QUALIFYING EXAM SYLLABUS

BIANCA VIRAY

December 8, 2006
Bjorn Poonen, Mark Haiman, Donald Sarason (Chair), Sanjay Kumar (Outside Member)

1. Major Topic: Algebraic Number Theory (Algebra)

Number Fields: Dedekind domains, rings of integers, norm, trace, and discriminant, finiteness of the class group, Dirichlet Unit Theorem.
Extensions of Number Fields: Decomposition and inertia groups, Hilbert's Ramification Theory, prime factorization in extension fields, Frobenius automorphism.
Valuations: Completions, valuations, extensions of valuations, Hensel's lemma, local fields, Henselian fields, unramified, tamely ramified extensions, approximation theorem.
Class Field Theory: Statements of local and global class field theory, Artin Reciprocity, Chebotarev Density Theorem (statements only), adeles and ideles.

References:
Chapter 1 §1-10, Chapter $2 \S 1-8$ of
[1] Neukirch, J. Algebraic Number Theory. Grund. der Math. Wiss. 322 Springer, Berlin, 1999.

Chapters VI \& VII of
[2] Cassels \& Fröhlich, A. (Eds.), Algebraic Number Theory. Academic Press, London, 1967.

2. Major Topic: Algebraic Geometry (Algebra)

Sheaves and Schemes: Affine, reduced, irreducible, regular, fibred product. Morphisms: finite, finite type, immersions, separated, proper, projective. Sheaves of Modules: Quasi-coherent, coherent, twisting sheaf.
Divisors: Weil divisors, Cartier divisors, Picard group.
Morphisms to Projective Space: Closed immersions, ample, very ample.
Cohomology: Cohomology of sheaves, cohomology of projective space, Cech cohomology.
Curves: Riemann-Roch.
Reference: Chapter $2 \S 1-7$, Chapter $3 \S 1-5$, Chapter $4 \S 1$ of
[1] Hartshorne, R. Algebraic Geometry Springer, New York, 1977.

3. Minor Topic: Complex Analysis (Classical Analysis)

Holomorphic and meromorphic functions: Taylor and Laurent series, linear fractional transformations, Liouville's theorem, Rouche's theorem.
Complex Integration: Cauchy's theorem, Cauchy's integral formula, Morera's theorem, residue theorem.
Product Developments: Weierstrass products, Hadamard's Theorem.
Reference: Chapters 1-4, Chapter 5, §1-3 of [1] Ahlfors, L. Complex Analysis, 3rd edition, McGraw-Hill, New York, 1979.

