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What do you want the audience to
remember about your theorem (or talk)?

In this paper, we study sporadic points and, more generally, isolated* points of arbitrary
degree, focusing particularly on such points corresponding to non-CM elliptic curves. We
prove that non-CM non-cuspidal sporadic, respectively isolated, points on X;(n) map to
sporadic, respectively isolated, points on X;(d), for d some bounded divisor of n.

Theorem 1.1. Fix a non-CM elliptic curve E over k, and let m be an integer divisible
by 2,3 and all primes £ where the £-adic Galois representation of E 1s not surjective. Let
M = M(E,m) be the level of the m-adic Galois representation of E and let f denote the
natural map X1(n) — Xi(ged(n, M)). If x € Xi(n) is sporadic, respectively isolated, with
j(z) = 7(F), then f(x) € X1(ged(n, M)) is sporadic, respectively isolated.
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Pythagorean triples and

congruent number problem:
Examples of curves with oo pts

[s there a right triangle with
every side length rational?

C
A b Fix a positive integer n.

a Is there a right triangle with
every side length rational

and with area n?
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[solated points are the degree d

points “without a good reason
to exist” (mysterious)

Parametrized vs. Isolated

Parametrized points are “better understood”. They cast
shadows that can be detected by geometric techniques.

Isolated points ‘@[
» There are only finitely many of them. @,

* Guess: “Most” curves don’t have any.
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What are the isolated points

on modular curves?

How do we study curves?
In their category!

curves to rule them all!

Moduli spaces
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The presence of isolated points

high in the tower can be
detected low in the tower.

Theorem (BELOV): Non-CM isolated points
given by ECs over QQ can be detected below

X;(138)
N
\/ X;09)
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interpretation on quartic del
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The study of rational pointsis

HARD

MOTIVATING EXAMPLE

Does there exist an n-dimensional box such that the
distance between any two vertices Is rational?

=0 YES! Pythagorean triples

MOTIVATING EXAMPLE

Does there exist an n-dimensional box such that the
distance between any two vertices Is rational?

n=3: d7a,bcpqgrs eQise
a2+ b2 = p?
b2 + 2 = g2
2+ qg2=p2
b2 + g2 + 12 = s2
.......................................... abc = 0}
.. ¢

5 No one knows!



QQuadratic reciprocity says that
p-adic info. for all primes

encodes some positivity info.;
surprising!

QUADRATIC RECIPROCITY

An alternate formulation

Then
- { p<oo : Can(Qp) = @ }

S even!



(JR means that the Sun-Tzu

remainder theorem fails for
infinitely many primes.

QUADRATIC RECIPROCITY

An application

€ D Cx
=5 | X(Q)
X 3 X (e QR
{(xp) € X(A) : N((xp)) even}
N(())= i
#{p<eo : 6.(Qp) = @} strict!

X(A)



The reciprocity (Brauer-Manin)
obstruction has a geometric

interpretation on quartic del
Pezzos

THEOREM (Virilly-Alvarado, V.)

2 quadratic egns In 5 vars, or
P2 blown up at 5 general points

Let X be a del Pezzo surface of degree 4.

Then X(A)e = @

there exists a surjective map f: X P!, xu1x)/L'(x)

with at most 2 geometrically reducible fibers

suchthat vte PI(Q) X«(A) = @.






