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Convex-Composite Optimization

min
x∈Rn

f(x) := h(c(x))

+ g(x)

(P)

h : Rm → R ∪ {+∞} is closed, proper, convex

The Model

c : Rn → Rm is C2-smooth

The Data
g : Rn → R∪ {+∞} is closed, proper, convex Regularization

used to induce solution properties

70’s
Fletcher, Powel, Osborne

80-90’s
Burke, Ferris, Fletcher, Kawasaki, Masden, Poliquin, Powel,
Osborne, Rockafellar, Womersley, Wright, Yuan

Recent (15-19’s)
Aravkin, Bell, B, Chang, Cui, Duchi, Davis, Drusvyatskiy,
Hoheisel, Hong, Lewis, Ioffe, Mordukhovich, Pang, Ruan
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Examples: 70 - 90’s

Non-linear least-squares: f(x) = ‖c(x)‖22

Feasibility: c(x) ∈ C : min dist (c(x) |C ),

where C ⊂ Rm is non-empty, closed, convex, and
dist (y |C ) := inf {‖y − z‖ | z ∈ C }.

Exact Penalization: minϕ(x) + αdist (ĉ(x) |C )

Here c(x) := (ϕ(x), ĉ(x)) and h(µ, y) := µ+ αdist (y |C )

Non-linear programming: minϕ(x) + δC(ĉ(x)).

Here c(x) := (ϕ(x), ĉ(x)) and h(µ, y) := µ+ δC(y), where
δC(y) = 0 if y ∈ C and +∞ otherwise.
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More Recent Examples

Optimal Value Composition:

h(c) := min
{
b>y |Ay ≤ c

}

Quadratic support functions:

h(c) := sup
u∈U
〈u,Bc〉 − 1

2
uTMu

with U ⊂ Rk non-empty, closed, convex, M ∈ Sn is positive
semi-definite.

Piecewise linear-quadratic (PLQ) penalties:
(Rockfellar-Wets (97))
Quadratic support functions with U ⊂ Rk non-empty, closed
and convex polyhedron.
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PLQ penalties in practice
Application Objective PLQs

Regression ‖Ax− b‖2 L2

Robust regression ρH(Ax− b) Huber

Quantile regression Q(Ax− b) Asym. L1

Lasso ‖Ax− b‖2 + λ‖x‖1 L2 + L1

Robust lasso ρH(Ax− b) + λ‖x‖1 Huber + L1

SVM 1
2‖w‖

2 +H(1−Ax) L1 + hinge loss

SVR ρV (Ax− b) Vapnik loss

Kalman smoother ‖Gx−w‖2Q−1 +‖Hx−z‖2R−1 L2 + L2

Robust trend smoothing ‖Gx−w‖1+ρH(Hx− z) L1 + Huber



The Convex-Composite Lagrangian

P min
x∈Rn

h(c(x))

+ g(x)

• The Lagrangian for P: (B. (87))

L(x, y) := 〈y, c(x)〉−h∗(y)

+ g(x)L(x, y, v) := 〈y, c(x)〉−h∗(y) + 〈v, x〉 − g∗(v)L(x, y) := 〈y, c(x)〉−h∗(y)


(Primal) inf

x
sup
y

L(x, y)

(Dual) sup
y

inf
x

L(x, y)

• The conjugate of h given by the support function for epi(h),

h∗(y) := sup
x

[〈y, x〉 − h(x)] = sup
(x,µ)∈epi(h)

〈(y,−1), (x, µ)〉
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Algorithms

Pk min
x
h
(
c(xk)+∇c(xk)[x−xk]

)
+

1

2
(x−xk)>Hk(x−xk),

• Hk approximates the Hessian of a Lagrangian for P at (xk, yk)

• Newton’s method: Hk := ∇2
xxL(xk, yk) =

∑m
k=1 y

k
i∇2

xxci(x
k)

• Pk may or may not be convex depending on whether Hk � 0.

• In the context of NLP, this reduces to SQP
(sequential quadratic programming)



Convergence of Convex-Composite Newton’s Method

Robinson (72):
Assumed h = δK with K := {0}s × Rm−s− (NLP case).

Established quadratic convergence in the NLP case
under linear independence of the active constraint
gradients, strict complementarity, and strong
second-order sufficiency.

Robinson (80):

Introduced the revolutionary notion of generalized
equations which, among many other consequences,
re-established quadratic convergence for NLP. The
generalized equations approach is much more powerful
as it allows access to a very rich sensitivity theory
including metric regularity properties of solution
mappings.



Convergence of Convex-Composite Newton’s Method
Womersley (85):
Assumed h is finite-valued piecewise linear convex.

Established quadratic convergence under NLP-like
conditions: LICQ, strict complementarity, and strong
second-order sufficiency.

B-Ferris (95):
Assumed h is finite-valued closed, proper, convex.

Established quadratic convergence when
C := arg minh is a set of weak sharp minima for h, and

arg min f = {x | c(x) ∈ C }.
Only first-order information on c required.

Cibulka-Dontchev-Kruger (16):
Assumed h is piecewise linear convex (not nec.ly finite-valued).

Established super-linear convergence under the
Dennis-Moré conditions using generalized equations.



The Program

A long standing open problem:

Establish second-order rates using the rich history of
second-order ideas for convex-composite functions?

B(87), Kawazaki(88), Ioffe(88), B-Poliquin(92), Rochafellar-Wets(92),

Nguyen(17-19)

Proposal:

Focus on the PLQ class using a generalized equations
approach combining PLQ second-order theory with
partial smoothness.

Inspiration: R. Cibulka, A. Dontchev, and A. Kruger (2017)
arXiv:1701.02078.

Key new ingredient is partial smoothness (Lewis (02)).
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PLQ Functions

h : Rm → R is called piecewise linear-quadratic (PLQ) if
domh 6= ∅ and, for K ≥ 1,

domh =

K⋃
k=1

Ck,

where the sets Ck are convex polyhedrons,

Ck = {c | 〈akj , c〉 ≤ αkj , for all j ∈ {1, . . . , sk}} ,

and relative to which h(c) is given by an expression of the form

h(c) =
1

2
〈c,Qkc〉+ 〈bk, c〉+ βk ∀ c ∈ Ck

with βk ∈ R, bk ∈ Rn, and Qk ∈ Sm.



Variational Analysis of PLQ-Composite Functions
Assume f := h ◦ c with h convex PLQ and c in C2(Rn).

Active Set: For c ∈ domh, the active set at c is
K(c) := {k | c ∈ Ck }.

Basic Constraint Qualification: (BCQ)
ker∇c(x̄)> ∩Ndomh(c(x̄)) = {0}

Subdifferential: Under the BCQ

∂f(x) = c′(x)T∂h(c(x)).

Directional Derivative: Under BCQ

f ′(x; d) = limt↓0
f(x+td)−f(x)

t = h′(c(x); c′(x)d)
with

h′(c̄;w) = 〈Qk c̄+ bk, w〉 ∀ k ∈ K(c̄) and w ∈ TCk
(c̄).



Directions of Non-Ascent and Multipliers

Directions of non-ascent:

D(x) :=
{
d ∈ Rn

∣∣ f ′(x : d) ≤ 0
}

=
{
d ∈ Rn

∣∣h′(c(x);∇c(x)d) ≤ 0
}

(BCQ)

The Multiplier Set:

M(x̄) := ker∇c(x̄)> ∩ ∂h(c(x̄)) =

{
y

∣∣∣∣ (0
0

)
∈
(

∂xL(x̄, y)
∂y(−L)(x̄, y)

)}

Strict Criticality (SC):

ker∇c(x̄)> ∩ ri (∂h(c(x̄))) = {ȳ}

Implied by “strict complementarity and LICQ”.
Under SC, D(x̄) is a subspace on which h′(c(x);∇c(x)d) = 0.
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The Second Directional Derivative

The PLQ second directional derivative:
(Rockafellar-Wets (97))

0 ≤ h′′(c̄;w) := lim
t↘0

h(c̄+ tw)− h(c̄)− th′(c̄;w)
1
2 t

2

=

{
〈w,Qkw〉 when w ∈ TCk

(c̄),

∞ when w 6∈ Tdomh(c̄).

and h′′(c̄; ·) is PLQ, but not necessarily convex.

Moreover, there exists a neighborhood V of c̄ such that

h(c) = h(c̄) + h′(c̄; c− c̄) +
1

2
h′′(c̄; c− c̄) for c ∈ V ∩ domh.
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PLQ-Composite 2nd-Order Nec. and Suff. Conditions

(Rockafellar-Wets (97))

Let x̄ ∈ dom f such that f satisfies BCQ at x̄.

(1) (Nec.) If f has a local minimum at x̄, then
0 ∈ ∇c(x̄)>∂h(c(x̄)) and, ∀ d ∈ D(x̄),

h′′(c(x̄);∇c(x̄)d)+max
{〈
d,∇2

xxL(x̄, y)d
〉
| y ∈M(x̄)

}
≥ 0 .

(2) (Suff.) If 0 ∈ ∇c(x̄)>∂h(c(x̄)) and, ∀ d ∈ D(x̄) \ {0},

h′′(c(x̄);∇c(x̄)d) + max
{〈
d,∇2

xxL(x̄, y)d
〉
| y ∈M(x̄)

}
> 0,

then x̄ is a strong local minimizer of f ,
that is, there exists ε > 0, µ > 0 such that

f(x) ≥ f(x̄) +
µ

2
‖x− x̄‖22 ∀ x ∈ B(x̄, ε).



Convex-Composite Generalized Equations

Let f := h ◦ c be convex-composite, and define the set-valued
mapping g +G : Rn+m ⇒ Rn+m by

g(x, y) =

(
∇c(x)>y
−c(x)

)
, G(x, y) =

(
{0}n
∂h∗(y)

)
.

The associated generalized equation for P is 0 ∈ g +G.

For a fixed (x̄, ȳ) ∈ Rn × Rm, define the linearization mapping

G : (x, y) 7→ g(x̄, ȳ) +∇g(x̄, ȳ)

(
x− x̄
y − ȳ

)
+G(x, y),

where ∇g(x̄, ȳ) =

(
∇2(ȳc)(x̄) ∇c(x̄)>

−∇c(x̄) 0

)
.
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Newton’s Method for Generalized Equations

- Let f := h ◦ c be convex-composite.
- For (x̂, ŷ) ∈ Rn × Rm set Ĥ := ∇2

xxL(x̂, ŷ).
- Assume f satisfies BCQ at x̂.

Then, (x̃, ỹ) ∈ Rn × Rm satisfy the optimality conditions for

min
x∈Rn

h(c(x̂) +∇c(x̂)(x− x̂) +
1

2
(x− x̂)>Ĥ(x− x̂)

if and only if (x̃, ỹ) solves the Newton equations for g+G:

0 ∈ g(x̂, ŷ) +∇g(x̂, ŷ)

(
x− x̂
y − ŷ

)
+G(x, y).



Strong Metric Subregularity

A set-valued mapping S : Rn ⇒ Rm is strongly metrically
subregular at ū for v̄ if (ū, v̄) ∈ graph (S) and there exists κ ≥ 0
and a neighborhood U of ū such that

‖u− ū‖ ≤ κdist (v̄ |S(u)) for all u ∈ U.

Theorem: (B-Engel(18)) h : Rm → R convex PLQ and
f := h ◦ c satisfies BCQ at x̄ ∈ dom f . Then, the following are
equivalent:

(1) The multiplier set M(x̄) := ker∇c(x̄)> ∩ ∂h(c(x̄)) is a
singleton {ȳ} and the second-order sufficient conditions are
satisfied at x̄.

(2) The mapping g +G is strongly metrically subregular at
(x̄, ȳ) for 0 and x̄ is a strong local minimizer of f .

Corollary: The matrix secant method converges superlinearly
if the Dennis-Móre condition holds.
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(1) The multiplier set M(x̄) := ker∇c(x̄)> ∩ ∂h(c(x̄)) is a
singleton {ȳ} and the second-order sufficient conditions are
satisfied at x̄.

(2) The mapping g +G is strongly metrically subregular at
(x̄, ȳ) for 0 and x̄ is a strong local minimizer of f .

Corollary: The matrix secant method converges superlinearly
if the Dennis-Móre condition holds.



Partial Smoothness: Lewis (02)

• h : Rm → R is a closed and proper function.
• M a C2-smooth manifold and c̄ ∈M ⊂ Rm.

The function h is partly smooth at c̄ relative to M if M the
following four properties hold:

(1) (Restricted Smoothness) The restriction h|M is smooth
around c̄, in that there exists a neighborhood V of c̄ and a
C2-smooth function g defined on V such that h = g on
V ∩M;

(2) (Existence of Subgradients) At every point c ∈M close to
c̄, ∂h(c) 6= ∅;

(3) (Normals and Subgradients Parallel) par∂h(c̄) = NM(c̄);

(4) (Subgradient Continuity) the subdifferential map ∂h is
inner semicontinuous at c̄ relative to M.

Generalizes classical notions of nondegeneracy, strict
complementarity, and active constraint identification.
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Partial Smoothness



The Active Manifold

- M Active set: K(c) := {k ∈ Rm | c ∈ Ck, k ∈ {1, 2, . . . ,K}}

- Active Manifold: Mc̄ := ri
⋂
k∈K(c̄)Ck

Lemma: Let c̄ ∈ dom f and assume domh is given by an
RWR. Then, for all c ∈Mc̄ and k ∈ K(c̄),

K(c) = K(c̄), Mc =Mc̄ and Ik(c) = Ik(c̄).



The Subdifferential of h

Given that a certain nondegeneracy condition holds (a property
of the representation of domh), then ∂h(c) has a structure
functional representation (Osborne (01)).

Lemma: Let c ∈Mc̄ and suppose nondegeneracy holds.
Then there is a polyhedral convex set U(c) and a matrix Ā such
that, for every y ∈ ∂h(c), there is a unique µ(c, y) ∈ U(c) for
which y = λ0(c) + Āµ(c, y).
In particular,

∂h(c) = λ0(c) + ĀU(c).
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Newton’s Method Hypotheses

Let f = h ◦ c be PLQ convex composite, x̄ ∈ dom f, ȳ ∈ ∂h(c(x̄)), and

set c̄ := c(x̄).

Assumptions:

(a) c is C3-smooth,

(b) Mc̄ satisfies the nondegeneracy condition,

(c) f satisfies SC at x̄ for ȳ,

(d) x̄ satisfies the second-order sufficient conditions, i.e.,
h′′(c(x̄);∇c(x̄)d) +

〈
d,∇2

xxL(x̄, ȳ)d
〉
> 0 ∀ d ∈ kerA>∇c(x̄) \ {0},

where M(x̄) = {ȳ} and D(x̄) = kerA>∇c(x̄).

NLP Analogues:
(b) linear independence of the active constraint gradients,
(c) strict complementary slackness, and
(d) strong second-order sufficiency condition.
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Convergence of Newton’s Method

There exists a neighborhood N of (x̄, ȳ) such that if
(x0, y0) ∈ N , then there exists a unique sequence {(xk, yk)}
satisfying the optimality conditions of Pk with
Hk := ∇2

xxL(xk, yk) such that, for all k ∈ N,

(i) c(xk−1) +∇c(xk−1)[xk − xk−1] ∈Mc̄,

(ii) yk ∈ ri ∂h(c(xk−1) +∇c(xk−1)[xk − xk−1]),

(iii) Hk−1[xk − xk−1] +∇c(xk−1)>yk = 0,

(iv) xk+1 is a strong local minimizer of Pk.

Moreover, the sequence (xk, yk) converges to (x̄, ȳ) at a
quadratic rate.


