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Examples: 70 - 90’s
Non-linear least-squares: f(z) = |c(z)]|3

Feasibility: ¢(z) € C': mindist (¢(z) | C),

where C' C R™ is non-empty, closed, convex, and
dist (y |C) :=inf{|ly—z|| |z € C}.

Exact Penalization: min ¢(z) + adist (¢(z) | C)
Here c(x) := (p(z),é(x)) and h(p,y) = p+ adist (y |C')

Non-linear programming: min ¢(z) + do(é(x)).

Here c(z) := (¢(2),é(z)) and h(p,y) := p + 0c(y), where
dc(y) =0if y € C and +oo otherwise.
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More Recent Examples
Optimal Value Composition:

h(c) := min {bTy | Ay < c}

Quadratic support functions:

1
h(c) := sup (u, Be) — ~ul Mu
uelU 2

with U C R¥ non-empty, closed, convex, M € S™ is positive
semi-definite.

Piecewise linear-quadratic (PLQ) penalties:
(Rockfellar-Wets (97))

Quadratic support functions with U C R* non-empty, closed
and convex polyhedron.



PLQ penalties in practice

Application Objective PLQs
Regression | Az — b||? Lo
Robust regression pr(Ax —b) Huber
Quantile regression Q(Az —b) Asym. L,
Lasso | Az — b]|% + Az Ly + 14
Robust lasso pr(Ax —b) + A||z|)1 Huber + L,
SVM Flw|* + H(1 — Az) L; + hinge loss
SVR pv(Az —b) Vapnik loss
Kalman smoother ||Gac—w||2Q,1 +[Hz—z||%-. Ly + Ly

Robust trend smoothing  ||Gz—wl||1+pp(Hz — 2) L, + Huber
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The Convex-Composite Lagrangian

P minh(e(z) +g(z)

e The Lagrangian for P: (B. (87))

L(z,y,v) == (y,c(z))—h*(y) + (v,2) —g"(v)

e The conjugate of h given by the support function for epi(h),

h*(y) == sup[(y, ) = h(z)] = sup  ((y,—1), (2, p))
x (x,u)€epi(h)



The Convex-Composite Lagrangian

P ;giRI}l h(c(z))

e The Lagrangian for P: (B. (87))

(Primal) infsup L(x,y)
Ty

L(z,y) = (y,c(z))—h"(y)
(Dual) Sl‘;p inf L(z,y)

e The conjugate of h given by the support function for epi(h),

h*(y) :=sup[(y,z) — h(z)] = sup ((y,—1),(z,p))
z (w,p1)Eepi(h)



Algorithms
Py min h <c(xk)+Vc(a;k)[x—a;k]> —l—%(m—:ck)THk(x—wk),

e M} approximates the Hessian of a Lagrangian for P at (¥, y*)

e Newton’s method: Hy, := V2 L(z*, y*) = >0 yFV2, ci(z)

i
e P, may or may not be convex depending on whether Hy > 0.

e In the context of NLP, this reduces to SQP
(sequential quadratic programming)



Convergence of Convex-Composite Newton’s Method

Robinson (72):
Assumed h = dg with K := {0}* x R™™° (NLP case).

Established quadratic convergence in the NLP case
under linear independence of the active constraint
gradients, strict complementarity, and strong
second-order sufficiency.

Robinson (80):

Introduced the revolutionary notion of generalized
equations which, among many other consequences,
re-established quadratic convergence for NLP. The
generalized equations approach is much more powerful
as it allows access to a very rich sensitivity theory
including metric reqularity properties of solution
mappings.



Convergence of Convex-Composite Newton’s Method
Womersley (85):
Assumed h is finite-valued piecewise linear convex.

Established quadratic convergence under NLP-like
conditions: LICQ, strict complementarity, and strong
second-order sufficiency.

B-Ferris (95):
Assumed h is finite-valued closed, proper, convex.

Established quadratic convergence when

C := argminh is a set of weak sharp minima for h, and
argmin f = {z |c(z) € C'}.

Only first-order information on ¢ required.

Cibulka-Dontchev-Kruger (16):
Assumed h is piecewise linear convex (not nec.ly finite-valued).

Established super-linear convergence under the
Dennis-Moré conditions using generalized equations.
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The Program

A long standing open problem:
Establish second-order rates using the rich history of
second-order ideas for convex-composite functions?

B(87), Kawazaki(88), Ioffe(88), B-Poliquin(92), Rochafellar-Wets(92),
Nguyen(17-19)

Proposal:

Focus on the PLQ class using a generalized equations
approach combining PLQ) second-order theory with
partial smoothness.

Inspiration: R. Cibulka, A. Dontchev, and A. Kruger (2017)
arXiv:1701.02078.

Key new ingredient is partial smoothness (Lewis (02)).



PLQ Functions

h : R™ — R is called piecewise linear-quadratic (PLQ) if
dom h # () and, for K > 1,

K
domh = | J Cy,
k=1

where the sets C} are convex polyhedrons,
Cr = {c|(arj,c) < ayj, forall j € {1,...,s1}},
and relative to which h(c) is given by an expression of the form
1
h(C) = 5 <Cv ch> + <bk7 C> + 5.% Vece Ck

with By, € R, b, € R", and Q; € S™.



Variational Analysis of PLQ-Composite Functions
Assume f := hoc with h convex PLQ and ¢ in C?(R").

Active Set: For ¢ € dom h, the active set at c is
K(c) :={k|ceCy}.

Basic Constraint Qualification: (BCQ)
ker Ve(Z) T N Ngomn(c(z)) = {0}
Subdifferential: Under the BCQ
of(z) = (z)Toh(c(x)).

Directional Derivative: Under BCQ
f(ws d) = limgyo LD — W (e(a); ¢/ ()d)
with

B (6 w) = (Qre + by, w) YV k € K(¢) and w € T, ().



Directions of Non-Ascent and Multipliers

Directions of non-ascent:

D(z):={deR" | f(z:d) <0}
= {d € R" | W(c(x); Ve(z)d) <0} (BCQ)

The Multiplier Set:

M (%) = ker Ve(z) " Noh(c(x))
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Strict Criticality (SC):
ker Ve(z) " Nri (0h(c(z))) = {7}

Implied by “strict complementarity and LICQ”.
Under SC, D(Z) is a subspace on which A/(c¢(z); Ve(x)d) = 0.



The Second Directional Derivative

The PLQ second directional derivative:
(Rockafellar-Wets (97))

h(¢ + tw) — h(c) — th'(¢;w)

0 < h'(gw) :=lim

N0 12
B (w, Qrw) when w € T¢, (¢),
R when w & Tyom 1 (€).

and h”(c;-) is PLQ, but not necessarily convex.



The Second Directional Derivative
The PLQ second directional derivative:
(Rockafellar-Wets (97))

_ VR
0 < 1" (&w) := lim h(¢ + tw) — h(c) — th'(¢; w)

N0 %tQ
B (w, Qrw) when w € T¢, (¢),
R when w & Tyom 1 (€).

and h”(c;-) is PLQ, but not necessarily convex.
Moreover, there exists a neighborhood V' of ¢ such that

1
h(c) = h(c) + W' (c;c—¢) + §h”(é; ¢ —¢) for c € VN domh.



PLQ-Composite 2"4-Order Nec. and Suff. Conditions

(Rockafellar-Wets (97))
Let z € dom f such that f satisfies BCQ at .

(1) (Nec.) If f has a local minimum at Z, then

0 € Ve(z) 0h(c(z)) and, ¥V d € D(z),

K" (ce(Z); Ve(z)d) +max {(d, V2, L(Z,y)d) |y € M(z)} > 0.
(2) (Suff.) If 0 € Ve(Z) T0h(c(z)) and, ¥ d € D(z) \ {0},

W' (c(Z); Ve(z)d) + max {(d, V2, L(z,y)d) |y € M(z)} > 0,

then Z is a strong local minimizer of f,
that is, there exists € > 0, u > 0 such that

f@) = f@+5 e -3l VaeB@Ee).



Convex-Composite Generalized Equations

Let f := h o c be convex-composite, and define the set-valued
mapping g + G : R = R*™ by

oo = (") G = (et

The associated generalized equation for P is 0 € g + G.



Convex-Composite Generalized Equations

Let f := h o c be convex-composite, and define the set-valued
mapping g + G : R = R*™ by

VC(&?)TZ/> ( {o}" >
Z, = ; G x, = * .
g(z,y) ( —c(z) (z,y) Oh*(y)
The associated generalized equation for P is 0 € g + G.
For a fixed (z,7) € R™ x R™, define the linearization mapping
_ N
G+ (2. a(o) + Vala.) (57 7) + o)

V2 (ge)(7) me),

where Vg(z,79) = < (é) 0



Newton’s Method for Generalized Equations

- Let f := hoc be convex-composite.
- For (#,7) € R® x R™ set H := V2, L(,9).
- Assume f satisfies BCQ at Z.

Then, (z,y) € R™ x R™ satisfy the optimality conditions for
Yy

min h(c() + Ve(#)(x — &) + %(m — &) T H(z — )

T€R™

if and only if (Z, ) solves the Newton equations for g+G:

0 9(2,9) + Vo(2,9) (jjy)  Glany).



Strong Metric Subregularity

A set-valued mapping S : R® = R™ is strongly metrically
subregular at u for v if (u,v) € graph (S) and there exists k > 0
and a neighborhood U of % such that

llu — @l < kdist (v | S(u)) for all u € U.
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Strong Metric Subregularity

A set-valued mapping S : R® = R™ is strongly metrically
subregular at u for v if (u,v) € graph (S) and there exists k > 0
and a neighborhood U of % such that

llu — @l < kdist (v | S(u)) for all u € U.

Theorem: (B-Engel(18)) h: R™ — R convex PLQ and
f := hocsatisfies BCQ at £ € dom f. Then, the following are
equivalent:

(1) The multiplier set M (Z) := ker Ve(z) T N Oh(c(Z)) is a
singleton {7} and the second-order sufficient conditions are
satisfied at z.

(2) The mapping g + G is strongly metrically subregular at

(z,y) for 0 and Z is a strong local minimizer of f.

Corollary: The matrix secant method converges superlinearly
if the Dennis-Mére condition holds.



Partial Smoothness: Lewis (02)

e h: R™ — R is a closed and proper function.
e M a C%-smooth manifold and ¢ € M C R™.

The function h is partly smooth at ¢ relative to M if M the

following four properties hold:

(1) (Restricted Smoothness) The restriction h|aq is smooth
around ¢, in that there exists a neighborhood V of ¢ and a
C%-smooth function g defined on V such that h = g on
VM,

(2) (Existence of Subgradients) At every point ¢ € M close to
¢, Oh(c) # 0;

(Normals and Subgradients Parallel) pardh(c) = Ny (¢);

(Subgradient Continuity) the subdifferential map Oh is

inner semicontinuous at ¢ relative to M.

(3)
(4)
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e h: R™ — R is a closed and proper function.
e M a C%-smooth manifold and ¢ € M C R™.

The function h is partly smooth at ¢ relative to M if M the

following four properties hold:

(1) (Restricted Smoothness) The restriction h|aq is smooth
around ¢, in that there exists a neighborhood V of ¢ and a
C%-smooth function g defined on V such that h = g on
VM,

(2) (Existence of Subgradients) At every point ¢ € M close to
¢, Oh(c) # 0;

(Normals and Subgradients Parallel) pardh(c) = Ny (¢);

(Subgradient Continuity) the subdifferential map Oh is

inner semicontinuous at ¢ relative to M.

Generalizes classical notions of nondegeneracy, strict
complementarity, and active constraint identification.



Partial Smoothness




The Active Manifold

- M Active set: K(c) :={keR™ |ce Cy, ke {1,2,...,K}}

- Active Manifold: Mg := riﬂkelC(E) Ck

Lemma: Let ¢ € dom f and assume dom h is given by an
RWR. Then, for all ¢ € M; and k € K(c),

K(c) = K(¢), M. = Mg and Ii(c) = I1(c).



The Subdifferential of A

Given that a certain nondegeneracy condition holds (a property
of the representation of dom h), then dh(c) has a structure
functional representation (Osborne (01)).



The Subdifferential of A

Given that a certain nondegeneracy condition holds (a property
of the representation of dom h), then dh(c) has a structure
functional representation (Osborne (01)).

Lemma: Let ¢ € M; and suppose nondegeneracy holds.
Then there is a polyhedral convex set U(c) and a matrix A such
that, for every y € Oh(c), there is a unique u(c,y) € U(c) for
which y = Ao(c) + Au(c, y).
In particular,

Oh(c) = Mo(e) + AU(c).



Newton’s Method Hypotheses

Let f = hoc¢ be PLQ convex composite, Z € dom f, § € Oh(c(Z)), and
set ¢ := ¢(T).
Assumptions:

(a) cis C3-smooth,

(b) Mg satisfies the nondegeneracy condition,
(c) f satisfies SC at z for g,
(d

)  satisfies the second-order sufficient conditions, i.e.,
' (c(Z); Ve(z)d) + <d, V2, L(z, gj)d> >0 VdekerATVe(z)\ {0},
where M (z) = {y} and D(Z) = ker AT Ve(z).



Newton’s Method Hypotheses

Let f = hoc¢ be PLQ convex composite, Z € dom f, § € Oh(c(Z)), and
set ¢ := ¢(T).
Assumptions:

(a) cis C3-smooth,

(b) Mg satisfies the nondegeneracy condition,

(c) f satisfies SC at z for g,

(d) z satisfies the second-order sufficient conditions, i.e.,

W' (c(z); Ve(z)d) 4+ (d, V2, L(z,5)d) >0 Vdeker ATVe(z)\ {0},
where M (z) = {y} and D(Z) = ker AT Ve(z).

NLP Analogues:

(b) linear independence of the active constraint gradients,
(c) strict complementary slackness, and

(d) strong second-order sufficiency condition.



Convergence of Newton’s Method

There exists a neighborhood N of (Z,y) such that if

(2%, 4%) € NV, then there exists a unique sequence {(z*,y*)}
satisfying the optimality conditions of Py with

Hy, := V2, L(2*,y*) such that, for all k € N,

() e(@*1) + Ve(ah e — 2" € M,
(ii) ¥ € 1idh(c(zF 1) + Ve(zh 1) zk — 2F-1)),

(iii) Hg_q[z* — 2% 1) 4+ Ve(zb 1) TyF =0,

(iv) %! is a strong local minimizer of Py.
Moreover, the sequence (z¥,3*) converges to (z,7) at a

quadratic rate.



