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a b s t r a c t

State-space smoothing has found many applications in science and engineering. Under linear and Gaus-
sian assumptions, smoothed estimates can be obtained using efficient recursions, for example Rauch–
Tung–Striebel and Mayne–Fraser algorithms. Such schemes are equivalent to linear algebraic techniques
that minimize a convex quadratic objective function with structure induced by the dynamic model.

These classical formulations fall short in many important circumstances. For instance, smoothers
obtained using quadratic penalties can fail when outliers are present in the data, and cannot track impul-
sive inputs and abrupt state changes. Motivated by these shortcomings, generalized Kalman smoothing
formulations have been proposed in the last few years, replacing quadratic models with more suitable,
often nonsmooth, convex functions. In contrast to classicalmodels, these general estimators require use of
iterated algorithms, and these have received increased attention from control, signal processing, machine
learning, and optimization communities.

In this survey we show that the optimization viewpoint provides the control and signal processing
community great freedom in the development of novelmodeling and inference frameworks for dynamical
systems.We discuss general statisticalmodels for dynamic systems,making full use of nonsmooth convex
penalties and constraints, and providing links to important models in signal processing and machine
learning. We also survey optimization techniques for these formulations, paying close attention to
dynamic problem structure. Modeling concepts and algorithms are illustrated with numerical examples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The linear state space model

xt+1 = Atxt + Btut + vt (1a)
yt = Ctxt + et (1b)

is the bread and butter for analysis and design in discrete time
systems, control and signal processing (Kalman, 1960; Kalman &
Bucy, 1961). Application areas are numerous, including navigation,
tracking, healthcare and finance, to name a few.

For a system model, yt 2 Rm and ut 2 Rp are, respectively, the
output and input evaluated at the time instant t . The dimensions
m and p may depend on t , but we treat them as fixed to simplify
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the exposition. In signal models, the input ut may be absent. The
state vectors xt 2 Rn are the variables of interest; At encodes the
process transition, to the extent that it is known to the modeler, Ct
is the observation model, and Bt describes the effect of the input
on the transition. The process disturbance vt models stochastic
deviations from the linear model At , while et model measurement
errors. We consider the state estimation problem, where the goal
is to infer the values of xt from the input–output measurements.
Given measurements

Z N
0 := {u0, y1, u1, y2, . . . , yN , uN},

we are interested in obtaining an estimate x̂Nt of xt . If N > t this is
called a smoothing problem, if N = t it is a filtering problem, and if
N < t it is a prediction problem.

The dimensions n and N vary with application. For many nav-
igation examples, n is small; i.e. the state may have fewer than
20 elements at each time point. N , the number of time steps, can
be in the thousands (e.g. when a sensor on a plant takes data at a
high frequency or for a long time). In contrast, weather prediction
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models track a large state, and can have n � 106. The choice of
method depends on the application; the survey is geared toward a
small to moderate n.

How well the state estimate fits the true state depends upon
the choice of models for the stochastic term vt , error term et , and
possibly on the initial distribution of x0. While ut is hereby seen as
a known deterministic sequence, the observations yt and states xt
are stochastic processes. We can consider using several estimators
x̂Nt of the state sequence {xt} (all functions of Z N

0 ):

E(xt |Z N
0 ) conditional mean (2a)

max
xt

p(xt
��Z N

0 ) maximum a posteriori(MAP) (2b)

min
x̂t

E(kxt � x̂tk2) minimum expected

mean square error (MSE) (2c)
min

x̂t2span
⇣
Z N

0

⌘ E(kxt � x̂tk2) minimum linear expected MSE. (2d)

When et , vt and the initial state x0 are jointly Gaussian, all the
four estimators coincide. In the general setting, the estimators (2a)
and (2c) are the same. Indeed, the conditional mean represents the
minimum variance estimate. In the general (non-Gaussian) case,
computing (2a) may be difficult, while the MAP (2b) estimator can
be computed efficiently using optimization techniques for a range
of disturbance and error distributions.

Mostmodels assume knownmeans and variances for vt , et , and
x0. In the classic settings, these distributions are Gaussian:

et ⇠ N (0, Rt )
vt ⇠ N (0,Qt )
x0 ⇠ N (µ, ⇧ )

, all variables are mutually independent. (3)

Under this assumption, all the yt and xt become jointly Gaussian
stochastic processes, which implies that the conditional mean (2a)
becomes a linear function of the dataZ N

0 . This is a general property
of Gaussian variables. Many explicit expressions and recursions
for this linear filter have been derived in the literature, some of
which are discussed in this article. We also consider a far more
general setting, where the distributions in (3) can be selected from
a range of densities, and discuss applications and general inference
techniques.

We now make explicit the connection between conditional
mean (2a) and maximum a posteriori (2b) in the Gaussian case.
By Bayes’ theorem and the independence assumptions (3), the
posterior of the state sequence {xt}Nt=0 given the measurement
sequence {yt}Nt=1 is

p
�{xt}

��{yt}
� = p

�{yt}
��{xt}

�
p ({xt})

p ({yt})
= p (x0)

QN
t=1 p

�
yt

��xt
�QN�1

t=0 p
�
xt+1

��xt
�

p ({yt})

/ p (x0)
NY

t=1

pet (yt � Ctxt)
N�1Y

t=0

pvt (xt+1 � Atxt � Btut) , (4)

where we use pet and pvt to denote the densities corresponding
to et and vt . Under Gaussian assumptions (3), and ignoring the
normalizing constant, the posterior is given by

e� 1
2

���⇧�1/2(x0�µ)
���
2 N�1Y

t=0

e� 1
2

���Q�1/2
t (xt+1�At xt�Bt ut )

���
2

⇥
NY

t=1

e� 1
2

���R�1/2
t (yt�Ct xt )

���
2

.

(5)

Note that state increments and measurement residuals appear
explicitly in (5). Maximizing (5) is equivalent to minimizing its

negative log:

min
x0,...,xN

��⇧�1/2(x0 � µ)
��2 +

NX

t=1

���R�1/2
t (yt � Ctxt )

���
2

+
N�1X

t=0

���Q�1/2
t (xt+1 � Atxt � Btut )

���
2
.

(6)

More general cases of correlated noise and singular covariance
matrices are discussed in Appendix. This result is also shown in
e.g. Bell (1994) and Kailath, Sayed, and Hassibi (2000, Sec. 3.5,
10.6) using a least squares argument. The solution can be derived
using various structure-exploiting linear recursions. For instance,
the Rauch–Tung–Striebel (RTS) scheme derived in Rauch, Tung,
and Striebel (1965) computes the state estimates by forward–
backward recursions, see also Ansley and Kohn (1982) for a simple
derivation through projections onto spaces spanned by suitable
random variables. The Mayne–Fraser (MF) algorithm uses a two-
filter formula to compute the smoothed estimate as a linear combi-
nation of forward and backward Kalman filtering estimates (Fraser
& Potter, 1969; Mayne, 1966). The nature of this recursion was
clarified in Badawi, Lindquist, and Pavon (1975) through the
concept ofmaximum-variance forward filter. A third schemebased
on reverse recursion appears in Mayne (1966) under the name of
Algorithm A. The relationships between these schemes, and their
derivations from different perspectives are studied in Aravkin,
Bell, Burke, and Pillonetto (2013) and Ljung and Kailath (1976).
See also Chapter 15 in Lindquist and Picci (2015) for insights on
how various smoothing formulas derive from different choices of
coordinates in the frame space. Computational details for RTS and
MF are presented in Section 2.

The maximum a posteriori (MAP) viewpoint (6) easily general-
izes to new settings. Assume, for example, that the noises et and vt
are non-Gaussian, but rather have continuous probability densities
defined by functions Vt (·) and Jt (·) as follows

pet (e) / exp
⇣
�Vt

⇣
R�1/2
t e

⌘⌘
, pvt (v) / exp

⇣
�Jt

⇣
Q�1/2
t v

⌘⌘
. (7)

From (4), we obtain that the analogous MAP estimation problem
for (6) replaces all least squares kR�1/2

t (yt�Ctxt )k2 and kQ�1/2
t (xt+1

�Atxt �Btut )k2 withmore general terms Vt

⇣
R�1/2
t (yt � Ctxt )

⌘
and

Jt
⇣
Q�1/2
t (xt+1 � Atxt � Btut )

⌘
, leading to

min
x0,...,xN

� log p(x0) +
NX

t=1

Vt

⇣
R�1/2
t (yt � Ctxt )

⌘

+
N�1X

t=0

Jt
⇣
Q�1/2
t (xt+1 � Atxt � Btut )

⌘
.

(8)

The initial distribution for x0 can be non-Gaussian, and is specified
by p(x0). An algorithm to solve (8) is then required. In this paper,
we will discuss general modeling of error distributions pet and pvt
in (7), as well as tractable algorithms for the solutions of these
formulations.

Classic Kalman filters, predictors and smoothers have been
enormously successful, and the literature detailing their properties
and applications is rich and pervasive. Even if Gaussian assump-
tions (3) are violated, but the vt , et are still white with covariances
Qt and Rt , problem (6) gives the best linear estimate, i.e. among
all linear functions of the data Z N

0 , the Kalman smoother residual
has the smallest variance. However, this does not ensure successful
performance, giving strong motivation to consider extensions to
the Gaussian framework! For instance, impulsive disturbances
often occur in process models, including target tracking, where
one has to deal with force disturbances describing maneuvers for
the tracked object, fault detection/isolation,where impulsesmodel
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Fig. 1. DCmotor and impulsive disturbances. Left: noiseless output (solid line), measurements (+) and output reconstruction by the optimal linear smoother L2-opt (dashed
line). Right: impulsive disturbance and reconstruction by L2-opt (dashed line).

additive faults, and load disturbances. Unfortunately, smoothers
that use the quadratic penalty on the state increments are not able
to follow fast jumps in the state dynamics (Ohlsson, Gustafsson,
Ljung, & Boyd, 2012). This problem is also relevant in the context
of identification of switched linear regression models where the
system states can be seen as time varying parameters which can
be subject to abrupt changes (Niedzwiecki & Gackowski, 2013;
Ohlsson & Ljung, 2013). In addition, constraints on the states arise
naturally in many settings, and estimation can be improved by
taking these constraints into account. Finally, estimates corre-
sponding to quadratic losses applied to data misfit residuals are
vulnerable to outliers, i.e. to unexpected deviations of the noise er-
rors from Gaussian assumptions. In these cases, a Gaussian model
for e gives poor estimates. Two examples are described below, the
first focusing on impulsive disturbances, and second on measure-
ment outliers.

1.1. DC motor example

A DC motor can be modeled as a dynamic system, where the
input is applied torque while the output is the angle of the motor
shaft, see also pp. 95–97 in Ljung (1999). The state comprises
angular velocity and angle of the motor shaft, and with system
parameters and discretization as in Section 8 of Ohlsson et al.
(2012), we have the following discrete-time model:

xt+1 =
✓

0.7 0
0.084 1

◆
xt +

✓
11.81
0.62

◆
(ut + dt )

yt = �
0 1

�
xt + et

(9)

where dt denotes a disturbance process while the measurements
yt are noisy samples of the angle of the motor shaft.

Impulsive inputs: In the DCmotor system design, the disturbance
torque acting on themotor shaft plays an important role and an ac-
curate reconstruction of dt can greatly improve model robustness
with respect to load variations. Since the non observable input is
often impulsive, wemodel the dt as independent random variables
such that

dt =
⇢

0 with probability 1 � ↵
N (0, 1) with probability ↵.

According to (1), this corresponds to a zero-mean (non-Gaussian)
noise vt , with covariance Qt = ↵

�11.81
0.62

�
(11.81, 0.62). We consider

the problem of reconstructing dt from noisy output samples gen-
erated under the assumptions

x0 =
✓
0
0

◆
, ut = 0, ↵ = 0.01, et ⇠ N (0, 0.12).

An instance of the problem is shown in Fig. 1. The left panel
displays the noiseless output (solid line) and the measurements
(+). The right panel displays the dt (solid line) and their estimates
(dashed line) obtained by the Kalman smoother1 and given by
d̂Nt = (1/11.81 0)

�
x̂Nt+1 � At x̂Nt+1

�
.

This estimator, denoted L2-opt, uses only information on the
means and covariances of the noises. It solves problem (2d) and,
hence, corresponds to the best linear estimator. However, it is
apparent that the disturbance reconstruction is not satisfactory.
The smoother estimates of the impulses are poor, and the largest
peak, centered at t = 161, is highly underestimated.

Outliers corrupting output data: Consider now a situationwhere
the disturbance dt can be well modeled as a Gaussian process. So,
there is no impulsive noise entering the system. In particular, we
set dt ⇠ N (0, 0.12), so that vt is now Gaussian with covariance

Qt = 0.12
✓
11.81
0.62

◆ �
11.81 0.62

�
.

The outputs yt are instead contaminated by outliers, i.e. unex-
pectedmeasurements noisemodel deviations. In particular, output
data are corrupted by a mixture of two normals with a fraction of
outliers contamination equal to ↵ = 0.1; i.e.,

et ⇠ (1 � ↵)N (0, � 2) + ↵N (0, (100� )2).

Thus, outliers occur with probability 0.1, and are generated from a
distributionwith standard deviation 100 times greater than that of
the nominal. We consider the problem of reconstructing the angle
of themotor shaft (the second state componentwhich corresponds
to the noiseless output) setting

x0 =
✓
0
0

◆
, ut = 0, � 2 = 0.12.

An instance of the problem is shown in Fig. 2. The two panels dis-
play the noiseless output (solid line), the accurate measurements
affected by the noise with nominal variance (denoted by +) and the
outliers (denoted by � with values outside the range ±6 displayed
on the boundaries of the panel). The left panel displays the estimate
(dashed line) obtained by the classical Kalman smoother, called
L2-nom, with the variance noise set to � 2.

1 Note that the covariance matrices Qt are singular. In this case, the smoothed
estimates have been computed using the RTS scheme (Rauch et al., 1965), as
e.g. described in Section 2.C of Kitagawa and Gersch (1985), where invertibility
of the transition covariance matrices are not required. This scheme provides the
solution of the generalized Kalman smoothing objective (47), and is explained
in Appendix.
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Fig. 2. DC motor with Gaussian disturbances and outliers in output measurements. Noiseless output (solid line), measurements (+) and outliers (�). Left: Kalman estimates
(dashed line) with assumed nominal measurement error variance (0.01). Right: Kalman estimates (dashed line) from the optimal linear smoother which uses the correct
measurement error variance (10.009).

Note that this estimator does notmatch any of the criteria (2a)–.
In fact, this example represents a situation where the contamina-
tion is totally unexpected and the smoother is expected to work
under nominal conditions. One can see that the reconstructed pro-
file is very sensitive to outliers. The right panel shows the estimate
(dashed line) returned by the optimal linear estimator L2-opt (2d),
obtained by setting the noise variance to (1 � ↵)� 2 + ↵(100� )2.

In this case, the smoother is aware of the true variance of the sig-
nal; nonetheless, the reconstruction is still not satisfactory, since it
cannot track the true output profile given the high measurement
variance; the best linear estimate essentially averages the signal.
Manipulating noise statistics is clearly not enough; to improve
the estimator performance, we must change our model for the
underlying distribution of the errors et .

1.2. Scope of the survey

In light of this discussion and examples, it is natural to turn
to the optimization (MAP) interpretation (6) to design formula-
tions and estimators that perform well in alternative and more
general situations. The connection betweennumerical analysis and
optimization and various kinds of smoothers has been growing
stronger over the years (Aravkin, Bell et al., 2013; Bell & Cathey,
1993; Ljung & Kailath, 1976; Paige & Saunders, 1977). It is now
clear that many popular algorithms in the engineering literature,
including Rauch–Tung–Striebel (RTS) smoother and the Mayne–
Fraser (MF) smoother, can be viewed as specific linear algebraic
techniques to solve an optimization objective whose structure
is closely tied to dynamic inference. Indeed, recently, Kalman
smoothing has seen a remarkable renewal in terms of modern
techniques and extended formulations based on emerging practi-
cal needs. This resurgence has been coupledwith the development
of new computational techniques and the intense progress in con-
vex optimization in the last two decades has led to a vast literature
on finding good state estimates in these more general cases. Many
novel contributions to theory and algorithms related to Kalman
smoothing, and to dynamic system inference in general, have come
from statistics, engineering, and numerical analysis/optimization
communities. However,while the statistical and engineering view-
points are pervasive in the literature, the optimization viewpoint
and its accompanying modeling and computational power is less
familiar to the control community. Nonetheless, the optimization
perspective has been the source of a wide range of astonishing
recent advances across the board in signal processing, control,
machine learning, and large-scale data analysis. In this survey, we
will show how the optimization viewpoint allows the control and

signal processing community great freedom in the development of
novel modeling and inference frameworks for dynamical systems.

Recent approaches in dynamic systems inference replace
quadratic terms, as in (6), with suitable convex functions, as in (8).
In particular, new smoothing schemes deal with sparse dynamic
models (Angelosante, Roumeliotis, & Giannakis, 2009), methods
for tracking abrupt changes (Ohlsson et al., 2012), robust for-
mulations (Aravkin, Bell, Burke, & Pillonetto, 2011; Farahmand,
Giannakis, & Angelosante, 2011), inequality constraints on the
state (Bell, Burke, & Pillonetto, 2009), and sum of norms (Ohlsson
et al., 2012), many of which can bemodeled using the general class
called piecewise linear quadratic (PLQ) penalties (Aravkin, Burke,
& Pillonetto, 2013b; Rockafellar & Wets, 1998). All of these ap-
proaches are based on an underlying body of theory and method-
ological tools developed in statistics, machine learning, kernel
methods (Bottou, Chapelle, DeCoste, & Weston, 2007; Chan, Liao,
& Tsui, 2011; Hofmann, Schölkopf, & Smola, 2008; Schölkopf &
Smola, 2001), and convex optimization (Boyd & Vandenberghe,
2004). Advances in sparse tracking (Angelosante et al., 2009; Kim,
Koh, Boyd, & Gorinevsky, 2009; Ohlsson et al., 2012) are based
on LASSO (group LASSO) or elastic net techniques (Efron, Hastie,
Johnstone, & Tibshirani, 2004; Tibshirani, 1996; Yuan & Lin, 2006;
Zou & Hastie, 2005), which in turn use coordinate descent, see
e.g. Bertsekas (1999), Dinuzzo (2011) and Friedman, Hastie, and
Tibshirani (2010). Robust methods (Agamennoni, Nieto, & Nebot,
2011; Aravkin et al., 2011, 2013b; Chang, Hu, Chang, & Li, 2013;
Farahmand et al., 2011) rely on Huber (Huber & Ronchetti, 2009)
or Vapnik losses, leading to support vector regression (Drucker,
Burges, Kaufman, Smola, & Vapnik, 1997; Gunter & Zhu, 2007;
Ho & Lin, 2012) for state space models, and take advantage of
interior point optimization methods (Kojima, Megiddo, Noma,
& Yoshise, 1991; Nemirovskii & Nesterov, 1994; Wright, 1997).
Domain constraints are important for most applications, including
camera tracking, fault diagnosis, chemical processes, vision-based
systems, target tracking, biomedical systems, robotics, and navi-
gation (Haykin, 2001; Simon, 2010). Modeling these constraints
allows a priori information to be encoded into dynamic inference
formulations, and the resulting optimization problems can also be
solved using interior point methods (Bell et al., 2009).

Taking these developments into consideration, the aims of
this survey are as follows. First, our goal is to firmly establish
the connection between classical algorithms, including the RTS
and MF smoothers, and the optimization perspective in the least
squares case. This allows the community to view existing effi-
cient algorithms as modular subroutines that can be exploited
in new formulations. Second, we will survey modern regression
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approaches from statistics and machine learning, based on new
convex losses and penalties, highlighting their usefulness in the
context of dynamic inference. These techniques are effective both
in designing models for process disturbances vt as well as robust
statistical models for measurement errors et . Our final goal is two-
fold: we want to survey algorithms for generalized smoothing
formulations, but also to understand the theoretical underpinnings
for the design and analysis of such algorithms. To this end, we
include a self-contained tutorial of convex analysis, developing
concepts of duality and optimality conditions from fundamental
principles, and focused on the general Kalman smoothing context.
With this foundation, we review optimization techniques to solve
all general formulations of Kalman smoothers, including both first-
order splitting methods, and second order (interior point) meth-
ods.

Inmany applications, process andmeasurementmodelsmay be
nonlinear. These cases fall outside the scope of the current survey,
since they require solving a nonconvex problem. In these cases,
particle filters (Arulampalam,Maskell, Gordon, & Clapp, 2002) and
unscented methods (Wan & Van Der Merwe, 2000) are very pop-
ular. An alternative is to exploit the composite structure of these
problems, and apply a generalized Gauss–Newton method (Burke
& Ferris, 1995). For detailed examples, see Aravkin et al. (2011) and
Aravkin, Burke, and Pillonetto (2014).

Roadmap of the paper: In Section 2, we show the explicit connec-
tion betweenRTS andMF smoothers and the least squares formula-
tion. This builds the foundation for efficient general methods that
exploit underlying state space structure of dynamic inference. In
Section 3, we present a general modeling framework where error
distributions (3) can come from a large class of log-concave densi-
ties, and discuss important applications to impulsive disturbances
and robust smoothing. We also show how to incorporate state-
space constraints. In Section 4 basic techniques from optimization
are presented, some of them possibly novel to the reader. Direct
connections between the tutorial elements in this section and the
smoothing problem are stressed. In Section 5,we present empirical
results for the examples in the paper, showing the practical effect
of the proposed methods. All examples are implemented using an
open source software package IPsolve.2 A few concluding remarks
end the paper. Two appendices are provided. The first discusses
smoothing under correlated noise and singular covariance ma-
trices, and the second a brief tutorial on the tools from convex
analysis that are useful to understand the algorithms presented in
Section 4 and applied in Section 5.

2. Kalman smoothing, block tridiagonal systems of equations
and classical schemes

To build an explicit correspondence between least squares
problems and classical smoothing schemes, we first introduce data
structures that explicitly embed the entire state sequence, mea-
surement sequence, covariance matrices, and initial conditions
into a simple form. Given a sequence of column vectors {vk} and
matrices {Tk} let

vec({vk}) :=

2

664

v1
v2
...

vN

3

775 , diag({Tk}) :=

2

66664

T1 0 · · · 0

0 T2
. . .

...
...

. . .
. . . 0

0 · · · 0 TN

3

77775
.

2 https://github.com/saravkin/IPsolve.

We make the following definitions:

R := diag({R1, R2, . . . , RN}) 2 RmN⇥mN

Q := diag({⇧,Q0,Q1, . . . ,QN�1}) 2 Rn(N+1)⇥n(N+1)

x := vec({x0, x1, x2, . . . , xN}) 2 Rn(N+1)⇥1

y := vec({y1, y2, . . . , yN}) 2 RmN⇥1

z := vec({µ, B0u0, . . . , BN�1uN�1}) 2 Rn(N+1)⇥1

(10)

and

A :=

2

66664

I 0

�A0 I
. . .

. . .
. . . 0

�AN�1 I

3

77775
, C :=

2

66664

0 C1 0 · · · 0

0 0 C2
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 CN

3

77775
, (11)

where A 2 Rn(N+1)⇥n(N+1) and C 2 RmN⇥n(N+1). Using defini-
tions (10) and (11) problem (6) can be efficiently stated as

min
x

��R�1/2(y � Cx)
��2 + ��Q�1/2(z � Ax)

��2
. (12)

The solution to (12) can be obtained by solving the linear system
of equations

(C>R�1C + A>Q�1A)x = r (13)

where

r := C>R�1y + A>Q�1z .

The linear operator in (13) is positive definite symmetric block
tridiagonal (SBT). Direct computation gives

C>R�1C + A>Q�1A =

2

66666664

F0 G>
0 0 · · · 0

G0 F1 G>
1 · · · ...

... G1
. . .

. . .
...

0 · · · . . . GT
N�1

0 · · · 0 GN�1 FN

3

77777775

,

a symmetric positive definite block tridiagonal systemof equations
inRn(N+1)⇥n(N+1), with Ft 2 Rn⇥n and Gt 2 Rn⇥n defined as follows:

F0 := ⇧�1 + A>
0 Q

�1
0 A0

Ft := Q�1
t�1 + A>

t Q
�1
t At + C>

t R�1
t Ct , t = 1, . . . ,N

Gt := �Q�1
t At , t = 0, . . . ,N � 1

using the convention A>
N Q

�1
N AN = 0.

We now present two popular smoothing schemes, the RTS and
MF. In our algebraic framework, both of them return the solution
of the Kalman smoothing problem (12) by efficiently solving the
block tridiagonal system (13), which can be rewritten as
0

BBBBBBB@

F0 G>
0 0 · · · 0

G0 F1 G>
1 · · · ...

... G1
. . .

. . .
...

0 · · · . . . GT
N�1

0 · · · 0 GN�1 FN

1

CCCCCCCA

0

BBBB@

x0
x1
...

xN�1
xN

1

CCCCA
=

0

BBBB@

r0
r1
...

rN�1
rN

1

CCCCA
. (14)

In particular, the RTS scheme coincides with the forward–
backward algorithm as described in Bell (2000, algorithm 4), see
also Bell and Cathey (1993). The MF scheme can be seen as a
block tridiagonal solver which uses elements of both forward and
backward algorithms so that it can exploit two filters running in
parallel (Aravkin, Bell et al., 2013 Section 7). In Aravkin, Bell et al.
(2013) one can find full numerical analysis of these and also other
smoothing algorithms.
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Algorithm 1 Rauch–Tung–Striebel (Forward Block Tridiagonal
scheme)
The inputs to this algorithm are {Gt}N�1

t=0 , {Ft}Nt=0, and {rt}Nt=0 where,
for each t , Gt 2 Rn⇥n, Ft 2 Rn⇥n, and rt 2 Rm. The output is the
sequence {x̂Nt }Nt=0 that solves equation (14), with each x̂Nt 2 Rn.

(1) Set df0 = F0 and sf0 = r0.
For t = 1 to N :

• Set dft = Ft � Gt�1(d
f
t�1)

�1G>
t�1.

• Set sft = rt � Gt�1(d
f
t�1)

�1sft�1.

(2) Set x̂NN = (dfN )
�1sN .

For t = N � 1 to 0 :

• Set x̂Nt = (dft )�1(sft � G>
t x̂

N
t+1).

Algorithm 2Mayne–Fraser (Two Filter Block Tridiagonal scheme)
The inputs to this algorithm are {Gt}N�1

t=0 , {Ft}Nt=0, and {rt}Nt=0 where,
for each t , Gt 2 Rn⇥n, Ft 2 Rn⇥n, and rt 2 Rm. The output is the
sequence {x̂Nt }Nt=0 that solves equation (14), with each x̂Nt 2 Rn.

(1) Set df0 = F0 and sf0 = r0.
For t = 1 to N :

• Set dft = Ft � Gt�1(d
f
t�1)

�1G>
t�1.

• Set sft = rt � Gt�1(d
f
t�1)

�1st�1.

(2) Set dbN = FN and sbN = rN .
For t = N � 1, . . . , 0,

• Set dbt = Ft � G>
t (d

b
t+1)

�1Gt .

• Set sbt = rt � G>
t (d

b
t+1)

�1sbt+1.

(3) For t = 0, 1, . . . ,N

• Set x̂Nt = (dft + dbt � Ft )�1(sft + sbt � rt ).

3. General formulations: convex losses and penalties, and sta-
tistical properties of the resulting estimators

In the previous section, we showed that Gaussian assumptions
on process disturbances vt and measurement errors et lead to
least squares formulations (6) or (12). One can then view classic
smoothing algorithms as numerical subroutines for solving these
least squares problems. In this section, we generalize the Kalman
smoothingmodel to allow log-concave distributions for vt and et in
model (3). This allows more general convex disturbance and error
measurement models, and the log-likelihood (MAP) problem (12)
becomes a more general convex inference problem.

In particular, we consider the following general convex formu-
lation:

min
x2X

V
�
R�1/2(y � Cx)

� + � J
�
Q�1/2(z � Ax)

�
(15)

where x 2 X specifies a feasible domain for the state, V : RmN !
Rmeasures the discrepancy between observed and predicted data
(due to noise and outliers), while J : Rn(N+1) ! R measures the
discrepancies between predicted and observed state transitions,

due to the net effect of factors outside the process model; we
can think of these discrepancies as ‘process noise’. The structure
of this problem is related to Tikhonov regularization and inverse
problems (Bertero, 1989; Tikhonov & Arsenin, 1977; Vito, Rosasco,
Caponnetto, De Giovannini, & Odone, 2005). In this context, � is
called the regularization parameter and has a link to the (typically
unknown) scaling of the pdfs of et and vt in (7). The choice of �
controls the tradeoff between bias and variance, and it has to be
tuned from data. Popular tuning methods include cross-validation
or generalized cross-validation (Golub, Heath, & Wahba, 1979;
Hastie, Tibshirani, & Friedman, 2001; Rice, 1986).

Problem (15) is overly general. In practice we restrict V
and J to be functions following the block structure of their
arguments, i.e. sums of terms Vt

⇣
R�1/2
t (yt � Ctxt )

⌘
and Jt⇣

Q�1/2
t (xt+1 � Atxt � Btut )

⌘
, leading to the objective already re-

ported in (8). The terms Vt : Rm ! R and Jt : Rn ! R can then
be linked to the MAP interpretation of the state estimate (7)–(8),
so that Vt is a version of � log pet and Jt is a version of � log pvt .
Possible choices for such terms are depicted in Figs. 4(a)–4(f) and
5.

Domain constraints x 2 X provide a disciplined framework for
incorporating prior information into the inference problem, which
improves performance for awide range of applications. To comple-
ment this, general J and V allow the modeler to incorporate infor-
mation about uncertainty, both in the process and measurements.
This freedom indesigning (15) has numerous benefits. Themodeler
can choose J to reflect prior knowledge on the structure of the
process noise; important examples include sparsity (see Fig. 1) and
smoothness. In addition, she can robustify the formulation in the
presence of outliers or non-gaussian errors (see Fig. 2), by selecting
penalties V that perform well in spite of data contamination. To
illustrate, we present specific choices for the functions V and J and
explain how they can be used in a range of modeling scenarios; we
also highlight the potential for constrained formulations.

3.1. General functions J for modeling process noise

Asmentioned in the introduction, a widely used assumption for
the process noise is that it is Gaussian. This yields the quadratic loss
kQ�1/2(z�Ax)k2.However, in many applications prior knowledge
on the process disturbance dictates alternative loss functions. A
simple example is the DC motor in Section 1.1. We assumed that
the process disturbance vt is impulsive. One therefore expects that
the disturbance vt should be zero most of the time, while taking
non-zero values at a few unknown time points. If each vt is scalar,
a natural way to regulate the number of non-zero components in
vec ({vt}) is to use the `0 norm for J in (15):

J(z � Ax;Q ) = kQ�1/2(z � Ax)k0,

where kzk0 counts the number of nonzero elements of z.
Sparsity promotion via `1 norm. The `0 norm, however, is non-
convex, and solving optimization problems involving the `0 norm
is NP-hard (combinatorial). Tractable approaches can be designed
by replacing the `0 norm with a convex relaxation, the `1 norm,
kxk1 = P|xi|. The `1 norm is nonsmooth and encourages sparsity,
see Fig. 4(b). The use of the `1 norm in lieu of the `0 norm is now
common practice, especially in compressed sensing (Candès &
Tao, 2006; Donoho, 2006) and statistical learning, see e.g. Hastie
et al. (2001). The reader can gain some intuition by considering
the intersection of a general hyperplane with the `1 ball and `2
ball in Fig. 3. The intersection is likely to land on a corner, which
means that adding a `1 norm constraint (or penalty) tends to select
solutions with many zero elements.
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Fig. 3. When minimizing kAx � bk subject to a `1-norm constraint (left panel),
the solution tends to land on a corner, where many coordinates are 0; in 2D the
cartoon, the x-coordinate is zero. An `2-norm constraint (right panel) does not have
this effect.

For the case of scalar-valued process disturbance vt , we can set
J to be the `1 norm and obtain the problem

min
x

1
2
kR�1/2(y � Cx)k2 + � kQ�1/2(z � Ax)k1, (16)

where � is a penalty parameter controlling the tradeoff between
measurement fit and number of non-zero components in process
disturbance—larger � implies a larger number of zero process
disturbance elements, at the cost of increasing the bias of the
estimator.

Note that the vector norms in (16) translate to term-wise norms
of the time components as in (8). Problem (16) is analogous to
the LASSO problem (Tibshirani, 1996), originally proposed in the
context of linear regression. Indeed, the LASSO problemminimizes
the sum of squared residuals regularized by the `1 penalty on the
regression coefficients. The LASSO estimates can be interpreted as
the Bayes posterior mode under independent Laplace priors for
the coefficients (Kyung, Gill, Ghosh, Casella, et al., 2010). In the
context of regression, the LASSO has been shown to have strong
statistical guarantees, including prediction error consistency (Van
de Geer & Buhlmann, 2009), consistency of the parameter esti-
mates in `2 or some other norm (Meinshausen & Yu, 2009; Van
de Geer & Buhlmann, 2009), as well as variable selection consis-
tency (Meinshausen & Bühlmann, 2006; Wainwright, 2009; Zhao
& Yu, 2006). However, this connection is limited in the dynamic
context: if we think of Kalman smoothing as linear regression, note
from (16) that the measurement vector y is a single observation
of the parameter (state sequence) x, so asymptotic consistency
results are not relevant.More important is the general idea of using
the `1 norm to promote sparsity of the right object, in this case,
the residual Q�1/2(z � Ax), which corresponds to our model of
impulsive disturbances.
Elastic net penalty. Suppose we need a penalty that is nonsmooth
at the origin, but has quadratic growth in the tails. For example,
taking J with these properties is useful in the context of our model
for impulsive disturbances, if we believed them to be sparse, and
also considered large disturbances unlikely. The elastic net shown
in Fig. 4(f) has these properties—it is a weighted sum ↵k · k1 +
(1 � ↵)k · k2

2. The elastic net penalty has been widely used for
sparse regularization with correlated predictors (De Mol, De Vito,
& Rosasco, 2009; Li, Lin, et al., 2010; Zou & Hastie, 2005). Using an
elastic net constraint has a grouping effect (Zou & Hastie, 2005).
Specifically, when minimizing 1

2kAx � bk2 with an elastic net
constraint, the distance between estimates x̂i and x̂j is proportional
to

p
1 � ij, where ij is the correlation between the corresponding

columns of A. In our context, in case of nearly perfectly correlated
impulsive disturbances (either all present or all absent), the elastic
net can discover the entire group, while the `1 norm alone usually
picks a single member of the group.
Group sparsity. If the process disturbance is known to be grouped
(e.g. a disturbance vector is always present or absent for each time

(a) Quadratic. (b) `1 norm. (c) Huber,  = 1.

(d) Vapnik, " = 0.5. (e) Huber ins. loss. (f) Elastic net.

Fig. 4. Important penalties for errors and process models.

point), J(·) can be set to the mixed `2,1 norm, where the `2 norm
is applied to each block of Q�1/2

t (zt � Atxt ), yielding the following
Kalman smoothing formulation:

min
x

kR�1/2(y � Cx)k2 + �

NX

t=1

���Q�1/2
t (zt � Atxt )

���
2
, (17)

where � is again a penalty parameter controlling the tradeoff
between measurement fit and number of non-zero components in
process disturbance. Note that the objective is still of the type (8)
with a penalty term that now corresponds to the sparsity inducing
`1 norm applied to groups of process disturbances vt , where the
`2 norm used as the intra-group penalty. This group penalty has
beenwidely used in statistical learningwhere it is referred to as the
‘‘group-LASSO’’ penalty. Its purpose is to select important factors,
each represented by a group of derived variables, for joint model
selection and estimation in regression. In the state estimation
context, the estimator (17) was proposed in Ohlsson et al. (2012)
and will be used later on in Section 5.2 to solve the impulsive
inputs problem described in Section 1.1. The group `2,1 penalty
was originally proposed in the context of linear regression in Yuan
and Lin (2006). The resulting estimates have a Bayesian interpre-
tation: they can be obtained using a hierarchical model where the
regression coefficients of each group are assigned a Gaussian prior
whose variance is controlled with a gamma prior (Kyung et al.,
2010). General `q,1 regularized least squares formulations (with
q � 2) were subsequently studied in Jacob, Obozinski, and Vert
(2009), Tropp, Gilbert, and Strauss (2006), Yuan and Lin (2006),
Zhao, Rocha, and Yu (2009) and shown to have strong statistical
guarantees, including convergence rates in `2-norm (Baraniuk,
Cevher, Duarte, & Hegde, 2008; Lounici, Pontil, Tsybakov, & van
de Geer, 2009) as well as model selection consistency (Negahban
& Wainwright, 2009; Obozinski, Wainwright, & Jordan, in press).
Similarly to the LASSO, however, such results are not applicable in
the dynamic context.

3.2. General functions V to model measurement errors

Gaussian assumption on measurement errors is not valid in
many cases. Indeed, heavy tailed errors are frequently observed
in applications such glint noise (Hewer, Martin, & Zeh, 1987),
air turbulence (Fernándes, Speyer, & Idan, 2013), and asset re-
turns (Rachev, 2003) among others. The resulting state estimation
problems can be addressed by adopting the penalties J introduced
above. But, in addition, corrupted measurements might occur due
to equipment malfunction, secondary sources of noise or other
anomalies. The quadratic loss is not robust with respect to the
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presence of outliers in the data (Aravkin et al., 2011; Farahmand
et al., 2011; Gao, 2008; Huber & Ronchetti, 2009), as seen in Fig. 2,
leading to undesirable behavior of resulting estimators. This calls
for the design of new losses V .

One way to derive a robust approach is to assume that the
noise comes fromaprobability densitywith tail probabilities larger
(heavier) than those of the Gaussian, and consider the maximum
a posteriori (MAP) problem derived from the corresponding neg-
ative log likelihood function. For instance the Laplace distribution
c exp(�kxk1) corresponds to the `1 loss function by this approach,
see Fig. 4(b). The tail probabilities P(|x| > t) of the standard Laplace
distribution are greater than that of the Gaussian; so larger ob-
servations are more likely under this error model. Note, however,
that the `1 loss also has a nonsmooth feature at the origin (which
is exactly why we considered it as a choice for J in the previous
section). In the current context, when applied to the measurement
residual Hx � z, the approach will sparsify the residual, i.e. fit a
portion of the data exactly. Exact fitting of some of the data may
be reasonable in some contexts, but undesirable in many others,
where we mainly care about guarding against outliers, and so
only the tail behavior is of interest. In such settings, the Huber
Loss (Huber & Ronchetti, 2009) (see Fig. 4(c)) is a more suitable
model, as it combines the `2 loss for small errors with the absolute
loss for larger errors. Huber (Huber&Ronchetti, 2009) showed that
this loss is optimal over a particular class of errors

(1 � ")N + "M ,

where N is Gaussian, and M is unknown; the level " is then
related to the Huber parameter  . The Huber loss has a Bayesian
interpretation, as a mixture between Gaussian and Laplacian loss
functions.

Another important loss function is the Vapnik "-insensitive
loss (Drucker et al., 1997), sometimes known as the ‘deadzone’
penalty, see Fig. 4(d), defined as

V"(r) := max{0, |r| � "},
where r is the (scalar) residual. The "-insensitive losswas originally
considered in support vector regression (Drucker et al., 1997),
where the ‘deadzone’ helps identify active support vectors, i.e. data
elements that determine the solution. This penalty has a Bayesian
interpretation, as a mixture of Gaussians that may have nonzero
means (Pontil, Mukherjee, & Girosi, 2000). In particular, its use
yields smoothers that are robust to minor fluctuations below a
noise floor (as well as to large outliers). Note that the radius of the
deadzone " defines a noise floor beyond which one cannot resolve
the signal. This penalty can also be ‘huberized’, yielding a penalty
called ‘smooth insensitive loss’ (Chu, Keerthi, & Ong, 2001; Dekel,
Shalev-Shwartz, & Singer, 2005; Lee, Hsieh, & Huang, 2005), see
Fig. 4(e).

The process of choosing penalties based on behavior in the tail,
near the origin, or at other specific regions of their subdomains
makes it possible to customize the formulation of (15) to address a
range of situations.We can then associate statistical densities to all
the penalties in Fig. 4(a)–4(f), and use this perspective to incorpo-
rate prior knowledge aboutmean and variance of the residuals and
process disturbances (Aravkin et al., 2013b Section 3). This allows
one to incorporate variance information on process components;
as e.g. available in the example of Fig. 2.
Asymmetric extensions. All of the PLQ losses in Fig. 4(a)–
4(f) have asymmetric analogues. For example, the asymmetric
1-norm (Koenker & Bassett Jr, 1978) and asymmetric Huber (Ar-
avkin, Lozano, Luss, & Kambadur, 2014) have been used for analysis
of heterogeneous datasets, especially in high dimensional infer-
ence.
Beyond convex approaches. All of the penalty options for J and V
presented so far are convex. Convex losses make it possible to

Fig. 5. Gaussian (black dashed), Laplace (red solid), and Student’s t (blue solid)
Densities, Corresponding Negative Log Likelihoods, and Influence Functions. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

provide strong guarantees—for example, if both J and V are convex
in (15), then any stationary point is a global minimum. In addition,
if J has compact level sets (i.e. there are no directions where it
stays bounded), then at least one global minimizer exists. From a
modeling perspective, however, it may be beneficial to choose a
non-convex penalty in order to strengthen a particular feature. In
the context of residuals, the need for non-convex loss is motivated
by considering the influence function. This function measures the
derivative of the loss with respect to the residual, quantifying
the effect of the size of a residual on the loss. For nonconstant
convex losses, linear growth is the limiting case, and this gives
each residual constant influence. Ideally the influence function
should redescend towards zero for large residuals, so that these
are basically ignored. But redescending influence corresponds to
sublinear growth, which excludes convex loss functions. We refer
the reader to Hampel, Ronchetti, Rousseeuw, and Stahel (1986)
for a review of influence-function approaches to robust statistics,
including redescending influence functions. An illustration is pre-
sented in Fig. 5, contrasting the density, negative log-likelihood,
and influence function of the heavy-tailed student’s t penalty with
those of gaussian (least squares) and laplace (`1) densities and
penalties. More formally, consider any scalar density p arising
from a symmetric convex coercive and differentiable penalty ⇢ via
p(x) = exp(�⇢(x)), and take any point x0 with ⇢ 0(x0) = ↵0 > 0.

Then, for all x2 > x1 � x0 it is shown in Aravkin, Friedlan-
der, Herrmann, and Van Leeuwen (2012) that the conditional tail
distribution induced by p(x) satisfies

Pr(|y| > x2 | |y| > x1)  exp(�↵0[x2 � x1]) . (18)

When x1 is large, the condition |y| > x1 indicates that we are
looking at an outlier. However, as shown by (18), any log-concave
statistical model treats the outlier conservatively, dismissing the
chance that |y| could be significantly bigger than x1. Contrast this
behavior with that of the Student’s t-distribution. With one degree
of freedom, the Student’s t-distribution is simply the Cauchy dis-
tribution, with a density proportional to 1/(1 + y2). Then we have
that

lim
x!1 Pr(|y| > 2x | |y| > x) = lim

x!1

⇡
2 � arctan(2x)
⇡
2 � arctan(x)

= 1
2
.
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See Aravkin, Burke, and Pillonetto (2014) for a more detailed
discussion of non-convex robust approaches to Kalman smoothing
using the Student’s t distribution.

Non-convex functions J have also been frequently applied to
modeling process noise. In particular, see Wipf and Nagarajan
(2007), Wipf and Rao (2007) and Wipf, Rao, and Nagarajan (2011)
for a link between penalized regression problems like LASSO and
Bayesian methods. One classical approach is ARD (Mackay, 1994),
which exploits hierarchical hyperpriors with ‘hyperparameters’
estimated via maximizing the marginal likelihood, following the
Empirical Bayes paradigm (Maritz & Lwin, 1989). In addition,
see Aravkin, Burke, Chiuso, and Pillonetto (2014) and Loh and
Wainwright (2013) for statistical results in the nonconvex case.
Although the nonconvex setting is essential in this context, it is
important to point out that solution methodologies in the above
examples are based on iterative convex approximations, which is
our main focus.

3.3. Incorporating constraints

Constraints can be important for improving estimation. In state
estimation problems, constraints arise naturally in a variety of
ways. When estimating biological quantities such as concentra-
tion, or physical quantities such as height above ground level, we
know these to be non-negative. Prior information can induce other
constraints; for example, if maximum velocity or acceleration is
known, this gives bound constraints. Some problems also offer up
other interesting constraints: in the absence ofmaintenance, phys-
ical systems degrade (rather than improve), giving monotonicity
constraints (Simon & Chia, 2002). Both unimodality and mono-
tonicity can be formulated using linear inequality constraints (Ar-
avkin, Burke, & Pillonetto, 2013a).

All of these examples motivate the constraint x 2 X in (15).
Since we focus only on the convex case, we require that X should
be convex. In this paper, we focus on two types of convex sets:

(1) X is polyhedral, i.e. given by X = {x : DT x  d}.
(2) X has a simple projection operator projX , where

projX (y) := arg min
x2X

1
2
kx � yk2

2.

The cases are not mutually exclusive, for example box con-
straints are polyhedral and easy to project onto. The set B2 := {x :
kxk2  1} is not polyhedral, but has an easy projection operator:

projB2 (y) =
⇢
y/kyk2 if kyk2 > 1
y else.

In general, we let B denote a closed unit ball for a given norm, and
for the `p norms, this unit ball is denoted by Bp. These approaches
extend to the nonconvex setting. A class of nonconvex Kalman
smoothing problems, where X is given by functional inequalities,
is studied in Bell et al. (2009). We restrict ourselves to the convex
case, however.

4. Efficient algorithms for generalized Kalman smoothing

In this section, we present an overview of smooth and nons-
mooth methods for convex problems, and tailor them specifically
to the Kalman smoothing case. The section is organized as follows.
We begin with a few basic facts about convex sets and functions,
and review gradient descent and Newton methods for smooth
convex problems. Next, extensions to nonsmooth convex functions
are discussed, beginning with a brief exposition of sub-gradient
descent and its associated (slow) convergence rate. We conclude
by showing how first- and second-order methods can be extended
to develop efficient algorithms for the nonsmooth case using the

proximity operator, splitting techniques, and interior point meth-
ods.

All of these methods are iterative, that is, we cannot obtain
the solution after a single pass through the data, as in the classic
Kalman filter and RTS smoother. However, the (block tridiagonal)
structure of the dynamic problem plays a key role in all iterative
methods.

4.1. Convex sets and functions

A subset C of Rn is said to be convex if it contains every line
segment whose endpoints are in C , i.e.,

(1 � �)x + �y 2 C 8 � 2 [0, 1] whenever x, y 2 C .

For example, the unit ball B for any norm is a convex set.
A function f : Rn ! R [ {1} is said to be convex if the secant

line between any two points on the graph of f always lies above
the graph of the function, i.e. 8� 2 [0, 1]:
f ((1 � �)x + �y)  (1 � �)f (x) + �f (y), 8 x, y 2 Rn.

These ideas are related by the epigraph of f :

epi (f ) := {(x, µ) | f (x)  µ } ⇢ Rn ⇥ R.

A function g : Rn ! R [ {1} is convex if and only if epi (g) is a
convex set. A function f is called closed if epi (f ) is a closed set, or
equivalently, if f is lower semicontinuous (lsc).

Facts about convex sets can be translated into facts about con-
vex functions. The reverse is also true with the aid of the convex
indicator functions:

�C (x) :=
⇢
0 if x 2 C
1 else. (19)

Examples of convex sets include subspaces and their translates
(affine sets) as well as the lower level sets of convex functions:

levf (⌧ ) := {x | f (x)  ⌧ } .

Just as with closed sets, the intersection of an arbitrary collection
of convex sets is also convex. For this reason we define the convex
hull of a set E to be the intersection of all convex sets that contain
it, denoted by conv (E ).

The convex sets of greatest interest to us are the convex poly-
hedra,

W := �
x
��HTx  h

 
for some H 2 Rn⇥m and h 2 Rm,

while the convex functions of greatest interest are the piecewise
linear–quadratic (PLQ) penalties, shown in Fig. 4(a)–4(f). As dis-
cussed in Section 3, these penalties allow us to model impulsive
disturbances in the process (see Fig. 4(b) and 4(f)), to develop ro-
bust distributions for measurements (see Fig. 4(c)) and implement
support vector regression (SVR) in the context of dynamic systems
(see Fig. 4(d)).

4.2. Smooth case: first- and second-order methods

Consider the problem

min
x

f (x),

togetherwith an iterative procedure indexed by  that is initialized
at x1. When f is a C1-smooth function with �-Lipschitz continuous
gradient, i.e. �-smooth:

krf (x) � rf (y)k  �kx � yk, � � 0, (20)

f admits the upper bounding quadratic model

f (x)  m (x) := f (x ) + hrf (x ), x � xi + �

2
kx � xk2. (21)
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If weminimizem (x) to obtain x+1, this gives the steepest descent
iteration

x+1 := x � 1
�

rf (x ).

The upper bound (21) shows we have strict descent:

f (x+1)  f (x ) � hrf (x ), ��1rf (x )i + �

2
k��1rf (x )k2

= f (x ) � krf (x )k2

2�
.

If, in addition, f is convex, and a minimizer x̂ exists, we obtain

f (x ) � krf (x )k2

2�
 f̂ + hrf (x ), x � x̂i � krf (x )k2

2�
= f̂ + �

2
�kx � x̂k2 � kx+1 � x̂k2� ,

where f̂ = f (x̂) is the same at any minimizer by convexity.
Adding up, we get an O

� 1


�
convergence rate on function val-

ues:

f (x ) � f̂  �kx1 � x̂k2

2
.

For the least squares Kalman smoothing problem (12), we also
know that f is ↵-strongly convex, i.e. f (x) � ↵

2 kxk2 is convex with
↵ � 0. Strong convexity can be used to obtain a much better rate
for steepest descent:

f (x ) � f̂  �

2
(1 � ↵/�)kx1 � x̂k2.

Note that 0  ↵
�

 1, since the strong convexity constant ↵ is
the curvature of the quadratic lower bound, and so is necessarily
smaller than the Lipschitz constant of the gradient � , which is the
curvature of the quadratic upper bound.

When minimizing a strongly convex function, the minimizer x̂
is unique, and we can also obtain a rate on the squared distance
between x and x̂:

kx � x̂k2  (1 � ↵/�)kx1 � x̂k2.

These rates can be further improved by considering accelerated-
gradient methods (see e.g. Nesterov, 2004) which achieve the
much faster rate (1 � p

↵/�) .
Each iteration of steepest descent in the classic least squares

formulation (12) of the Kalman smoothing problem gives a frac-
tional reduction in both function value and distance to optimal
solution. The gradient is computed using matrix–vector products,
which require O(Nn2) arithmetic operations. Thus, either gradient
descent or conjugate gradient (which has the same rate as accel-
erated gradient methods in the least squares case) is a reasonable
option for large n.

The solution to (12) can also be obtained by solving a linear
system of equations using O(Nn3) arithmetic operations, since (13)
is block-tridiagonal positive definite. This complexity is tractable
for moderate state-space dimension n. The approach is equivalent
to a single iteration on the full quadratic model of the Newton’s
method, discussed below.

Consider the problem of minimizing a C2-smooth function f .
Finding a critical point x of f can be recast as the problem of
solving the nonlinear equation rf (x) = 0. For a smooth function
G : Rn ! Rn, Newton’s method is designed to locate solutions to
the equationG(x) = 0. Given a current iterate x , Newton’smethod
linearizesG at x and solves the equationG(x )+rG(x )(y�x ) = 0
for y. Provided thatrG(x ) is invertible, the Newton iterate is given
by

x+1 := x � [rG(x )]�1G(x ). (22)

When G := rf , the Newton iterate (22) is the unique critical point
of the best quadratic approximation of f at x , namely

Q (x ; y) := f (x ) + hrf (x ), y � xi
+ 1

2
hr2f (x )(y � x ), y � xi,

provided that the Hessian r2f (x ) is invertible.
If G is a C1-smooth function with �-Lipschitz Jacobian rG that

is locally invertible for all x near a point x̂with G(x̂) = 0, then near
x̂ the Newton iterates (22) satisfy

kx+1 � x̂k  �

2
krG(x )�1k · kx � x̂k2.

Oncewe are close enough to a solution, Newton’smethod gives a
quadratic rate of convergence. Consequently, locally the number of
correct digits double for each iteration. Although the solution may
not be obtained in one step (as in the quadratic case), only a few
iterations are required to converge to machine precision.

In the remainder of the section, we generalize steepest descent
and Newton’s methods to nonsmooth problems of type (15). In
Section 4.3, we describe the sub-gradient descent method, and
show that it converges very slowly. In Section 4.4, we describe
the proximity operator and proximal-gradient methods, which are
applicablewhenworkingwith separable nonsmooth terms in (15).
In Section 4.5, we show how to solve more general nonsmooth
problems (15) using splitting techniques, including ADMM and
Chambolle–Pock iterations. Finally, in Section 4.6, we show how
second-order interior point methods can be brought to bear on all
problems of interest of type (15).

4.3. Nonsmooth case: subgradient descent

Given a convex function f , a vector v is a subgradient of f at a
point x if

f (y) � f (x) + hv, y � xi 8y. (23)

The set of all subgradients at x is called the subdifferential, and is
denoted by @ f (x). Subgradients generalize the notion of gradient;
in particular, @ f (x) = {v} () v = rf (x) (Rockafellar, 1974). A
more comprehensive discussion of the subdifferential is presented
in Appendix A.2.

Consider the absolute value function shown in Fig. 4(b). It is dif-
ferentiable at all points except for x = 0, and so the subdifferential
is precisely the gradient for all x 6= 0. The subgradients at x = 0 are
the slopes of lines passing through the origin and lying below the
graph of the absolute value function. Therefore, @|·|(0) = [�1, 1].

Consider the following simple algorithm for minimizing a Lip-
schitz continuous (but nonsmooth) convex f . Given an oracle that
delivers some v 2 @ f (x ), set

x+1 := x � ↵v
 , (24)

for a judiciously chosen stepsize ↵ . Suppose we are minimizing
|x| and start at x = 0, the global minimum. The oracle could return
any value v 2 [�1, 1], and so we will move away from 0 when
using (24)! In general, the function value need not decrease at each
iteration, and we see that ↵ must decrease to 0 for any hope of
convergence. On the other hand, if

P
↵ = R < 1, we can never

reach x̂ if kx1 � x̂k > R, where x1 is the initial point and x̂ the
minimizer. Therefore, we also must have

P
↵ = 1.

Setting l := f (x ) + hv , x̂ � xi, by (23) we have lk 
f (x̂)  f (x ) for v 2 @ f (x ). The subgradient method closes the
gap between l and f (x ). The Lipschitz continuity of f implies that
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kvk  L, and so, by (23),

0  kx+1 � x̂k2 = kx � x̂k2 + 2↵hv , x̂ � xi + ↵2
kvk2

 kx1 � x̂k2 +
X

i=1

2↵ihvi, x̂ � xii + L2
X

i=1

↵2
i

= kx1 � x̂k2 +
X

i=1

2↵i(li � f (xi)) + L2
X

i=1

↵2
i .

Rewriting this inequality gives

0  min
i=1,...,

(f (xi) � li) 
X

i=1

↵iP
i=1 ↵i

(f (xi) � li)

 kx1 � x̂k2 + L2
P

i=1 ↵2
i

2
P

i=1 ↵i
.

(25)

In particular, if {↵} are square summable but not summable,
convergence of mini=1,...,{f (xi) � li} to 0 is guaranteed. But there
is a fundamental limitation of the subgradient method. In fact,
suppose that we know kx1 � x̂k, and want to choose steps ↵i to
minimize the gap in t iterations. Byminimizing the right hand side
of (25),we find that the optimal step sizes (with respect to the error
bound) are

↵i = kx1 � x̂k
L
p


.

Plugging these back in, and defining f 
best = mini=1,..., f (xi), we

have

f 
best � f̂  kx1 � x̂kLp


.

Consequently, the best provable subgradient descentmethod is ex-
tremely slow. This rate can be significantly improved by exploiting
the structure of the nonsmoothness in f .

4.4. Proximal gradient methods and accelerations

For many convex functions, and in particular for a range of
general smoothing formulations (15), we can design algorithms
that are much faster than O(1/

p
). Suppose we want to minimize

the sum

f (x) + g(x),

where f is convex and �-smooth (20), while g is any convex
function. Using the bounding model (21) for f , we can get a global
upper bound for the sum:

f (x) + g(x)  m (x)

m (x) := f (x ) + hrf (x ), x � xi + �

2
kx � xk2 + g(x).

We immediately see that setting

x+1 := argmin
x

m (x) (26)

ensures descent for f + g , since

f (x+1) + g(x+1)  m (x+1)  m (x ) = f (x ) + g(x ).

One can check that m (x+1) = m (x ) if and only if x is a global
minimum of f + g . Rewriting (26) as

x+1 := argmin
x

��1g(x) + 1
2

����x �
✓
x � 1

�
rf (x )

◆����
2

,

and define the proximity operator for ⌘g (Bauschke & Combettes,
2011) by

prox⌘g (y) := argmin
x

⌘g(x) + 1
2
kx � yk2, (27)

where ⌘ is any positive scalar. We see that (26) is precisely the
proximal gradient method:

x+1 := prox��1g

✓
x � 1

�
rf (x )

◆
. (28)

The proximal gradient iteration (28) converges with the same
rate as gradient descent, in particular with rate O (1/) for con-
vex functions and O ((1 � ↵/�)) for ↵-strongly convex functions.
These rates are in a completely different class than the O

�
1/

p

�

rate obtained by the subgradient method, since they exploit the
additive structure of f + g . Proximal gradient algorithms can also
be accelerated, achieving rates of O

�
1/2

�
and O

�
(1 � p

↵/�)
�

respectively, using techniques from Nesterov (2004).
In order to implement (28), we must be able to efficiently com-

pute the proximity operator for ⌘g . Formany nonsmooth functions
g , this operator can be computed in O(n) or O(n log n) time. An
important example is the convex indicator function (19). In this
case, the proximity operator is the projection operator:

prox⌘�C (x)(y) = �C (x) + min
x

1
2
kx � yk2

= min
x2C

1
2
kx � yk2 = projC (y).

(29)

In particular, whenminimizing f over a convex set C , iteration (28)
recovers the projected gradient method if we choose g(x) = �C (x).

Many examples and identities useful for computing proximal
operators are collected in Combettes and Pesquet (2011). One
important example is the Moreau identity (see e.g. Rockafellar &
Wets, 1998):

proxf (y) + proxf ⇤ (y) = y . (30)

Here, f ⇤ denotes the convex conjugate of f :

f ⇤(!) := sup
y

(hy, !i � f (y)), (31)

whose properties are explained in Appendix A.2, in the context of
convex duality. Identity (30) shows that the prox of f can be used
to compute the prox of f ⇤, and vice versa.

The identity (30) is a direct consequence of Fenchel’s inequal-
ity (50), derived in Appendix A.2.

Example (Proximity Operator for the `1-Norm). Consider the ex-
ample g(x) = kxk1, often used in applications to induce sparsity
of x. The proximity operator of this function can be computed by
reducing to the 1-dimensional setting and considering cases. Here,
we show how to compute it using (30):

prox⌘k·k1 (y) = y � prox(⌘k·k1)⇤ (y).

The convex conjugate of the scaled 1-norm is given by

(⌘k · k1)⇤(!) = sup
x

hx, !i � ⌘kxk1 =
⇢
0 if k!k1  ⌘
1 otherwise, (32)

which is precisely the indicator function of ⌘B1, the scaled
1-norm unit ball. As previously observed, the proximity opera-
tor for an indicator function is the projection. Consequently, the
identity (30) simplifies to

prox⌘k·k1 (y) = y � proj⌘B1 (y)

whose ith element is given by

prox⌘k·k1 (y)i =
⇢
yi � yi = 0 if |yi|  ⌘
yi � ⌘sign(yi) if |yi| > ⌘

(33)

which corresponds to soft-thresholding. Computing the proximal
operator for the 1-norm and projection onto the1-norm ball both
require O(n) operations. Projection onto the 1-norm ball B1 can be
implemented using a sort, and so takes O(n log(n)) operations, see
e.g. Van den Berg and Friedlander (2008). ⌅
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To illustrate the method in the context of Kalman smoothing,
consider taking the general formulation (15) with V and J both
smooth, � = 1, and x 2 ⌧B any norm-ball for which we have a
fast projection (common cases are 2-norm, 1-norm, or 1-norm):

min
x2⌧B

f (x) := V (R�1/2(y � Cx)) + J(Q�1/2(z � Ax)).

Algorithm 3 Proximal Gradient for Kalman Smoothing, J and V
Huber or quadratic

(1) Initialize x1 = 0,  = 0, compute d1 = rf (x1). Let � =
kCTR�1C + ATQ�1Ak2.

(2) While kproxg (x � d )k > "

• Set  =  + 1.
• update x = prox��1g (x�1 � ��1d�1).
• Compute d = rf (x ).

(3) Output x .

Algorithm 4 FISTA for Kalman Smoothing, J and V Huber or
quadratic

(1) Initialize x1 = 0, ! = 0,  = 0, s1 = 1, compute d1 =
rf (x1). Let � = kCTR�1C + ATQ�1Ak2.

(2) While kproxg (! � d )k > "

• Set  =  + 1.
• update x = prox��1g (!�1 � ↵d�1).

• set s = 1+
q
1+4s2�1
2

• set ! = x + s�1�1
s

(x � x�1).

• Compute g = rf (x ).

(3) Output x .

The gradient for the system of equations is given by

rf (x) = CTR�1/2rV (R�1/2(Cx � y))
+ ATQ�1/2rJ(Q�1/2(Ax � z)).

When V and J are quadratic or Huber penalties, the Lipschitz con-
stant � of rf is bounded by the largest singular value of CTR�1C +
ATQ�1A, which we can obtain using power iterations. This system
is block tridiagonal, so matrix–vector multiplications are far more
efficient than for general systems of equations. Specifically, for
Kalman smoothing, thematrices C,Q , R are block diagonal,whileA
is block bidiagonal. As a result, productswith A, AT , C,Q�1/2, R�1/2

can all be computed using O(Nn2) arithmetic operations, rather
than O(N2n2) operations as for a general system of the same
size. A simple proximal gradient method is given by Algorithm 3.
Note that soft thresholding for Kalman smoothing has complexity
O(nN), while e.g. projecting onto the 1-norm ball has complexity
O(nN log(nN)). Therefore the O(n2N) cost of computing the gradi-
ent rf (x ) is dominant.

Algorithm 3 has at worst O
�
�1

�
rate of convergence. If J is

taken to be a quadratic, f is strongly convex, in which case we
achieve the much faster rate O ((1 � ↵/�)).

Algorithm 4 illustrates the FISTA scheme (Beck & Teboulle,
2009) applied to Kalman smoothing. This acceleration uses two
previous iterates rather than just one, and achieves a worst case
rate of O

�
�2

�
. This can be further improved to O

�
(1 � p

↵/�)
�

when J is a convex quadratic using techniques in Nesterov (2004),
or periodic restarts of the step-size sequence s .

4.5. Splitting methods

Not all smoothing formulations (15) are the sum of a smooth
function and a separable nonsmooth function. In many cases, the
composition of a nonsmooth penaltywith a general linear operator
can preclude the approach of the previous section; this is the case
for the robust Kalman smoothing problem in Aravkin et al. (2011):

min
x

kR�1/2(y � Cx)k1 + 1
2
kQ�1/2(z � Ax)k2. (34)

Replacing the quadratic penalty with the 1-norm allows the de-
velopment of a robust smoother when a portion of (isolated) mea-
surements are contaminated by outliers. The composition of the
nonsmooth 1-normwith a general linear formmakes it impractical
to use the proximal gradient method since the evaluation of the
prox operator

prox⌘ky�C(·)k1 (y) = argmin
x

1
2
ky � xk2 + ⌘ky � Cxk1

requires an iterative solution scheme for general C . However, it is
possible to design a primal–dualmethod using a range of strategies
known as splitting methods.

Splitting methods can be generally viewed as fixed-point itera-
tions for nonlinear operators derived from optimality conditions;
see the discussion at the end of Appendix A.2.

A well-known splitting method, popularized by Boyd, Parikh,
Chu, Peleato, and Eckstein (2011), is the Alternating Direction
Method of Multipliers (ADMM), which is equivalent to Douglas–
Rachford splitting on an appropriate dual problem (Lions &
Mercier, 1979). The ADMM scheme is applicable to general prob-
lems of type

min
x,!

f (x) + g(!) s.t. K1x + K2! = c. (35)

A fast way to derive the approach is to consider the Augmented
Lagrangian (Rockafellar, 1974) dualizing the equality constraint
in (35):

L (x, !, u, ⌧ ) := f (x) + g(!) +uT (K1x + K2! � c)
+ ⌧

2
kK1x + K2! � ck2,

where ⌧ > 0. The ADMM method proceeds by using alternating
minimization of L in x and ! with appropriate dual updates
(which is equivalent to the Douglas–Rachford method on the dual
of (35)). The iterations are explained fully in Algorithm 5.

ADMMhas convergence rate O(1/), but can be accelerated un-
der sufficient regularity conditions (see e.g. Davis & Yin, 2015). For
the Laplace `1 smoother (34), the transformation to template (35)
is given by

min
x,!

⇢
k!k1 + 1

2
kQ�1/2(z � Ax)k2

��! + R�1/2Cx = R�1/2y
�

. (36)

ADMM specialized to (36) is given by Algorithm 6.
We make two observations. First, note that the x-update re-

quires solving a least squares problem, in particular inverting
ATQ�1A + CTR�1C . Fortunately, in problem (36) this system of
equations does not change between iterations, and can be fac-
torized once in O(n3N) arithmetic operations and stored. Each
iteration of the x-update can be obtained in O(n2N) arithmetic
operations which has the same complexity as a matrix–vector
product. Splitting schemes that avoid factorizations are described
below. However, avoiding factorizations is not always the best
strategy since the choice of splitting scheme can have a dramatic
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Algorithm 5 ADMM algorithm for (35)

(1) Input x1, !0 6= !1,  = 0. Input ⌧ > 0, ".

(2) While kK1x + K2!
 � ck > " and

k⌧KT
1 K2(!+1 � ! )k > "

• Set  :=  + 1.
• update

x+1 := argmin
x

8
<

:

f (x) + (u )T K1x

+ ⌧

2
kK1x + K2!

 � ck2

9
=

;

• update

!+1 := argmin
!

8
<

:

g(!) + (u )T K2!

+ ⌧

2
kK1x+1 + K2! � ck2

9
=

;

• update u+1 := u + ⌧ (K1x+1 + K2!
+1 � c)

(3) Output (x , ! ).

Algorithm 6 ADMM algorithm for (36)

(1) Input x1, !0 6= !1,  = 0. Input ⌧ > 0, ".

(2) While k! + R�1/2Cx � R�1/2yk > " and
k⌧CTR�T/2(!+1 � ! )k > "

• Set  :=  + 1.
• update

x+1 := argmin
x

1
2
kQ�1/2(z � Ax)k2 + xT u

+ ⌧

2
kR�1/2(Cx � y) + !k2

• update

!+1 :=argmin
!

k!k1+ ⌧

2
��!+u/⌧ + R�1/2(Cx+1 � y)

��2

• update

u+1 := u + ⌧ (R�1/2Cx+1 + !+1 � R�1/2y)

(3) Output x .

effect on the performance. Performance differences between var-
ious splitting are explored in the numerical section. Second, the
!-update has a convenient closed form representation in terms of
the proximity operator (27):

!+1 := prox⌧�1k·k1 (u
/⌧ + R�1/2(Cx+1 � y)).

The overall complexity of each iteration of the ADMM `1-Kalman
smoother is O(n2N), after the initial O(n3N) investment to factorize
ATQ�1A + CTR�1C .

There are several types of splitting schemes, including
Forward–Backward (Passty, 1979), Peaceman–Rachford (Lions &
Mercier, 1979), and others. A survey of these algorithms is beyond
the scope of this paper. See Bauschke and Combettes (2011) and
Davis and Yin (2015) for a discussion of splitting methods and the
relationships between them. See also Davis and Yin (2014), for a
detailed analysis of convergence rates of several splitting schemes
under regularity assumptions.

We are not aware of a detailed study or comparison of these
techniques for general Kalman smoothing problems, and future

work in this direction can have a significant impact in the commu-
nity. To give an illustration of the numerical behavior and variety
of splitting algorithms, we present the algorithm of Chambolle–
Pock (CP) (Chambolle & Pock, 2011), for convex problems of type

min
x

f (Kx) + g(x), (37)

where f and g are convex functions with computable proximity
operators. The CP iteration is specified in Algorithm 7; the quantity
L used in the algorithm is the largest singular value of K in (37).

Algorithm 7 Chambolle–Pock algorithm for (37)

(1) Input x0 6= x1, !0 6= !1,  = 0. Input ⌧ , � s.t. ⌧� L2 < 1.
Input ".

(2) While (k!+1 � !k + kx+1 � xk > ")

• Set  =  + 1.
• update !+1 = prox� f ⇤ (! + �K (2x � x�1))

• update x+1 = prox⌧g (x � ⌧KT!+1)

(3) Output x .

Algorithm 7 requires only the proximal operators for f ⇤ and
g to be implementable. Like ADMM, it has a convergence rate of
O(1/), and can be accelerated to O(1/2) under specific regularity
assumptions. When g is strongly convex, one such acceleration is
presented in Chambolle and Pock (2011).

There are multiple ways to apply the CP scheme to a given
Kalman smoothing formulation. Some schemes allow CP to solve
large-scale smoothing problems (15) using only matrix–vector
products, avoiding large-scale matrix solves entirely. However,
this may not be the best approach, as we show in our numerical
study in the following section. General splitting schemes such
as Chambolle–Pock can achieve at best O(1/2) convergence rate
for general nonsmooth Kalman formulations. Faster rates require
much stronger assumptions, e.g. smoothness of the primal or dual
problems (Chambolle & Pock, 2011). When these conditions are
present, the methods can be remarkably efficient.

4.6. Formulations using Piecewise Linear Quadratic (PLQ) penalties

When the state size n is moderate, so that O(n3N) is an accept-
able cost to pay, we can obtain fast methods for general Kalman
smoothing systems. We recover second-order behavior and fast
local convergence rates by developing interior point methods for
the entire class (15). These methods can be developed for any
piecewise linear quadratic V and J , and allow the inclusion of
polyhedral constraints that link adjacent time points. This can
be accomplished using O(n3N) arithmetic operations, the same
complexity as solving the least squares Kalman smoother.

To see how to develop second-order interior point methods for
these PLQ smoothers, we first define the general PLQ family and
consider its conjugate representation and optimality conditions.

Definition 1 (PLQ Functions and Penalties). A piecewise linear
quadratic (PLQ) function is any function ⇢(h,H, b, B,M; ·) : Rn !
R [ {1} admitting representation

⇢(h,H, b, B,M; x) := sup
v2V

⇢
hv, b + Bxi � 1

2
hv,Mvi

�

=
✓
1
2
k · k2

M + �V (·)
◆⇤

(b + Bx) ,

(38)

where V is the polyhedral set specified by H 2 Rk⇥` and h 2 R` as
follows:

V = {v : HTv  h} ,
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M 2 S k+ the set of real symmetric positive semidefinite matrices,
b + Bx is an injective affine transformation in x, with B 2 Rk⇥n, so,
in particular, n  k and null(B) = {0}. If 0 2 V , then the PLQ is
necessarily non-negative and hence represents a penalty.

The last equation in (38) is seen immediately using (31). Inwhat
follows we reserve the symbol ⇢ for a PLQ penalty often writing
⇢(x) and suppressing the litany of parameters that precisely define
the function. When detailed knowledge of these parameters is
required, they will be specified.

Below we show how the six loss functions illustrated in
Fig. 4(a)–4(f) can be represented as members of the PLQ class. In
each case, the verification of the representation is straightforward.
These dual (conjugate) representations facilitate the general opti-
mization approach.
Examples of scalar PLQ

(1) quadratic (`2) penalty, Fig. 4(a):

sup
v2R

⇢
vx � 1

2
v2

�

(2) absolute value (`1) penalty, Fig. 4(b):

sup
v2[�1,1]

{vx}

(3) Huber penalty, Fig. 4(c):

sup
v2[�,]

⇢
vx � 1

2
v2

�

(4) Vapnik penalty, Fig. 4(d):

sup
v2[0,1]2

⇢⌧
x � "

�x � "

�
, v

��

(5) Huber insensitive loss, Fig. 4(e):

sup
v2[0,1]2

⇢⌧
x � "

�x � "

�
, v

�
� 1

2
vTv

�

(6) Elastic net, Fig. 4(f):

sup
v2[0,1]⇥R

⇢⌧
1
1

�
x, v

�
� 1

2
vT


0 0
0 1

�
v

�
.

Note that the set V is shown explicitly, and in each case can be
easily represented as V := {v : DTv  d}. In addition, H and M
are very sparse in all examples. ⌅

Consider now optimizing a PLQ penalty subject to inequality
constraints:

min
x

⇢(x)

s.t. DT x  d.
(39)

Using the techniques of convex duality theory developed in Ap-
pendix A.2, the Lagrangian for (39) is given by

L (x, v,!) = ⌦
!, DT x � d

↵ � �Rn1+
(!) + hv, b + Bxi

� 1
2
vTMv � �Rn2�

�
HTv � h

�
,

where n1 and n2 are dimensions of d and c.
See (54) in Appendix A.2.
The dual problem associated to this Lagrangian is

min
(v,!)

hd, !i + 1
2
vTMv � hb, vi

s.t. BTv + D! = 0, HTv  h, 0  ! .
(40)

When the primal and dual problems have finite optimal values,
strong duality holds in the PLQ case (see Appendix A.2). The condi-
tions characterizing the optimal primal–dual pair (Theorem 4) are

then given by

!, w � 0
D! + BTv = 0
Mv + Hw = Bx + b
HTv  h, DT x  d
!j(DT x � d)j = 0, j = 1, . . . , n1
wj(HTv � h)j = 0, j = 1, . . . , n2.

(41)

The final two conditions in (41) are called complementary slackness
conditions. If (x, v, !, w) satisfy all of the conditions in (41), then x
solves the primal problem (39) and (v, !) solves the dual problem
(40). The optimality criteria (41) are known as the Karush–Kuhn–
Tucker (KKT) conditions for (39) and are used in the interior point
method described in the next section.

4.7. Interior point (second-order) methods for PLQ functions

Interior point methods directly target the KKT equations (41).
In essence, they apply a damped Newton’s method to a relaxed
KKT system of equations (Kojima et al., 1991; Nemirovskii &
Nesterov, 1994; Wright, 1997), recovering second-order behavior
(i.e. superlinear convergence rates) for nonsmooth problems.

To develop an interior point method for the previous section,
we first introduce slack variables

s := d � DT x � 0 and r := h � HTv � 0 .

Complementarity slackness conditions (41) can now be stated as

⌦S = 0 and WR = 0,

where ⌦, S,W , R are diagonal matrices with diagonals !, s, w, r ,
respectively. Let 1 denote the vector of all ones of the appropriate
dimension. Given µ > 0, we apply damped Newton iterations to
the relaxed KKT system of equations

Fµ(x, v, s, r, !, w) :=

2

666664

D! + BTv
Mv + Hw � Bx � b

DT x � d + s
HTv � h + r

⌦s � µ1
Wr � µ1

3

777775
= 0,

where !, s, w, r � 0 is enforced by the line search.
Interior point methods apply damped Newton iterations to find

a solution to Fµ = 0 (with !, s, w, r nonnegative) as µ is driven to
0, so that cluster points are necessarily KKT points of the original
problem. Damped Newton iterations take the following form. Let
⇠ := [xT , vT , sT , rT , !T , wT ]T . Then the iterations are given by

⇠+1 := ⇠ � � (F (1)
µ

)�1Fµ ,

where F (1)
µ

is the Jacobian of the relaxed KKT system Fµ. The � is
chosen to satisfy two conditions: (1)!+1, w+1, s+1, r+1 remain
positive, and (2) kFµ (⇠+1)k decreases. The homotopy parameter
µ is decreased at each iteration in a manner that preserves a
measure of centrality within the feasible region.

While interior point methods have a long history (see e.g.
Nemirovskii & Nesterov, 1994; Wright, 1997), using them in this
manner to solve any PLQ problem in a uniform way was proposed
in Aravkin et al. (2013b), and we refer the reader to this reference
for implementation details. In particular, the Kalman smoothing
case is developed in Section 6. Each iteration of the resulting
conjugate-PLQ interior point method can be implemented with
a complexity of O(N(n3 + m3)), which scales linearly in with N ,
just as for the classic smoother. The local convergence rate for IP
methods is superlinear or quadratic in many circumstances (Ye,
2011), which in practice means that few iterations are required.
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5. Numerical experiments and illustrations

We now present a few numerical results to illustrate the for-
mulations and algorithms discussed above. In Section 5.1, we
consider a nonsmooth Kalman formulation and compare the sub-
gradient method, Chambolle–Pock, and interior point methods. In
Section 5.2, we show how nonsmooth formulations can be used
to address the motivating examples in the introduction. Finally, in
Section 5.3, we show how to construct general piecewise linear
quadratic Kalman smoothers (with constraints) using the open-
source package IPsolve.3

5.1. Algorithms and convergence rates

In this section, we consider a particular signal tracking problem,
where the underlying smooth signal is a sine wave, and a portion
of the measurements are outliers.

The synthetic ground truth function is given by x(t) = sin(�t).
We reconstruct it from direct noisy samples taken at instants
multiple of �t .

We use N = 100 time steps for this example.
We track this smooth signal by modeling it as an integrated

Brownian motion which is equivalent to using cubic smoothing
splines (Wahba, 1990). The state spacemodel (sampled at instants
where data are collected) is given by Bell et al. (2009), Jazwinski
(1970) and Oksendal (2005)

ẋt+1
xt+1

�
=


1 0

�t 1

�
ẋt
xt

�
+ vt

where the model covariance matrix of vt is

Qt =


�t �t2/2
�t2/2 �t3/3

�
.

The goal is to reconstruct the signal function from direct noisy
measurements yt , given by

yt = Ctxt + et , Ct = ⇥
0 1

⇤
.

We solve the following constrained modification of (34):

min
x2C

kR�1/2(y � Cx)k1 + 1
2
kQ�1/2(z � Ax)k2, (42)

where z is constructed as in (10). For the sine wave, C is a simple
bounding box, forcing each component to be in [�1, 1]. Our goal is
to compare three algorithms discussed in Section 4:

(1) Projected subgradientmethod.Weuse the step size↵ := 1

,

and apply projected subgradient:

x+1 := projC

✓
x � 1


v

◆
,

where v 2 @ f (x ) is any element in the subgradient.
(2) Chambolle–Pock (two variants described below).
(3) Interior point formulation for (39).

Multiple splitting methods can be applied, including ADMM
(customized to deal with two nonsmooth terms), or the three-
term splitting algorithm of Davis and Yin (2015). We focus instead
on a simple comparison of two variants of Chambolle–Pock with
extremely different behaviors.

3 https://github.com/UW-AMO/IPsolve.

To apply Chambolle–Pock, we first write the optimization prob-
lem (42) using the template

min
x

f (Kx � r) + g(x).

The Chambolle–Pock iterations (see Algorithm 7) are given by

!+1 := r + prox� f ⇤ (! + �K (2x � x�1) � r)
x+1 := proj⌧g (x � ⌧KT!+1),

where ⌧ and � are stepsizes that must satisfy ⌧� L < 1, and L is the
squared operator norm of K . Choices for K give rise to two different
CP algorithms, denoted by CP-V1 and CP-V2 below.
CP-V1. One way to make the assignment is as follows:

f (!1, !2) = k!1k1 + 1
2
k!k2

2, g(x) = �C (x)

f ⇤(⌘1, ⌘2) = �B1 (⌘1) + 1
2
k⌘2k2.

K =

R�1/2C
Q�1/2A

�
, r =


R�1/2y
Q�1/2z

�
.

The conjugate of k ·k1 is computed in (32), and it is easy to see that
the function 1

2k · k2 is its own conjugate using definition (31).
To understand the !-step, observe that

prox� (f ⇤1 (x1)+f ⇤2 (x2))

✓
y1
y2

�◆
=


prox� f ⇤1 (y1)
prox� f ⇤2 (y2)

�
=

"projB1 (y1)
1

1 + �
y2

#
.

The proximity operator for the indicator function is derived in (29),
and the proximity operator for 1

2k · k2 can be easily obtained. The
x-step requires a projection onto the set C , which is the unit box
for the sine example.

CP-V2. Here we treat 1
2kQ�1/2(Ax � z)k2 as a unit, and assign in

to g . As a result, the behavior of A plays no role in the convergence
rate of the algorithm.

f (!1, !2) = k!k1 + �C (!2) , g(x) = 1
2
kQ�1/2(Ax � z)k2

f ⇤(⌘1, ⌘2) = �B1 (⌘1) + k⌘2k1.

K =

R�1/2C

I

�
, r =


R�1/2y

0

�
.

The proximity operator for g is obtained by solving a linear
system of equations:

prox⌧g (y) = (⌧ATQ�1A + I)�1(y + ⌧ATQ�1z).

The matrix ⌧ATQ�1A + I is block tridiagonal positive definite,
and its eigenvalues are bounded away from 0. Since it does not
change between iterations, we compute its Cholesky factorization
once and use it to implement the inversion at each iteration. This
requires a single factorization using O(n3N) arithmetic operations,
followedbymultipleO(n2N) iterations (same cost asmatrix–vector
products with a block tridiagonal system).

The !-step for CP-V2 is also different from the !-step in CP-V1,
but still very simple and efficient:

prox� (f ⇤1 (x1)+f ⇤2 (x2))

✓
y1
y2

�◆
=


prox� f ⇤1 (y1)
prox� f ⇤2 (y2)

�

=


projB1 (y1)
prox�k·k1 (y2)

�
.

The proximity operator for �k · k1 is derived in (33).
The results are shown in Fig. 6. The subgradient method is

disastrously slow. Given a simple step size schedule, e.g. ↵ = 1

,

it may waste tens of thousands of iterations before the objective
starts to decrease. In the left panel of Fig. 6, it took over 10,000
iterations before any noticeable impact. Moreover, as the step
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Fig. 6. Convergence rate comparisons. The y-axis shows f (xt ) � f (x⇤), while x-axis shows the iteration count. Left: Convergence rates for subgradient, CP-V1, CP-V2, and
Interior Point methods, after 50,000 iterations. Right: Comparison for CP-V2 and IPsolve, after 300 iterations. Note that themethods have different complexities: subgradient
and CP-V1 use onlymatrix–vector products; CP-V2 requires a single factorization and then back-substitution at each iteration, and IPsolve solves linear systems of equations
at each iteration. The run times were: 4.11 s, 1.9 s 0.03 s and 0.05 s for subgradient, CP-V1, CP-V2, and IPsolve. The subgradient method terminated because it hit the
maximum number of iterations (50,000); the remaining methods converged.

sizes become small, it can stagnate, and while in theory it should
continue to slowly improve the objective, in practice it stalls on the
example problem.

CP-V1 is able to make some progress, but the results are
not impressive. Even though the algorithm requires only matrix–
vector products, it is adversely impacted by the conditioning of the
problem. In particular, the ODE term for the Kalman smoothing
problem (i.e. the A) can be poorly conditioned, and in the CP-V1
scheme, it sits inside K . As a result, we see very slow convergence.
Interestingly, the rate itself looks linear, but the constants are
terrible, so it requires 50,000 iterations to fully solve the problem.

In contrast, CP-V2 performs extremely well. The algorithm
treats the quadratic ODE term as a unit, and the ill-conditioning of
A does not impact the convergence rate. The price we pay is having
to solve a linear system of equations at each iteration. However,
since the system does not change, we factorize it, with a one-
time cost of O(n3N) operations, and then use back-substitution to
implement proxg at each iteration, at a cost of O(n2N) operations
at each iteration. The resulting empirical convergence rate is also
linear, but with a significant improvement in the constant: CP-
V2 needs only 300 iterations to reach 10�10 accuracy (gap to the
minimum objective value), see the right plot of Fig. 6.

Finally, IPsolve has a super-linear rate, and finishes in 27 it-
erations. It is not possible to pre-factorize any linear systems
of equations, so the complexity is O(n3N) for each iteration. For
moderate problem sizes (specifically, smaller n), this approach is
fast and generalizes to any PLQ losses V and J and any constraints.
For large problem sizes, CP-V2will win; however, it is very specific
to the current problem. In particular, if we change J in (15) from
the quadratic to the 1-norm or Huber, we would need to develop
a different splitting approach. The more general CP-V1 approach is
far less effective.

The following sections focus on modeling and the resulting
behavior of the estimates. Section 5.2 presents the results for the
motivating examples in the introduction.

5.2. DC motor: robust solutions using `1 losses and penalties

We now solve the problems described in Section 1.1 using two
different smoothing formulations based on the `1 norm.
Impulsive inputs: Let E1 = �

1 0
�
, E2 = �

0 1
�
. To reconstruct

the disturbance torque dt acting on the motor shaft, we use the

LASSO-type estimator proposed in Ohlsson et al. (2012):

min
x1,...,xN

NX

t=1

(yt � E2xt)2 + �

N�1X

t=0

|dt |
subject to the dynamics (9).

(43)

Since ut = 0, this corresponds to the optimization problem

min
x1,...,xN

NX

t=1

(yt � E2xt )2

+ �

2

"
N�1X

t=0

|E1(xt+1 � Atxt )|
11.81

+ |E2 (xt+1 � Atxt)|
0.625

#

subject to
E1 (xt+1 � Atxt)

11.81
= E2 (xt+1 � Atxt)

0.625
.

The regularization parameter � is tuned using 5-fold cross
validation on a grid consisting of 20 values, logarithmically spaced
between 0.1 and 10. The resulting smoother is dubbed LASSO-CV.

The right panel of Fig. 7 shows the estimate of dt obtained by
LASSO-CV starting from the noisy outputs in the left panel. Note
that we recover the impulsive disturbance, and that the LASSO
smoother outperforms the optimal linear smoother L2-opt, shown
in Fig. 1. To further examine the improved performance of the
LASSO smoother in this setting, we performed aMonte Carlo study
of 200 runs, comparing the fit measure

100

 
1 � kd̂ � dk

kdk

!
,

where d = [d1 . . . d200] is the true signal and d̂ is the estimate
returned by L2-opt or by LASSO-CV. Fig. 8 shows Matlab boxplots
of the 200 fits obtained by these estimators. The rectangle con-
tains the inter-quartile range (25%–75% percentiles) of the fits,
with median shown by the red line. The ‘‘whiskers’’ outside the
rectangle display the upper and lower bounds of all the numbers,
not counting what are deemed outliers, plotted separately as ‘‘+’’.
The effectiveness of the LASSO smoother is clearly supported by
this study.
Presence of outliers: To reconstruct the angular velocity, we use
the following smoother based on the `1 loss:

min
x1,...,xN

NX

t=1

|yt � E2xt |
�

+ 1
0.12

N�1X

t=0

d2t

subject to the dynamics (9).
(44)
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Fig. 7. DC motor and impulsive disturbances. Left: noiseless output (solid line), measurements (+) and output reconstruction by the LASSO smoother (dashed line). Right:
impulsive disturbance and reconstruction by the LASSO smoother (dashed line).

Recall that dt ⇠ N (0, 0.12), so now there is no impulsive input.
The `1 loss used in (44) is shown in Fig. 4(b). It can also be viewed
as a limiting case of Huber (Fig. 4(c)) and Vapnik (Fig. 4(d)) losses,
respectively, when their breakpoints  and " are set to zero.

Over the state space domain, problem (44) is equivalent to

min
x1,...,xN

NX

t=1

|yt � E2xt |
�

+ 1
0.12

"
N�1X

t=0

(E1(xt+1 � Atxt ))2

11.81
+ (E2(xt+1 � Atxt ))2

0.625

#

subject to
E1 (xt+1 � Atxt)

11.81
= E2 (xt+1 � Atxt)

0.625
.

Note that the `1 loss uses the nominal standard deviation � = 0.1
as weight for the residuals, so that we call this estimator L1-nom.

The left panel of Fig. 9 displays the estimate of the angle re-
turned by L1-nom. The profile is very close to truth, revealing the
robustness of the smoother to the outliers. Here, we have also
performed a Monte Carlo study of 200 runs, using the fit measure

100
✓
1 � kŷ � yk

kyk
◆

,

where y = [y1 . . . y200] is the true value while ŷ are the estimates
returned by L2-nom, L2-opt or L1-nom. The boxplots in the right
panel of Fig. 9 compare the fits of the three estimators, and illus-
trate the robustness of L1-nom.

Finally, we repeated the sameMonte Carlo study setting ↵ = 0,
generating no outliers in the output measurements. Under these
assumptions, L2-nom and L2-opt coincide and represent the best
estimator among all the possible smoothers. Fig. 10 shows Matlab
boxplots of the 200 fits obtained by L2-nom and L1-nom. Remark-
ably, the robust smoother has nearly identical performance to
the optimal smoother, so there is little loss of performance under
nominal conditions.

5.3. Modeling with PLQ using Ipsolve

In this section, we include several modeling examples that
combine robust penalties with constraints. Each example is im-
plemented using IPsolve. The solver and examples are available
online4 ; see in particular 515Examples/KalmanDemo.m. In all
examples, the ground truth function of interest is given by x(t) =
exp(sin(4t)), and we reconstruct it from direct and noisy samples

4 https://github.com/saravkin/IPsolve.

Fig. 8. DCmotor and impulsive disturbances. Boxplot of the fits returned by optimal
linear smoother (left) and by the LASSO smoother (right).

taken at instants multiple of �t . The function x(t) is smooth and
periodic, but the exponential accelerates the transitions around the
maximum and minimum values. The process and measurement
models are the same as in Section 5.1. Four smoothers (15) are
compared in this example using IPsolve. The L2 smoother uses the
quadratic penalty for both V and J , and no constraints. The cL2
smoother uses least squares penalties with constraints including
the information that exp(�1)  x(t)  exp(1) 8t . The Hu-
ber smoother uses Huber penalties ( = 1) for both V and J ,
without constraints, while cHuber uses Huber penalties ( = 1)
together with constraints. The results are shown in Fig. 11. 90%
of the measurement errors are generated from a Gaussian with
nominal standard deviation 0.05, while 10% of the data are large
outliers generated using a Gaussian with standard deviation 10.
The smoother is given the nominal standard deviation.

The least squares smoother L2 without constraints does a very
poor job. The Huber smoother obtains a much better fit. Interest-
ingly, cL2 ismuchbetter than L2, indicating that domain constraints
can help a lot, even when using quadratic penalties. Combining
constraints and robustness in cHuber gives the best fit since the
inclusion of constraints eliminates the constraint violations of Hu-
ber at instant 3 in the left plot of Fig. 11.

The run times for N = 1000, 10 000, and 100 000 are shown in
Table 1. The run times scale linearly with N , as expected.

The calls to IPsolve are given below:
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Fig. 9. DCmotor and outliers in the outputmeasurements. Left: noiseless output (solid line),measurements (+), outliers (�) and output reconstruction by the robust smoother
L1-nomwhich uses the `1 loss and the nominal noise standard deviation � = 0.1 as weight for the residuals (dashed). Right: boxplot of the output fits returned by the linear
smoother L2-nomwhich uses the nominal standard deviation � = 0.1 as weight for the residuals, by the optimal linear smoother L2-opt and by the robust smoother L1-nom.

Fig. 10. DC motor and output reconstruction without outliers corrupting the
measurements. Boxplot of the output fits returned by the optimal linear smoother
L2-opt and by the robust smoother L1-nom.

(1) L2:

params.K = Gmat; params.k = w;
L2 = run_example( Hmat, meas, ’l2’, ’l2’, ...
[], params );

(2) Huber:

params.K = Gmat; params.k = w;
Huber = run_example( Hmat, meas, ’huber’, ...
’huber’, [], params );

The only difference required to run the HH smoother
is to replace the names of the PLQ penalties in the calling
sequence.

(3) cL2:

params.K = Gmat; params.k = w;
params.constraints = 1; conA = [0 1; 0 -1];
cona = [exp(1); -exp(-1)];
params.A = kron(speye(N), conA)’;
params.a = kron(ones(N,1), cona);
cL2 = run_example( Hmat, meas, ’l2’, ’l2’,...
[], params );

For constraints, we need to create the constraint matrix
and also pass it in using the params structure.

Table 1
Run times (s) of IPsolve for Huber, least squares with box constraints, and Huber
with box constraints.

N L2 Huber cL2 cHuber
1000 .001 0.125 .053 0.15

10000 .008 0.7 0.2 1.3
100000 .1 10.4 2.14 15.8

(4) cHuber:

params.K = Gmat; params.k = w;
params.constraints = 1; conA = [0 1; 0 -1];
cona = [exp(1); -exp(-1)];
params.A = kron(speye(N), conA)’;
params.a = kron(ones(N,1), cona);
cHuber = run_example( Hmat, meas, ’huber’,...
’huber’,[], params );

The constrained Huber call sequence requires only a
name change for the PLQpenalties. A library of PLQ penalties
is included in IPsolve; users can construct their own custom
penalties once they understand the conjugate representa-
tion (38).

Above, one can see that the names of PLQ measurements are
arguments to the file run_example, which builds the combined
PLQ model object that it passes to the interior point method.
The measurement matrix and observations vector are also passed
directly to the solver. The process terms are passed through the
auxiliary params structure. Full details for constructing the matri-
ces are provided in the online demo KalmanDemo cited above.

6. Concluding remarks

Various aspects of the state estimation problem in the linear
system (1) have been treated over many years in a very extensive
literature. One reason for the richness of the literature is the need
to handle a variety of realistic situations to characterize the signals
v and e in (1). This has led to deviations from the classical situation
with Gaussian signals where the estimation problem is a linear–
quadratic optimization problem. This survey attempts to give a
comprehensive and systematic treatment of themain issues in this
large literature. The key has been to start with a general formula-
tion (15) that contains the various situations as special cases of the
functions V and J . An important feature is that (15) still is a convex
optimization problem under mild and natural assumptions. This
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Fig. 11. Results of four smoothers. Left: Ground truth (solid red) and unconstrained results for L2 (dashed blue) and Huber (densely dashed black). Right: Ground truth
(solid red) and constrained results for cL2 (dashed blue) and cHuber (densely dashed black). Constraints can be very helpful in dealing with contamination. Best results are
obtained when we use both robust penalties and constraints on the domain. Here, n = 2 and N = 100. Run times for N = 1000, 10000, and 100000 are shown in Table 1.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

opens the huge area of convex optimization as a fruitful arena for
state estimation. In a way, this alienates the topic from the original
playground of Gaussian estimation techniques and linear algebraic
solutions. The survey can therefore also be read as a tutorial on
convex optimization techniques applied to state estimation.
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Appendix

A.1. Optimization viewpoint on Kalman smoothing under correlated
noise and singular covariances

In some applications, the noises {et , vt}Nt=1 are correlated. As-
sume that et and vt are still jointly Gaussian, but with a cross-
covariance denoted by St . For t = 1, . . . ,N , this implies that the
last assumption in (3) can be replaced by

E(vse>
t ) =

⇢
St if t = s
0 otherwise,

while v0 is assumed independent of {et , vt}Nt=1.
We now reformulate the objective (6) under this more general

model. Define the process ṽ0 = v0 and

ṽt = vt � E(vt |et ) = vt � StR�1
t et , t � 1

which, by basic properties of Gaussian estimation, is independent
of et and consists of white noise with covariance

Q̃t = Qt � StR�1
t S>

t , t � 1.

Since vt is correlated only with et , we have that all the {ṽt} and
{et} forma set ofmutually independentGaussian noises. Also, since

et = yt � Ctxt , model (1) can be reformulated as

xt+1 = Ãt xt + Btut + StR�1
t yt + ṽt (45a)

yt = Ctxt + et (45b)

where we define Ã0x0 + S0R�1
0 y0 = A0x0 while

Ãt = At � StR�1
t Ct , t � 1.

Note that (45) has the same form as the original system (1) except
for the presence of an additional input givenby the output injection
StR�1

t yt .
Assuming also the initial condition x0 independent of the noises,

the joint density of {ṽt}, {et} and x0 turns out to be

p (x0, {et}, {ṽt}) = p (x0)
NY

t=1

pet (et)
N�1Y

t=0

pṽt (ṽt) ,

where we use pet and pṽt to denote the densities corresponding to
et and ṽt . Since {xt}Nt=0 and {yt}Nt=1 are a linear transformation of
{vt}Nt=0, {et}Nt=1 and x0, the joint posterior of states and outputs is
proportional to

p (x0)
NY

t=1

pet (yt � Ctxt)
N�1Y

t=0

pṽt

⇣
xt+1 � Ãt xt � StR�1

t yt � Btut

⌘
.

Consequently, maximizing the posterior of the states given the
output measurements is equivalent to solving

min
x0,...,xN

k⇧�1/2(x0 � µ)k2 +
NX

t=1

kR�1/2
t (yt � Ctxt )k2

+
N�1X

t=0

kQ̃�1/2
t (xt+1 � Ãt xt � StR�1

t yt � Btut )k2.

(46)

Next consider the case where some of the covariance matrices
are singular. If some of the matrices Qt or Rt are not invertible,
problems (46) and (6) are not well-defined. In this case, one can
proceed as follows. First, ṽt , Q̃t and Ãt can be defined in the same
way where R�1

t is replaced by its pseudoinverse R†
t . The objective

can then be reformulated by replacing Q̃�1
t and R�1

t by Q̃ †
t and R†

t ,
respectively. Linear constraints can be added to prevent the state
evolution in the null space of Q̃t and Rt . By letting IQ and IR be
the sets with the time instants associated with singular Q̃t and Rt ,
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problem (46) can be rewritten as

min
x0,...,xN

k⇧�1/2(x0 � µ)k2 +
NX

t=1

k(R†
t )

1/2(yt � Ctxt )k2

+
N�1X

t=0

k(Q̃ †
t )

1/2(xt+1 � Ãt xt � StR�1
t yt � Btut )k2

subject to R?
t (yt � Ctxt) = 0 for t 2 IR and

Q̃?
t

⇣
xt+1 � Atxt � StR

†
t yt � Btut

⌘
= 0 for t 2 IQ ,

(47)

where R?
t = I � RtR

†
t and Q̃?

t = I � Q̃t Q̃
†
t provide the projections

onto the null-space of Rt and Q̃t , respectively.

A.2. Convex analysis and optimization

Some of the background in convex analysis and optimization
used in the previous sections is briefly reviewed in this section. In
particular, the fundamentals used in the development and analysis
of algorithms for (15) are reviewed.

Many members of the broader class of penalties (15) do not
yield least squares objectives since they include nonsmooth penal-
ties and constraints; however, they are convex. Convexity is a
fundamental notion in optimization theory and practice and gives
access to globally optimal solutions as well as extremely efficient
and reliable numerical solution techniques that scale to high di-
mensions. The relationship between convex sets and functionswas
presented in Section 4.1.

Fundamental objects in convex analysis

We begin by developing a duality theory for the general ob-
jective (15). This is key for both algorithm design and sensitivity
analysis. Duality is a consequence of the separation theory for
convex sets.

Separation: We say that a hyperplane (i.e. an affine set of co-
dimension 1) separates two sets if they lie on opposite sides of the
hyperplane. To make this idea precise, we introduce the notion of
relative interior. The affine hull of a set E , denoted aff (E ), is the
intersection of all affine sets that contain E . Given E ⇢ Rn the
relative interior of E is

ri (E ) := {x 2 E | 9" > 0 s.t. (x + "B) \ aff (E ) ⇢ E } .

For example, ri {(2, x) | �1  x  1 } = {(2, x) | �1 < x < 1 }.
Let cl (E ) denote the closure of set E , and intr (E ) denote the

interior. Then the boundary of E is given by bdry (E ) := cl (E ) \
intr (E ), and the relative boundary rbdry (C ) is given by cl (C ) \
ri (C ).

Theorem 2 (Separation). Let C ⇢ Rn be nonempty and convex, and
suppose ȳ 62 ri (C ). Then there exist z 6= 0 such that

hz, ȳi > hz, yi 8 y 2 ri (C ) .

Support Function: Apply Theorem 2 to a point x̄ 2 rbdry (C ) to
obtain a nonzero vector z for which

hz, xi = �C (z) := sup {hz, xi | x 2 C } > inf {hz, xi | x 2 C } .(48)

The function �C is called the support function for C , and the
nonzero vector z is said to be a support vector to C at x. When C is
polyhedral, �C is an example of a PLQ function, with (48) a special
case of (38) withM = 0.

Example (Dual Norms). Given a norm k·k on Rn with unit ball B,
the dual norm is given by

kzk� := sup
kxk1

hz, xi = �B (z) .

For example, the 2-norm is self dual, while the dual norm for k · k1
is k · k1.

This definition implies that kxk = �B� (x), where

B� := {z | hz, xi  1 8 x 2 B } .

The set B� is the closed unit ball for the dual norm k·k�. This kind
of relationship between the unit ball of a norm and that of its dual
generalizes to polars of sets and cones.

Polars of sets and cones: For any set C in Rn, the set

C � := {z | hz, xi  1 8 x 2 C }
is called the polar of C , and we have (C �)� = cl (conv (C [ {0})).
Hence, if C is a closed convex set containing the origin, then
(C �)� = C . If K ⇢ Rn is a convex cone (K is a convex and
�K ⇢ K for all � > 0), then, by rescaling,

K � = {z | hz, xi  0 8 x 2 K } and (K �)� = cl (K ) .

In particular, this implies that �K = �K � .

Subdifferential: For nonsmooth convex functions, the notion
of derivative can be captured by examining support vectors to
their epigraph. Define the domain of the function f to be the set
dom (f ) := {x | f (x) < 1 }. Using the fact that

ri (epi (f )) = {(x, µ) | x 2 ri (dom (f )) and f (x) < µ } ,

Theorem2 tells us that, for every x 2 ri (dom (f )), there is a support
vector to epi (f ) at (x, f (x)) of the form (z, �1), which separates the
points in the epigraph from the points in a half space below the
epigraph:

h(z, �1), (x, f (x))i � h(z, �1), (x, f (x))i 8 x 2 dom (f ) ,

or equivalently,

f (x) + hz, x � xi  f (x) 8 x 2 dom (f ) . (49)

This is called the subgradient inequality. The vectors z satisfying
(49) are said to be subgradients of f at x, and the set of all such
subgradients is called the subdifferential of f at x, denoted @ f (x).
This derivation shows that @ f (x) 6= ; for all x 2 ri (dom (f ))
when f is proper, i.e. dom (f ) is nonempty, with f (x) > �1.
In addition, it can be shown that @ f (x) is a singleton if and only
if f is differentiable at x with the gradient equal to the unique
subgradient.

For example, the absolute value function on R is not differen-
tiable at zero so there is no tangent line to its graph at zero; how-
ever, every line passing through the origin having slope between
�1 and 1 defines a support vector to the epigraph at the origin. In
this case,we can replace thenotion of derivative by the set of slopes
of hyperplanes at the origin. Each of these slopes is a subgradient,
and the set of all these is the subdifferential of |·| at the origin.

Necessary and Sufficient Conditions for Optimality: An imme-
diate consequence of the subgradient inequality is that

0 2 @ f (x) if and only if x 2 argminf .

That is, a first-order necessary and sufficient condition for optimal-
ity in convex optimization is that the zero vector is an element of
the subdifferential. Returning to the absolute value function on R,
note that the zero slope hyperplane supports the epigraph at zero
and zero is the global minimizer of |·|.
Theorem 3 (Convex Optimality). Let f : Rn ! R [ {+1} be
a closed proper convex function. Then the following conditions are
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equivalent:

(i) x is a global solution to the problemminxf .
(ii) x is a local solution to the problemminxf .
(iii) 0 2 @ f (x).

Convex conjugate: Again consider the support functions defined
in (48). By construction, z 2 @ f (x) if and only if

h(z, �1), (x, f (x))i = �epi(f ) ((z, �1)) = sup
y

(hz, yi � f (y)) = f ⇤(z),

or equivalently, f (x) + f ⇤(z) = hz, xi. When f is a proper convex
function, the conjugate function f ⇤ (defined in (31)), is a closed,
proper, convex function, since it is the pointwise supremum of the
affine functions z ! hz, yi � f (y) over the index set dom (f ).
Consequently we have

@ f (x) = �
z
�� f (x) + f ⇤(z)  hz, xi .

Due to the symmetry of this expression for the subdifferential, it
can be shown that (f ⇤)⇤ = f and @ f ⇤ = (@ f )�1, i.e.,

z 2 @ f (x) () x 2 @ f ⇤(z) (50)

whenever f is a closed proper convex function. These relation-
ships guide us to focus on the class of functions

�n := �
f : Rn ! R [ {1} | f is closed proper and convex

 
.

For example, if C ⇢ Rn is a nonempty closed convex set, then
�C 2 �n, where �C is defined in (19). It is easily seen that �⇤

C = �C

and, for x 2 C ,

@�C (x) = {z | hz, y � xi  0 8 y 2 C } =: N (x | C ) ,

where N (x | C ) is called the normal cone to C at x.

Calculus for PLQ: Just as in the smooth case, subdifferentials
and conjugates become useful in practice by developing a calcu-
lus for their ready computation. Here we focus on calculus rules
for PLQ functions ⇢ defined in (38) which are well established
in Rockafellar and Wets (1998). In particular, if we set q(v) :=
1
2v

TMv + �V (v), then, by Rockafellar and Wets (1998, Corollary
11.33), either ⇢ ⌘ 1 or

⇢⇤(y) = inf
BT v=y

[q(v) � hb, vi] and @⇢(z) = BT@q⇤(Bz + b), (51)

which can be reformulated as

@⇢(z) = �
BTv | v 2 V and Bz � Qv + b 2 N (v | V )

 
.

In addition, we have from Aravkin et al. (2013b, Theorem 3) that

dom
�
⇢⇤� = BTV and

dom (⇢) = B�1 �[V 1 \ Nul (M)]� � b
�
, (52)

where V 1 is the horizon cone of V . As the name suggests, V 1 is
a closed cone, and, when V is nonempty convex, it is a nonempty
closed convex cone satisfying V 1 = {w | V + w ⇢ V }. In partic-
ular, V is bounded if and only if V 1 = {0}.

The reader can verify by inspection of Fig. 4(a)–4(f) that the
domain of each scalar PLQ is R. This is also immediate from (52).
Four of the six penalties have bounded sets V , so that V 1 = {0},
the polar is the range of B, and so the result follows immediately.
The quadratic penalty has V 1 = R, but Nul (M) = {0}. We leave
the elastic net as an exercise.

More importantly, (51) gives explicit expressions for deriva-
tives and subgradients of PLQ functions in terms of v. Consider the
Huber function, Fig. 4(c). From (51), we have

@⇢(z) = {v | v 2 [�1, 1] and z � v 2 N (v | [�1, 1] ) } .

From this description, we immediately have @⇢(z) = r⇢(z) = z
for |z| <  , and  sgn(z) for |z| >  .

Convex duality

There are many approaches for convex duality theory (Rock-
afellar & Wets, 1998). For our purposes, we choose one based on
the convex-composite Lagrangian (Burke, 1985).

Primal objective: Let f 2 �m, g 2 �n, and K 2 Rm⇥n and consider
the primal convex optimization problem

P min
x

p(x) := f (Kx) + g(x), (53)

where we call p(x) the primal objective.
The structure of the problem (53) is the same as that used to de-

velop the celebrated Fenchel–Rockafellar Duality Theorem (Rock-
afellar, 1970 Section 31) (Theorem 4). It is sufficiently general
to allow an easy translation to several formulations of the prob-
lem (15) depending on how onewishes to construct an algorithmic
framework. This variability in formulation is briefly alluded to in
Section 4.5. In this section, we focus on general duality results
for (53) leaving the discussion of specific reformulation of (15) to
the discussion of algorithms.

We now construct the dual to the convex optimization problem
P. In general, the dual is a concave optimization problem, but,
as we show, it is often beneficial to represent it as a convex
optimization problem.

Lagrangian: First, define the Lagrangian L : Rn ⇥ Rm ⇥ Rn !
R [ {�1} forP by setting

L (x, w, v) := hw, Kxi � f ⇤(w) + hv, xi � g⇤(v). (54)

The definition of the conjugate immediately tells us that the primal
objective is given by maximizing the Lagrangian over the dual
variables:

f (Kx) + g(x) = sup
w,v

L (x, w, v).

Dual objective: Conversely, the dual objective is obtained by min-
imizing the Lagrangian over the primal variables:

d(w, v) := inf
x

L (x, w, v) =
⇢�f ⇤(w) � g⇤(v), KTw + v = 0,
�1, KTw + v 6= 0.

The corresponding dual optimization problem is

max
w,v

d(w, v) = max
KTw+v=0

�f ⇤(w) � g⇤(v).

One can eliminate v from the dual problem and reverse sign to
obtain a simplified version of the dual problem:

D min
w

d̃(w) := f ⇤(w) + g⇤(�KTw). (55)

Weak and strong duality: By definition, max d(w, v)  min p(x),
or equivalently, 0  (min d̃(w)) + (min p(x)). This inequality is
called weak duality. If equality holds, we say the duality gap is
zero. If solutions to both P and D exist with zero duality gap,
then we say strong duality holds. In general, a zero duality gap
and strong duality require additional hypotheses called constraint
qualifications. Constraint qualifications for the problem P are
given as conditions (a) and (b) in the following theorem (examples
of primal–dual problem pairs in sparsity promotion are given in
Table 2).

Theorem 4 (Fenchel–Rockafellar Duality Theorem Rockafellar, 1970,
Corollary 31.2.1). Let f 2 �m, g 2 �n, and K 2 Rm⇥n. If either

(a) there exists x 2 ri (dom (g)) with Kx 2 ri (dom (f )), or
(b) there exists w 2 ri (dom (f ⇤)) with �KTw 2 ri (dom (g⇤)),



84 A. Aravkin et al. / Automatica 86 (2017) 63–86

Table 2
We show three common variants of sparsity promoting formulations, and compute the dual in each case using the
relationships between (53) and (55). Strong duality holds for all three examples.

f
g

f ⇤
g⇤ P D

Basis �⌧B2 (· � s) ⌧ k·k2 + hw, si min kxk1 min ⌧ kwk2 + hw, si
Pursuit k·k1 �B1 (·) s.t.kKx � sk2  ⌧ s.t.

��KTw
��1  1

LASSO 1
2 k· � sk2

2 h·, si + 1
2 k·k2

2 min 1
2 kKx � sk2

2 min 1
2 kwk2

2 + 
��KTw

��1 + hw, si
�B1 (·)  k·k1 s.t. kxk1  

Lagrangian 1
2 k· � sk2

2 h·, si + 1
2 k·k2

2 min 1
2 kKx � sk2

2 + � kxk1 min 1
2 kw + sk2

2 � 1
2 ksk2

2
� k·k1 ��B1 (·) s.t.

��KTw
��1  �

hold, then min p + min d̃ = 0 with finite optimal values. Under
condition (a), argmind̃ is nonempty, while under (b), argminp is
nonempty. In particular, if both (a) and (b) hold, then strong duality
betweenP andD holds in the sense that min p + min d̃ = 0 with
finite optimal values that are attained in bothP andD. In this case,
optimal solutions are characterized by
8
<

:

x solvesP
wsolvesD

min p + min d̃ = 0

9
=

; ()
⇢

w 2 @ f (Kx)
�KTw 2 @g(x)

�

()
⇢
x 2 @g⇤(�KTw)

Kx 2 @ f ⇤(w)

�

where (50) can be used to obtain the second set of conditions from
the first. When f and g are piecewise linear–quadratic, finite opti-
mal values for min p and min d imply strong duality holds (Rock-
afellar & Wets, 1998 Theorem 11.42).

Rewriting the characterization in a fully symmetric way, we
obtain

0
0

�
2

✓
0 K

�K 0

�
+


@ f ⇤ 0

@g

�◆

| {z }
A


x
w

�
.

| {z }
z

Formally, 0 2 A z whenever z 2 (I + A )z. Primal–dual splitting
methods, including ADMM (Algorithm 6) and Chambolle–Pock
(Algorithm 7), can be derived as fixed-point iterations for the non-
linear operator (I + A ). For additional reading, see e.g. Bauschke
and Combettes (2011).
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