Storyboarding

What do you want the audience to remember about your theorem (or talk)?

What do you want the audience to remember about your theorem (or talk)? What is the main question?

What do you want the audience to remember about your theorem (or talk)? What is the main question?

What is your hook?

What do you want the audience to remember about your theorem (or talk)?

In this paper, we study sporadic points and, more generally, isolated ${ }^{4}$ points of arbitrary degree, focusing particularly on such points corresponding to non-CM elliptic curves. We prove that non-CM non-cuspidal sporadic, respectively isolated, points on $X_{1}(n)$ map to sporadic, respectively isolated, points on $X_{1}(d)$, for d some bounded divisor of n.
Theorem 1.1. Fix a non-CM elliptic curve E over k, and let m be an integer divisible by 2,3 and all primes ℓ where the ℓ-adic Galois representation of E is not surjective. Let $M=M(E, m)$ be the level of the m-adic Galois representation of E and let f denote the natural map $X_{1}(n) \rightarrow X_{1}(\operatorname{gcd}(n, M))$. If $x \in X_{1}(n)$ is sporadic, respectively isolated, with $j(x)=j(E)$, then $f(x) \in X_{1}(\operatorname{gcd}(n, M))$ is sporadic, respectively isolated.

What do you want the audience to remember about your theorem (or talk)?

In this paper, we study sporadic points and, more generally, isolated ${ }^{4}$ points of arbitrery degree, focusing particularly on such points corresponding to non-CM elliptie curves. We prove that non-CM men-cuspidal sporadic, respectively isolated points on $X_{1}(n)$ map to sporadic, respectively isolated, peints on $X_{1}(d)$, for d some bounded divisor of n.
Theorem 1.1. Fix a non-CM elliptic cume over k, and let m be an integer divisible by 2,3 and all primes ℓ where the ℓ-adic Galois representation of E is not surjective. Let $M=M(E, m)$ be the level of the m-adic Galois representation of E and let f denote the natural map $X_{1}(n) \rightarrow X_{1}(\operatorname{gcd}(n, M))$. If $x \in X_{1}(n)$ is sporadic, respectivety isolated, with $j(x)=j(E)$, then $f(x) \in X_{1}(\operatorname{gcd}(n, M))$ is sporadic, respectively isolated.

The presence of isolated points high in the tower can be detected low in the tower.

What do you want the audience to remember about your theorem (or talk)?

The presence of isolated points high in the tower can be detected low in the tower.

What do you want the audience to remember about your theorem (or talk)?

The presence of isolated points high in the tower can be detected low in the tower.

Before this point, I need to convey
-why do we care about isolated points?
-why is this new?

The presence of isolated points high in the tower can be detected low in the tower.

What is the main question?

The presence of isolated points high in the tower can be detected low in the tower.

What is the main question?

What is the geometric reason that allows a curve to have infinitely many degree d points?

The presence of isolated points high in the tower can be detected low in the tower.

What is the main question?

Before this point, I need to convey
-why do we expect there to be some geometric reason?
-why do we care about having infinitely many degree d points?
What is the geometric reason that allows a
curve to have infinitely many degree d points?

The presence of isolated points high in the tower can be detected low in the tower.

What is the hook?

What is the geometric reason that allows a curve to have infinitely many degree d points?

The presence of isolated points high in the tower can be detected low in the tower.

What is the hook?

What is the geometric reason that allows a curve to have infinitely many degree d points?

The presence of isolated points high in the tower can be detected low in the tower.

What is the hook?

Faltings's theorem:
 Prototypical example of geometry controls arithmetic

What is the geometric reason that allows a curve to have infinitely many degree d points?

The presence of isolated points high in the tower can be detected low in the tower.

What is the hook?

Faltings's theorem:
 Would NOT work for a general audience talk!!!
 Prototypical example of geometry controls arithmetic

What is the geometric reason that allows a curve to have infinitely many degree d points?

The presence of isolated points high in the tower can be detected low in the tower.

Storyboard
(For a NT seminar)

Faltings's theorem: example of geometry controls arithmetic

> What is the geometric reason that allows a curve to have infinitely many degree d points?

The presence of isolated points high in the tower can be detected low in the tower.

Storyboard
(For a NT seminar)

Faltings's theorem: example of geometry controls arithmetic

> What is the geometric reason that allows a curve to have infinitely many degree d points? i.e., what is the analog of Faltings

The presence of isolated points high in the tower can be detected low in the tower.

Storyboard
(For a NT seminar)
Faltings's theorem: example of geometry controls arithmetic

What is the geometric reason that allows a curve to have infinitely many degree d points? i.e., what is the analog of Faltings

The presence of isolated points high in the tower can be detected low in the tower.

Storyboard

(For a NT seminar)
Faltings's theorem: example of geometry controls arithmetic

> What is the geometric reason that allows a curve to have infinitely many degree d points? i.e., what is the analog of Faltings

The presence of isolated points high in the tower can be detected low in the tower.

Storyboard

(For a NT seminar)
Faltings's theorem: example of geometry controls arithmetic

Before this point, I need to convey -why do we care about isolated points? -why is this new? infinitely many degree d points? i.e., what is the analog of Faltings

The presence of isolated points high in the tower can be detected low in the tower.

Storyboard
(For a NT seminar)
Faltings's theorem: example of geometry controls arithmetic

What is the geometric reason that allows a curve to have infinitely many degree d points? i.e., what is the analog of Faltings

The presence of isolated points high in the tower can be \qquad detected low in the tower.

Storyboard
 (For a NT seminar)

Faltings's theorem: example of geometry controls arithmetic

What is the geometric reason that allows a curve to have

Isolated points are the degree d points "without a good reason
to exist" (mysterious)

The presence of isolated points high in the tower can be detected low in the tower.

Storyboard
 (For a NT seminar)

Faltings's theorem: example of geometry controls arithmetic

What is the geometric reason that allows a curve to have

Isolated points are the degree d points "without a good reason
to exist" (mysterious)

The presence of isolated points high in the tower can be

What are the isolated points on modular curves?

Storyboard

(For a colloquium)
Faltings's theorem: example of geometry controls arithmetic

What is the geometric reason that allows a curve to have

Isolated points are the degree d points "without a good reason
to exist" (mysterious)

The presence of isolated points high in the tower can be detected low in the tower.

What are the isolated points on modular curves?

Storyboard

(For a colloquium)

Isolated points are the degree d points "without a good reason to exist" (mysterious)

The presence of isolated points high in the tower can be detected low in the tower.

What are the isolated points on modular curves?

Storyboard

(For a colloquium)

What is the geometric reason that allows a curve to have

Isolated points are the degree d points "without a good reason to exist" (mysterious)

What are modular curves and why do we care? infinitely many degree d points? i.e., what is the analog of Faltings

The presence of isolated points high in the tower can be detected low in the tower.

What are the isolated points on modular curves?

Storyboard

(For a colloquium)

Pythagorean triples and

 congruent number problem: Examples of curves with ∞ ptsWhat is the geometric reason that allows a curve to have

Isolated points are the degree d points "without a good reason
to exist" (mysterious)

What are modular curves and why do we care? infinitely many degree d points? i.e., what is the analog of Faltings

The presence of isolated points high in the tower can be detected low in the tower.

Pythagorean triples and congruent number problem: Examples of curves with ∞ pts

Is there a right triangle with every side length rational?

Fix a positive integer n. Is there a right triangle with every side length rational and with area n ?

What is the geometric reason that allows a curve to have infinitely many degree d points? i.e., what is the analog of Faltings

What is the geometric reason that allows a curve to have infinitely many degree d points? i.e., what is the analog of Faltings

> Are maps to \mathbb{P}^{1} the only way we get infinitely many degree d points?

Isolated points are the degree d points "without a good reason
to exist" (mysterious)

Parametrized vs. Isolated

Parametrized points are "better understood". They cast shadows that can be detected by geometric techniques.

Isolated points

- There are only finitely many of them.
- Guess: "Most" curves don't have any.

What are the isolated points on modular curves?

What are the isolated points on modular curves?

How do we study curves?

In their category!

Some curves to rule them all!
Moduli spaces

The presence of isolated points high in the tower can be detected low in the tower.

The presence of isolated points high in the tower can be detected low in the tower.

Theorem (BELOV): Non-CM isolated points given by ECs over \mathbb{Q} can be detected below

Storyboard, Example 2
(For a colloquium)

Quadratic reciprocity says that p-adic info. for all primes encodes some positivity info.; surprising!

The study of rational points is HARD

QR means that the Sun-Tzu remainder theorem fails for infinitely many primes.

The reciprocity (Brauer-Manin) obstruction has a geometric interpretation on quartic del Pezzos

Storyboard, Example 2

(For a colloquium)

Quadratic reciprocity says that p-adic info. for all primes

QR means that the Sun-Tzu remainder theorem fails for infinitely many primes. surprising!

The reciprocity (Brauer-Manin) obstruction has a geometric interpretation on quartic del Pezzos

The study of rational points is HARD

The study of rational points is HARD

MOTIVATING EXAMPLE

Does there exist an n-dimensional box such that the distance between any two vertices is rational?
$n=2:$
YES! Pythagorean triples

The study of rational points is HARD

MOTIVATING EXAMPLE

Does there exist an n-dimensional box such that the distance between any two vertices is rational?
$n=2:$
YES! Pythagorean triples

MOTIVATING EXAMPLE

Does there exist an n-dimensional box such that the distance between any two vertices is rational?
$n=3:$

$$
\begin{aligned}
\exists ? a, b, c, p, q, r, s & \in \boldsymbol{Q} \text { s.t. } \\
a^{2}+b^{2} & =p^{2} \\
b^{2}+c^{2} & =q^{2} \\
c^{2}+a^{2} & =r^{2} \\
p^{2}+q^{2}+r^{2} & =s^{2} \\
a b c & \neq 0
\end{aligned}
$$

No one knows!

Quadratic reciprocity says that

 p-adic info. for all primes encodes some positivity info.; surprising!
QUADRATIC RECIPROCITY

An alternate formulation

Fix $a, b \in \mathbf{Q}^{x}$ and consider $C_{a, b}: a x^{2}+b y^{2}=z^{2}$.
Then

$$
\#\left\{p \leq \infty: C_{a, b}\left(\mathbf{Q}_{p}\right)=\varnothing\right\}
$$

is even!

QR means that the Sun-Tzu

 remainder theorem fails for infinitely many primes.
QUADRATIC RECIPROCITY

An application

$N\left(\left(x_{p}\right)\right)=$
$\#\left\{p \leq \infty: \boldsymbol{e}_{x_{e}}\left(\mathbf{Q}_{p}\right)=\varnothing\right\}$

$\left\{\left(x_{p}\right) \in X(\mathbf{A}): N\left(\left(x_{p}\right)\right)\right.$ even $\}$
$\cap \leftarrow$ Can be
strict!
$X(\mathbf{A})$

The reciprocity (Brauer-Manin) obstruction has a geometric interpretation on quartic del

Pezzos

THEOREM (Várilly-Alvarado,V.)

2 quadratic eqns in 5 vars, or \mathbf{P}^{2} blown up at 5 general points
Let X be a del Pezzo surface of degree 4 .

Then

$$
X(\mathbf{A}) \text { rec }=\varnothing
$$

§
there exists a surjective map $f: X \cdots \rightarrow \mathbf{P}^{1}, x \rightarrow L(x) / L^{\prime}(x)$
with at most 2 geometrically reducible fibers

$$
\text { such that } \forall t \in \mathbf{P}^{\prime}(\mathbf{Q}) \quad X_{\mathrm{t}}(\mathbf{A})=\varnothing \text {. }
$$

