ω(x̂) ∈ dom θ , then θ ◦ ω is a supercoercive element of % (under the convention that
θ(+∞) = ∞).

Proof a) A proof of i) can be found in [5, Proposition 11.13] and follows immediately
from the fact that a convex function is minorized by an affine minorant, while ii) is
obvious.

b) As ω is strongly convex, there exists σ > 0 such that ω − σ
2 ∥ · ∥2 ∈ %. Moreover,

trivially, σ
2 ∥ · ∥2 is supercoercive. Hence, the assertion follows from a), as

ω = (ω − σ

2
∥ · ∥2 ∈ %)+ σ

2
∥ · ∥2.

c) It is well known, see, e.g., [23, Exercise 2.20 (b)], that θ ◦ ω is lsc, proper, and convex
(under the convention that θ(+∞) = ∞). Since θ is nondecreasing and proper, there
is a t0 ∈ R such that (−∞, t0] ⊂ dom θ . The result will follow once we have shown
that for all t sufficiently large θ(t) is bounded below by a linear function with positive
slope. To this end, note that for every t1, t2, t3 ∈ dom θ with t1 < t2 < t3, we have

t2 =
t2 − t1

t3 − t1
t3 +

t3 − t2

t3 − t1
t1.

Hence

θ(t2) ≤ t2 − t1

t3 − t1
θ(t3)+

t3 − t2

t3 − t1
θ(t1),

or equivalently,

[(t3 − t2)+ (t2 − t1)]θ(t2) ≤ (t2 − t1)θ(t3)+ (t3 − t2)θ(t1).

By rearranging, we obtain

(t3 − t2)[θ(t2) − θ(t1)] ≤ (t2 − t1)[θ(t3) − θ(t2)]
Consequently,

θ(t2) − θ(t1)

t2 − t1
≤ θ(t3) − θ(t2)

t3 − t2
(9)

for all t1, t2, t3 ∈ dom θ with t1 < t2 < t3.
Since θ is nonconstant on its domain, there are t1, t2 ∈ dom θ such that θ(t1) <

θ(t2). Set 0 < γ = (θ(t2) − θ(t1))/(t2 − t1). By (9),

θ(t2)+ γ (t − t2) ≤ θ(t) ∀ t ≥ t2,

which establishes the result.

Clearly, e.g. from Proposition 4.1 b), for all A ≻ 0, b ∈ Rn, γ ∈ R, the function

x ∈ Rn 2→ 1
2
xT Ax + bT x + γ ∈ R.

is supercoercive.
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5 Application to Convex-Composite Functions

One of the major contributions of [8] is the construction of epi-convergent smoothing func-
tions for so-called convex-composite functions, i.e., functions of the type φ := f ◦ G :
Rp → R ∪ {+∞} where f ∈ % and G : Rp → Rn is continuously differentiable. Note
that, in general, such functions φ are lsc but not necessarily convex.

While supercoercivity will yield epi-convergence, the key assumption to obtain (set-
)convergence of the gradients of the infimal convolutions to the subdifferential of the
underlying convex-composite at the respective point is the basic constraint qualification
(BCQ), which is arguably due to Rockafellar and given as follows:

Definition 5.1 Let φ := f ◦ G be a convex-composite, i.e., f ∈ % and G : Rp → Rn

continuously differentiable. Then the basic constraint qualification (BCQ) is satisfied (for
φ) at x̄ ∈ domφ if

Ndom f (G(x̄)) ∩ kerG′(x̄) = {0}.

Note that, since f is convex, its domain is a convex set and x̄ ∈ domφ if and only
if G(x̄) ∈ dom f . Moreover, note that BCQ for the convex-composite function φ =
f ◦ G is everywhere satisfied if f is finite-valued since in this case Ndom f (x) = {0}
for all x. Clearly, it is also satisfied at any point where G′(x̄) has full column rank,
i.e., kerG′(x̄) = {0}.

In our analysis of the graph convergence of the subgradient mapping for convex-
composite functions we also require that the mapping G be C1,1 at the point of interest
x̄, i.e. there exist ε > 0 and L > 0 such that

∥∥G′(x) − G′(y)
∥∥ ≤ L ∥x − y∥ whenever

x, y ∈ Bε(x̄). We say that G is locally C1,1 on a set X ⊂ Rp if it is C1,1 at every point of
X. If G is C1,1 at a point x̄, then we have the following well-known bound on the accuracy
of the linear approximation to G near x̄:

∥∥G(y) − (G(x)+G′(x)(y − x))
∥∥ ≤ L

2
∥y − x∥2 ∀ x, y ∈ Bε(x̄), (10)

where L is the Lipschitz constant for G′ on Bε(x̄). Moreover, we make use of the well-
known fact that if G is locally C1,1 on X, then G′ is (globally) Lipschitz on every compact
subset of X.

Some other useful consequences of BCQ and the C1,1 hypothesis are subsumed below.

Proposition 5.2 Let φ := f ◦ G be a convex-composite, i.e., f ∈ % and G : Rp → Rn

continuously differentiable, and let x̄ ∈ domφ. Then the following hold:

a) If BCQ holds at x̄, there exists a neighborhood N of x̄ such that BCQ (for φ) holds at
all x ∈ N ∩ domφ.

b) If BCQ holds at x̄, then ∂φ(x̄) = ∂̂φ(x̄) = G′(x̄)T ∂f (G(x̄)).

c) IfG is C1,1 at x̄, we have ∂pφ(x̄) ⊃ G′(x̄)T ∂f (G(x̄)). Consequently, under BCQ at x̄,
we get ∂φ(x̄) = ∂̂φ(x̄) = ∂pφ(x̄) = G′(x̄)T ∂f (G(x̄)).

Proof a) See [23, Exercise 10.25 (b)].
b) See [23, Theorem 10.6].
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c) If ∂f (G(x̄)) = ∅, we are done. Otherwise, let v ∈ ∂f (G(x̄)). Then, by convexity of f
and (10), we obtain

φ(x) ≥ φ(x̄)+ ⟨v, G(x) − G(x̄)⟩
= φ(x̄)+

〈
G′(x̄)T v, x − x̄

〉
+

〈
v, G(x) − (G(x̄)+G′(x̄)(x − x̄)

〉

≥ φ(x̄)+
〈
G′(x̄)T v, x − x̄

〉
− L

2
∥v∥ · ∥x − x̄∥2,

where L is the local Lipschitz constant for G′ at x̄. Hence, G′(x̄)T v ∈ ∂pφ(x̄), which
gives the first assertion. The remainder follows from this and part b).

The following result is a refinement of the results from [8] in the sense that the smoothing
kernel ω only needs to be continuously differentiable, as opposed to also having Lipschitz
gradient. Furthermore, pointwise convergence is established for the smooth approximations.

Theorem 5.3 Let G : Rp → Rn be continuously differentiable and f,ω ∈ % such that ω

is supercoercive and differentiable with ω(0) ≤ 0. Then the following hold:

a) The function φλ := (f #ωλ) ◦ G is continuously differentiable for all λ > 0.
b) We have

φλ
e→ φ := f ◦ G (λ ↓ 0).

c) For all x ∈ R, we have
φλ(x) ↑ φ(x) (λ ↓ 0).

Hence, in particular, φλ
p→ φ as λ ↓ 0.

d) If BCQ is satisfied at x̄ ∈ domφ, we have

Lim sup
λ↓0,x→x̄

∇φλ(x) = G′(x̄)T ∂f (G(x̄)) = ∂φ(x̄).

Proof a) Follows immediately from Theorem 3.10 b) and the fact that G is continuously
differentiable by assumption.

b) Follows from Theorem 3.10 b)-c) and Lemma 3.7 in combination with [8, Proposition
5.2].

c) Follows from Theorem 3.10 f).
d) Follows from a)-b) in combination with [8, Theorem 5.7].

Part d) of Theorem 5.3 establishes conditions under which the smoothing functions φλ

satisfy gradient consistency at a point x̄. This is significantly weaker than the local graph
convergence of ∇φλ to ∂(f ◦ G) that one might expect due to part d) of Theorem 3.10.
However, establishing graph convergence is highly nontrivial as it requires an extension
of Attouch’s Theorem ([1, Theorem 3.66] or [23, Theorem 12.35]) to convex-composite
functions. We now show that the local graph convergence of the subdifferentials occurs if
G is assumed to be in the class C1,1 at x̄. This type of graph convergence result was already
proven by Poliquin in [22, Theorem 2.1 and Proposition 2.3] in much greater generality than
is required here, but for the case that G ∈ C2. The proof makes use of the notion of primal
lower-nice functions developed by Poliquin in [21, 22].
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Definition 5.4 Let f : Rn → R be closed and proper. We say that f is primal lower-nice
at x̄ ∈ dom f if there exists ε > 0, c > 0, and T > 0, such that

⟨y1 − y2, x1 − x2⟩ ≥ −t ∥x1 − x2∥2
∀ t ≥ T , xi ∈ Bε(x̄), yi ∈ ∂pf (xi), ∥yi∥ ≤ ct, i = 1, 2.

(11)

A family of closed proper functions {fν | ν ∈ I } is said to be equi primal lower-nice at
x̄ ∈ ∩ν∈Idom fν if ε > 0, c > 0, and T > 0 can be chosen so that (11) holds uniformly in
ν ∈ I .

Remark 5.5 In [22, Proposition 2.2], Poliquin shows that the condition (11) is equivalent to
the condition that there exists ε̂ > 0, ĉ > 0, and T̂ > 0 such that

f (x′) ≥ f (x)+
〈
u, x′ − x

〉
− (t̂/2)

∥∥x − x ′∥∥2

∀ t ≥ T̂ , x ∈ Bε(x̄), y ∈ ∂pf (x), ∥y∥ ≤ ĉt, x′ ∈ x + ε̂B.

By using the bound from (10), it is easily shown that if the BCQ is satisfied at x̄ (Defini-
tion 5.1) and G is C1,1 at x̄, then φ is primal lower-nice at x̄. Indeed, this has already been
observed in [14, Theorem 2.1] in the Banach space setting.

Theorem 5.6 [14, Theorem 2.1] Let φ, f andG be as in Definition 5.1, and let x̄ ∈ domφ

be such that the BCQ is satisfied at x̄ and G is C1,1 at x̄. Then φ is primal lower-nice at x̄.

However, to obtain the graph convergence of the subdifferential we need to establish that
the the family of functions φλ is equi primal lower-nice. The first step toward proving this
is the following revised version of [21, Lemma 5.2].

Lemma 5.7 Let G : Rp → Rn be locally C1,1 on a compact set X ⊂ Rp . Then there is a
Lipschitz constant L for G′ over X such that for all f ∈ % and t > 0

xi ∈ X, vi ∈ ∂f (G(xi)),

∥vi∥ ≤ σ t, i = 1, 2

}
=⇒

〈
G′(x1)T v1 − G′(x2)T v2, x1 − x2

〉
≥−t ∥x1 − x2∥2, (12)

where σ := (2L)−1 is independent of the choice of the function f .

Proof As previously observed, the hypotheses imply that G′ has a uniform Lipschitz con-
stant L over X. Hence, the constant σ := (2L)−1 is well defined. Let x1, x2 ∈ X. Given
t > 0 note that (12) holds trivially if either ∂f (G(x1))∩ σ tB or ∂f (G(x2))∩ σ tB is empty.
So we may assume that G(x1),G(x2) ∈ dom ∂f with x1 ̸= x2 and ∂f (G(x1)) ∩ σ tB and
∂f (G(x2)) ∩ σ tB both nonempty.

Let vi ∈ ∂f (G(xi)) i = 1, 2 be such that ∥vi∥ ≤ σ t . Monotonicity of the subdifferential,
cf. [23, Theorem 12.17], gives

⟨v1 − v2, G(x1) − G(x2)⟩ ≥ 0,

and so
〈
G′(x2)T v1−G′(x2)T v2, x1−x2

〉
=

〈
v1 − v2, G

′(x2)(x1 − x2)
〉

≥
〈
v1−v2, G(x2)+G′(x2)(x1 − x2)−G(x1)

〉

≥ −L

2
∥v1 − v2∥ ∥x1 − x2∥2 .
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Here, the first inequality is due to the inequaltiy from above and the last one follows from
the Cauchy-Schwarz inequality in combination with (10) applied to X. In addition,

|
〈
G′(x1)T v1 − G′(x2)T v1, x1 − x2

〉
| ≤ L ∥v1∥ ∥x1 − x2∥2 ,

and so
〈
G′(x1)T v1 − G′(x2)T v2, x1 − x2

〉
≥ −L(∥v1∥ + (1/2) ∥v1 − v2∥) ∥x1 − v2∥2

≥ −2σ tL ∥x1 − x2∥2 ,
which establishes (12).

We now show that if φ = f ◦ G satisfies the BCQ at a point x̄ ∈ domφ, then the the
family φλ := (f #ωλ) ◦G for λ > 0 as given in Theorem 5.3 is equi primal lower-nice at x̄.
The proof follows the pattern established in [22, Proposition 2.3].

Proposition 5.8 Let f,ω ∈ % such that ω is supercoercive and differentiable such that
ω(0) ≤ 0. As in Theorem 5.3 define φ := f ◦ G and φλ := (f #ωλ) ◦ G for λ > 0. Let
x̄ ∈ domφ be such that BCQ is satisfied at x̄ and G is C1,1 at x̄. Then there exists λ̄ > 0
such that the family of functions

{
φλ

∣∣ λ ∈ (0, λ̄]
}
is equi primal lower-nice at x̄.

Proof Due to Theorem 3.8,

(f #ωλ) → f and gph∇(f #ωλ) → gph ∂f. (13)

By Theorem 5.3, we know that φλ
e→ φ. In addition, the formula for the subdifferential of φ

and the fact that BCQ is a local property follows from Proposition 5.2. Let ε > 0 be chosen
to thatG′ is Lipschitz on B2ε(x̄) and the BCQ is satisfied at all points in domφ ∩B2ε(x̄). In
addition, since all of the functions φλ are finite-valued for λ > 0, they all satisfy the BCQ
on all of Rn with ∇φλ(x) = G′(x)T ∇(f #ωλ)(G(x)) for all λ > 0.

Set σ := (2L)−1 where L is a Lipschitz constant for G′ on B2ε(x̄). By Lemma 5.7, for
all t > 0 and λ > 0,

xi ∈ B2ε(x̄),

vi = ∇(f #ωλ)(G(xi)),

∥vi∥ ≤ σ t, i = 1, 2

⎫
⎬

⎭=⇒
〈
G′(x1)T v1 − G′(x2)T v2, x1 − x2

〉
≥−t ∥x1 − x2∥2. (14)

We now claim that (14) and the BCQ implies that there exist λ̄ > 0, T > 0, and µ > 0
such that

xi ∈ Bε(x̄), λ ∈ (0, λ̄]
ui = ∇φλ(xi),

t ≥ T , ∥ui∥ ≤ µt, i = 1, 2

⎫
⎬

⎭=⇒⟨u1 − u2, x1 − x2⟩≥−t ∥x1 − x2∥2. (15)

In view of the fact that ∇φλ(x) = G′(x)T ∇(f #ωλ)(G(x)) for all λ > 0, the implication
(14) tells us that this claim will follow if it can be shown that λ̄ > 0, T > 0, and µ > 0 can
be chosen so that

x ∈ Bε(x̄), λ ∈ (0, λ̄],
v = ∇(f #ωλ)(G(x)),

t ≥ T ,
∥∥G′(x)T v

∥∥ ≤ µt

⎫
⎬

⎭=⇒∥v∥ ≤ σ t.
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To this end, suppose that this were not the case, then there exist sequences {xk} ⊂ Bε(x̄),
λk ↓ 0, tk ↑ ∞, µk ↓ 0, and vk ∈ ∇(f #ωλk )(G(xk)) such that

∥∥∥G′(xk)T vk
∥∥∥ ≤ µktk while ∥vk∥ > σ tk.

Due to compactness and (13), we may assume with no loss in generality that there
exist vectors x̂ ∈ B2ε(x̄) and w ∈ ∂f∞(G(x̂)) = Ndom f (G(x̂)) such that xk → x̂ and
vk/ ∥vk∥ → w. But then

∥∥G′(xk)T vk
∥∥

∥vk∥
≤ µktk

σ tk
= µk

σ
→ 0,

which implies that
∥∥G′(x̂)T w

∥∥ = 0 contradicting the fact that the BCQ holds at every point
of B2ε(x̄).

We are now able to establish the graph convergence of the subdifferential ∂φλ in a
neighborhood of a point satisfying the BCQ.

Theorem 5.9 [22, Theorem 2.1 and Proposition 2.3] Let f,ω ∈ % such that ω is superco-
ercive and differentiable such that ω(0) ≤ 0. As in Theorem 5.3 define φ := f ◦ G and
φλ := (f #ωλ) ◦ G for λ > 0. Let x̄ ∈ domφ be such that BCQ is satisfied at x̄ and G is
C1,1 at x̄. Then there exists ε > 0 such that

gph∇φλ → gph ∂φ on Bε(x̄),

with ∂φ(x) = G′(x)T ∂f (G(x)) for all x ∈ Bε(x̄).

Proof The hypotheses imply that the consequences of Proposition 5.8 hold. Let λ̄ > 0 be
such that the family 2λ̄ :=

{
φλ

∣∣ φ ∈ (0, λ̄]
}
is equi primal lower-nice at x̄. Let η > 0. By

continuity, φλ̄ is lower bounded on every set of the form Bη(x̄). By Theorem 5.3, φλ ↑ φ,
and so the family 2λ̄ is uniformly bounded below on Bη(x̄). Define Bη := clBη(x̄), φ̂ :=
φ + δBη , and φ̂λ := φλ + δBη for all λ > 0. Then the family 2̂λ̄ :=

{
φ̂λ

∣∣ φ ∈ (0, λ̄]
}
is

equi primal lower-nice at x̄ and bounded below by a constant. Apply [22, Theorem 2.1 (a)]
to the family 2̂λ̄ to obtain the result.

6 Final Remarks

In this paper we studied smoothing techniques based on infimal convolution in order to con-
struct epi-convergent and gradient consistent smooth approximations to nonsmooth convex
and convex-composite functions. The early contributions by Strömberg in the develop-
ment of these ideas is highlighted and combined with our earlier findings as well as new
results. The main tool for proving epi-convergence is Wijsman’s Theorem, which facilitates
a unified and self-contained presentation.

In Lemma 3.5 we provide characterizations of supercoercivity that guide the basic epi-
convergence results in Proposition 3.6 and Theorem 3.8 for convex functions. Theorem 3.8
also reveals the role of the condition ω(0) ≤ 0 on the smoothing kernel ω to establish the
monotonicity of the approximations f #ωλ. The limitations to relaxing the supercoercivity
hypothesis while maintaining epi-convergence are revealed in Proposition 3.9. In Theo-
rem 3.10 we present our main result on gradient consistency in epi-smoothing for convex
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functions. This result requires the obvious additional hypothesis that the smoothing ker-
nel be differentiable, and a representation for the gradient ∇(f #ωλ) is given. The essential
nature of the combined hypotheses of supercoercivity and differentiability on the kernel ω

is illustrated in Proposition 3.11.
Due to the central role played by supercoercivity, we present in Section 4 a brief descrip-

tion of the calculus of supercoercive functions before moving on to convex-composite
functions.

The key to extending the smoothing results for convex functions to convex compos-
ite functions is Rockafellar’s basic constraint qualification for convex-composite functions,
BCQ (Definition 5.1). The relationship between the subdifferential calculus and the BCQ
is presented in Proposition 5.2, and the main result on epi-smoothing , gradient consistency
for convex-composite functions is presented in Theorem 5.3.

The final results of the paper are devoted to the local graph convergence of the gradients
∇(φλ) to the subdifferential of the convex-composite function φ = f ◦G. Here we appealed
to the approach developed by Poliquin [22] based on primal lower-nice functions and equi
primal lower-nice families.
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