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Gauge Optimization and Duality

Suppose κ and ρ are gauges.

min
x

κ(x) s.t. ρ(b−Ax) ≤ τ, (Gp)

max
y

〈b, y〉 − τρ◦(y) s.t. κ◦(AT y) ≤ 1, (Ld)

min
y

κ◦(AT y) s.t. 〈b, y〉 − τρ◦(y) ≥ 1. (Gd)

When τ = 0, we define τρ◦ := δcldom ρ◦ .



Minkowski (gauge) functionals and polarity

Let 0 ∈ C ⊂ Rn be nonempty, closed, and convex.
The gauge function for C is given by

γC (x) := inf {t | 0 ≤ t, x ∈ tC },
where the infimum over the empty set is +∞.

Example: ‖x‖ = γB (x) for any norm with unit ball B.

Gauge functions are sublinear, and so by Hörmander,

γC (x) = σD (x) := sup {〈x, y〉 | y ∈ D},

where
D = {z | 〈z, x〉 ≤ 1 ∀ x ∈ C } =: C◦

and σD is the support function for the set D.



Minkowski (gauge) functionals and polarity

Let 0 ∈ C ⊂ Rn be nonempty, closed, and convex.
The gauge function for C is given by

γC (x) := inf {t | 0 ≤ t, x ∈ tC },
where the infimum over the empty set is +∞.

Example: ‖x‖ = γB (x) for any norm with unit ball B.

Gauge functions are sublinear, and so by Hörmander,
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Polar Gauges
Set Uκ := {x |κ(x) ≤ 1} and define the polar gauge by

κ◦(y) = sup { 〈y, x〉 | κ(x) ≤ 1 } = σUκ (y) .

If κ is a norm then κ◦ is the corresponding dual norm.

epiκ◦ = {(y,−λ) : (y, λ) ∈ (epiκ)◦}.

The generalized Hölder inequality

〈x, y〉 ≤ κ(x) · κ◦(y) ∀x ∈ domκ, ∀y ∈ domκ◦,

is known as the polar-gauge inequality.

In addition, for Hκ := {u | κ(u) = 0 } , we have

U◦κ = Uκ◦ , U∞κ = Hκ , (domκ)◦ = Hκ◦ , and H◦κ = cl domκ◦.



Gauge Optimization and Duality

Suppose κ and ρ are gauges.

min
x

κ(x) s.t. ρ(b−Ax) ≤ τ, (Gp)

max
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When τ = 0, we define τρ◦ := δcldom ρ◦ .



Feasibility

Primal, Dual Domains:

Fp := {x | ρ(b−Ax) ≤ τ } and Fd := { y | 〈b, y〉 − τρ◦(y) ≥ 1 } .

Feasibilty :
Primal Fp ∩ (domκ)

Dual AT Fd ∩ (domκ◦)

Relative Strict Feasibilty :
Primal riFp ∩ (ri domκ)

Dual AT riFd ∩ (ri domκ◦)

Strict Feasibilty :
Primal int (F)p ∩ (ri domκ)

Dual AT int (F)d ∩ (ri domκ◦)
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Freund (1987), Friedlander-Macedo-Pong (2014)

vp = min
ρ(b−Ax)≤τ

κ(x) vd = min
〈b,y〉−τρ◦(y)≥1

κ◦(AT y)

Theorem: (2014)

1. (Weak duality)
If x and y are P-D feasible, then

1 ≤ vpvd ≤ κ(x) · κ◦(AT y).

2. (Strong duality)
If the dual (resp. primal) is feasible and the primal (resp.
dual) is relatively strictly feasible, then νpνd = 1 and the
gauge dual (resp. primal) attains its optimal value.



Infimal Projection Duality Theory

Let F : Rn × Rm → R be closed proper convex, and define the
following optimal value functions by inf-projection:

p(y) := inf
x
F (x, y) and q(w) := inf

z
F ∗(w, z).

This set-up yields the primal-dual pair

p(0) = inf
x
F (x, 0) and p∗∗(0) = sup

z
−F ∗(0, z) (= −q(0)).

p(0) ≥ p∗∗(0) = −q(0) always holds
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Duality Theory
p(y) := infx F (x, y) and q(w) := infz F

∗(w, z).

1. If 0 ∈ ri (dom p), then p(0) = −q(0) and the infimum q(0) is
attained, if finite.

Similarly, if 0 ∈ ri (dom q), then p(0) = −q(0) and the infimum
p(0) is attained, if finite.

2. The set argmaxz −F ∗(0, z) is nonempty and bounded if and only
if 0 ∈ int (dom p) and p(0) is finite, in which case
∂p(0) = argmaxz −F ∗(0, z).

3. argminx F (x, 0) is nonempty and bounded if and only if
0 ∈ int (dom q) and q(0) is finite, in which case
∂q(0) = argminx F (x, 0).

4. Optimal solutions are characterized by

x̄ ∈ argminx F (x, 0)
ȳ ∈ argmaxz −F ∗(0, z)
F (x̄, 0) = −F ∗(0, z̄)

 ⇐⇒ (0, z̄) ∈ ∂F (x̄, 0) ⇐⇒ (x̄, 0) ∈ ∂F ∗(0, z̄).
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Fenchel-Rockafellar Duality
F (x, y) = h(Ax+ y) + g(x)

p(0) = inf
x
{h(Ax) + g(x) } and p??(0) = sup

z
{−h∗(z)− g∗(−A∗z) }

A prototype problem:

P min ‖x‖1
s.t. ‖Ax− b‖2 ≤ τ

g(x) = ‖x‖1 = δ∗ (x |B∞ ) g∗(w) = δ (w |B∞ )

h(y) = δ (y − b | τB2 ) h∗(z) = −〈z, b〉+ δ∗ (z | τB2 ) = −〈z, b〉+ τ‖z‖2

DL

sup 〈b, z〉 − τ‖z‖2
s.t.

∥∥AT z∥∥∞ ≤ 1.
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Gauge Duality and Sensitivity

vp(y) := inf
µ>0, x

{µ | ρ (b−Ax+ µy) ≤ τ, κ(x) ≤ µ}

λ := 1/µ and w := x/µ

= inf
λ>0, w

{1/λ | ρ(λb−Aw + y) ≤ τλ, w ∈ Uκ },

or
inf

λ>0, w
{−λ | ρ(λb−Aw + y) ≤ τλ, w ∈ Uκ }.

Variational framework:

F (w, λ, y) := −λ+ δ(epi ρ)× Uκ

W
wλ
y

 , W :=

−A b I
0 τ 0
I 0 0



F
∗
(w, λ, y) = δepi ρ◦

(
y

−σ−1(1 + λ− 〈b, y〉)

)
+ κ◦(w +ATy)
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Gauge Duality and Sensitivity

p(y) := infw,λ F (w, λ, y)
Theorem: The following relationships hold for the gauge primal-dual
pair Gp and Gd.

(a) If the primal is relatively strictly feasible and the dual is feasible,
then the set of optimal solutions for the dual is nonempty and
coincides with

∂p(0) = ∂(−1/vp)(0).

If it is further assumed that the primal is strictly feasible, then
the set of optimal solutions to the dual is bounded.

(b) If the dual is relatively strictly feasible and the primal is feasible,
then the set of optimal solutions for the primal is nonempty with
solutions x∗ = w∗/λ∗, where

(w∗, λ∗) ∈ ∂vd(0, 0) and λ∗ > 0.

If it is further assumed that the dual is strictly feasible, then the
set of optimal solutions to the primal is bounded.



Gauge Duality and Optimality Conditions

Theorem: Suppose both the gauge primal and gauge dual
problems are relatively strictly feasible, and the pair (x∗, y∗) is
primal-dual feasible. Then (x∗, y∗) is primal-dual optimal if and
only if it satisfies the conditions

ρ(b−Ax∗) = τ or ρ◦(y∗) = 0 (primal activity)

〈b, y∗〉 − τρ◦(y∗) = 1 (dual activity)

〈x∗, ATy∗〉 = κ(x∗) · κ◦(ATy∗) (objective alignment)

〈bAx∗, y∗〉 = τρ◦(y∗). (constraint alignment)

By convention, when τ = 0, τρ◦ := δcldom ρ◦ .



Gauge primal-dual recovery

Corollary: Suppose that the primal-dual pair (Gp) and (Gd)
are each relatively strictly feasible. If y∗ is optimal for (Gd),
then for any primal feasible x the following conditions are
equivalent:

(a) x is optimal for (Gp);

(b) 〈x,ATy∗〉 = κ(x) · κ◦(ATy∗) and b−Ax ∈ ∂(σρ◦)(y∗);

(c) ATy∗ ∈ κ◦(ATy∗) · ∂κ(x) and b−Ax ∈ ∂(σρ◦)(y∗),

where, by convention, σρ◦ = δcldom ρ◦ when σ = 0, in which
case

∂(σρ◦)(y∗) = N
(
y∗ |H◦ρ

)
.



Gauge primal-dual recovery from the Lagrange dual

Theorem:
Suppose that the gauge dual Gd is relatively strictly feasible and
the primal Gp is feasible. Let Lp denote the Fenchel-Rockafellar
dual of Gd, and let νL denote its optimal value. Then

z∗ is optimal for Lp ⇐⇒ z∗/νL is optimal for Gp.



Perspective Duality

The Perspective Transform

fπ(x, µ) :=


µf(µ−1x), µ > 0

f∞(x), µ = 0

+∞, µ < 0

where
f∞(x) := sup

z∈dom (f)

[f(x+ z)− f(x)]

is the horizon function of f .

hπ(y, µ) = σepih∗ ((y,−µ))



The Perspective-Polar Transform

f ](x, ξ) := (fπ)◦(x, ξ)

= σepi (f∗)◦ (x,−ξ)

= γepi (f∗) (x,−ξ)

= inf {µ > 0 | ξ + 〈z, x〉 ≤ µf(z), ∀z }

f ] is a gauge.

If f is a gauge, then f ](x, ξ) = f◦(x) + δR− (ξ).



Perspective duality

Suppose f : Rn → R̄+ and g : Rm → R̄+ are closed, convex and
nonnegative over their domains.

Np min
x

f(x) s.t. g(b−Ax) ≤ σ,

Nd min
y, α, µ

f
]
(AT y, α) s.t. 〈b, y〉 − σ · g](y, µ) ≥ 1− (α+ µ)



The Perspective-Polar of a PLQ Penalty

Piecewise linear-quadratic (PLQ) penalties:

g(y) := sup
u∈U
{ 〈u, y〉 − 1

2‖Lu‖22 } , U :=
{
u ∈ Rl |Wu ≤ w

}
,

g
]
(y, µ) = δR− (µ) + max

{
γU (y) , −(1/2µ)‖Ly‖2

}
= δR− (µ) + max

{
−(1/2µ)‖Ly‖2, max

i=1,...,k
{Wi

Ty/wi }
}
,

where W T
1 , . . . ,W

T
k are the rows of W .



The Perspective Duality for PLQ Penalties

Assume f is a gauge and g is a PLQ penalty, then

min(y, µ, ξ) f◦
(
ATy

)
s.t. 〈b, y〉+ µ− σξ = 1

Wy ≤ ξw,
∥∥∥∥[ 2Ly
ξ + 2µ

]∥∥∥∥
2

≤ ξ − 2µ



Perspective Duality Numerics

min
x

‖x‖1

s.t.

m∑
i=1

V ((Ax− b)i) ≤ σ,

where V is the Huber
function

−K K

y

x

V (x) = −Kx− 1
2
K2; x < −K

V (x) = 1
2
x2; −K ≤ x ≤ K

V (x) = Kx− 1
2
K2; K < x

Experiment:
m = 120, n = 512, σ = 0.2, η = 1, and A is a Gaussian matrix.
The true solution xtrue ∈ {−1, 0, 1} is a spike train which has
been constructed to have 20 nonzero entries, and the true noise
b−Axtrue has been constructed to have 5 outliers.



Perspective Duality Numerics
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Chambolle- Pock (CP) algorithm
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