WHITTAKER MODELS, NILPOTENT ORBITS AND
THE ASYMPTOTICS OF HARISH-CHANDRA MODULES

Davip H. CoLLINGwooD'

ABsTRACT. We study the existence of Whittaker models for Harish-Chandra mod-
ules. In a real rank two setting, we prove Matumoto’s conjecture, establishing the
equivalence of a nilpotent orbit condition, the existence of a Whittaker model and an
asymptotic condition; the equivalence of these three conditions fails in higher rank.

1. Introduction.

One of the most important theorems in the representation theory of a semisimple
Lie group is the Subrepresentation Theorem: Every irreducible admissible repre-
sentation can be realized as an invariant subspace of some principal series rep-
resentation. Using the theory of matrix coefficient asymptotics, one can give an
elegant account that such embeddings must exist, but a complete determination of
all embeddings is still mysterious and unknown. For certain problems, knowing all
possible embeddings is not important. For example, in order to classify the irre-
ducible admissible representations (i.e. Langlands Classification), the embeddings
one must understand are easily determined; in part, this is due to the fact that
these embeddings are “maximal” among the set of all such embeddings. However,
when studying embeddings into more general types of induced modules (e.g. the
existence of Whittaker models), the non-maximal embeddings into principal series
representations are of crucial importance. In this article, we locate embeddings
of an opposite character from the maximal embeddings of Langlands classification;
what one might refer to as “minimal embeddings”. These are the most difficult em-
beddings to understand and, in general, there is no known procedure to compute
them.

Our motivation is a conjecture of H. Matumoto [26] and his subsequent work
[27], [28]. Simply put, the conjecture links three a priori different notions: the
singularity theory of irreducible Harish-Chandra modules (as encoded in the asso-
ciated variety of the annihilator), the theory of matrix coefficient asymptotics (as
encoded by the Jacquet module), and the existence of embeddings into particular
induced representations (referred to as Whittaker models). From one perspective,
the conjecture implies the existence of very special “minimal embeddings” of rep-
resentations into principal series representations; these minimal embeddings, when
combined with prior work of Matumoto and Goodman-Wallach, yield Whittaker
models. So, our ability to exhibit the right kind of minimal embeddings into prin-
cipal series amounts to an existence theorem for Whittaker models; this is perhaps
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the most important consequence of this paper. However, in another light, one can
view our results as an attempt to revisit and reinterpret the authors joint program
with L. Casian in [8]-[10]. Whereas, the former program focused on the g-structure
of Jacquet modules, the ideas in this paper advance the philosophy of describing
“nice submodules” of Jacquet modules via a connection with the theory of nilpo-
tent orbits. From this vantage point, adopting the Hecke module framework of
[8]-[10], we are studying a delicate relationship between double cell Weyl group
representations in the Harish-Chandra module setting and right cell Weyl group
representations in a highest weight module setting. In the real rank two Hermitian
symmetric case, we will prove Matumoto’s conjecture is true. A detailed analysis
in SpgR shows the conjecture fails, in general, for higher real rank. In addition, we
will indicate the conjecture is “almost” true for the general real rank two case.

As usual, more precision requires much more notation and terminology. We fix G
to be a connected semisimple real matrix group and P,, = M,, A,, N, C G a mini-
mal parabolic subgroup compatible with an Iwasawa decomposition G = K A,;, Ny, .
We denote real Lie algebras by the notation g,,£,, etc., their complexifications
without the subscript “o”. Fix an Iwasawa Borel subalgebra b C p,,, which induces
a Bruhat ordering on the full Weyl group W; we choose the ordering so that e
(resp. w,) is the unique minimal (resp. maximal) element. We will be working
primarily in one of two types of categories of representations; each setting requires
some notation, all of which is standard and reviewed in §2. Specifically, we work
within the category of Harish-Chandra modules HC', with the same infinitesimal
character as a fixed finite dimensional representation F' of G. The irreducible and
standard modules in this category are parametrized by a finite partially ordered
set D; if § € D, then 7(d) and w(d) denote the irreducible and standard mod-
ules, respectively. In addition, if p is a parabolic subalgebra of g, then we recall
the category O'(g,p) of highest weight modules. In this case, the set of minimal
length right coset representatives W is a parameter set for the irreducible mod-
ules L (w) and the generalized Verma modules N,(w); our conventions are setup
so that Ny(e) = Ly(e); see §2 for more details.

It is important to recall the assignment V ~» Oy, which associates to each ir-
reducible (g)-module V' a nilpotent orbit Oy in g* (or g). This requires that
we begin with the annihilator Iy of V in $(g); any such ideal is called a primi-
tive ideal, by definition. The associated graded object grly is a graded ideal in
gril(g) = S(g). As such, it has an associated variety V(grly) of common zeros in
g*. Since Iy is graded (resp. Ggug-stable), this variety is a cone in g* (resp. is
Goq-stable). The ideal Iy meets the center 3(g) in an ideal of codimension one
and since the associated graded algebra of 3(g) identifies with the space S(g)%e¢ of
G 4q-invariant polynomials in S(g), it follows that grly meets gr3(g) in its augmen-
tation ideal, consisting of all G,4-invariant polynomials with zero constant term.
Making appropriate identifications, this implies that V(grly ) sits inside the nilcone

N ={X € g|ad(X) is nilpotent}.

From these remarks, using the finiteness theorem for nilpotent orbits [17,§3], we
have that V(grly) is a finite union of nilpotent orbits. But, even more is true [6]:
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for some nilpotent orbit Oy . These remarks describe the desired assignment
(1.1a) V ~ Oy.

We sometimes refer to Oy as the nilpotent orbit associated to V. Define the Gelfand-
Kirillov dimension of V' to be DimV = %dim@OV; every coadjoint orbit carries a
symplectic structure, which insures its dimension is even [17,81.4].

For our needs, one type of nilpotent orbit is of particular interest. The Richard-
son Orbit O, associated to the parabolic subalgebra p = m ® a ® n is the unique
nilpotent orbit in g which is dense in Ad(Gq4).1; this orbit is denoted O,. For more
details, see [17,87].

Given a Harish-Chandra module V in HC,, define J(V) = (f/)z_locanyﬁnite,
where ~ (resp. *) refers to the admissible (resp. full) dual of V. This assignment
defines a faithful exact covariant functor. We refer to J(V') as the Jacquet module
of V. The module J(V) lies in the category O'(g, pm), for all V e HC,.

To make sense of one of our introductory remarks, it is important to recall

(1.1b) HE (0, J(7(0))) = Hg(fim, 7(6)),

for all £ € N. Information about submodules of J(7(§)) will be encoded by high-
est weight vectors contributing to H°(n,,, J(7(d))); combined with Frobenius reci-
procity [20] we obtain embeddings of 7(d) into principal series representations.
We seek to link the existence of “nice submodules” of J(7(4)) with a condition
on the nilpotent orbit Ozs). To carefully define these “nice submodules”, define

(1.1c) WrE. ={w|weW?F L,(w) C socle(Ny(y)), for somey € W'},

which is referred to as the socular set for O'(g,p). This set is parametrized by
those Ly(w) with the property that DimL,(w)=dimn. For example, if p = b, then
WZE. = {e}. Roughly speaking, as p gets “bigger”, the size of the socular set
increases and the category O'(g,p) gets “smaller”. The importance of this set is
clearly spelled out in Irving’s work [21]. We now come to a central definition.

Definition 1.2. Let 7(d) be an irreducible Harish-Chandra module for G and p a
standard parabolic subalgebra of g. We say that w(5) has Property p if there exists
an irreducible highest weight module L satisfying two conditions:

(a) L lies in the socle of J(7w(6));

(b) L=Ly(w) for some w € W .
Any such L satisfying (a) and (b) is called a p-factor for J(7(0)).

Given p, an obvious problem is to classify the irreducible Harish-Chandra modules
having Property p. It is fairly easy to give a necessary condition; see §2 for a proof.

Lemma 1.3. If () has Property p, then Oz = O,.

Any hope of establishing the converse of (1.3) requires a more careful hypothesis
on p. (As will become clear in the sequel, without additional hypothesis the converse
of (1.3) fails.) A Whittaker datum WV is a triple (P, v, n), where P = M AN is the
Langlands decomposition of a parabolic subgroup of G and ¢ is a character (one-
dimensional representation) of n. We say that the Whittaker datum ¥ is admissible
if the Richardson orbit associated to p coincides with the orbit determined by ;
ie. Op = Ggq-9. It is not true that all parabolic subalgebras admit admissible
Whittaker datum. However, in §2 we establish the following well-known result; it
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Lemma 1.4. Let p be an even Jacobson-Morozov parabolic subalgebra of g arising
as the complexification of a real parabolic subalgebra of g,. Then p admits admissible
Whittaker datum.

If A(G) is the space of real analytic functions on G, then under the left ac-
tion we have the induced representation A(G; V), which is just the space of real
analytic sections of the line bundle over G/N determined by the one-dimensional
representation e~¥. Given an arbitrary 4(g)-module V, if there exists an injective
$(g)-homomorphism i : V — A(G; V), then we will say V has a WU-global Whittaker
model.

Using our terminology, the next result was established by Matumoto, generaliz-
ing earlier work of Goodman-Wallach.

Theorem 1.5 (Goodman-Wallach [19], Matumoto [26]). Fiz ¥ an admissi-
ble Whittaker datum for G and 7(8) an irreducible Harish-Chandra module. If (6)
has Property p, then 7(0) has a V-global Whittaker model.

This leads us to our main problem of interest: Give a necessary and sufficient
condition for the existence of a ¥-global Whittaker model for 7(J); or equivalently,
necessary and sufficient conditions for Property p.

Matumoto’s Conjecture 1.6. Letp be an even Jacobson-Morozov parabolic sub-
algebra defined over R and Oy the corresponding Richardson orbit. Fiz ¥ an admis-
sible Whittaker datum for G and assume that w(6) is an irreducible Harish-Chandra
module with Dimm(§) = dimn. The following are equivalent:

(a) (Singularity Condition) Oz sy = Op;

(b) (Whittaker Condition) 7(0) has a ¥-global Whittaker model;

(¢) (Asymptotic Condition) 7(d) has Property .

Matumoto has made significant progress on this conjecture. First, in [25] he
showed that (b) implies (a) and (1.5) is (c) implies (b). In case P = P,,, Cassel-
man’s Subrepresentation Theorem shows that the Singularity Condition implies the
Asymptotic Condition (and hence, the Whittaker Condition). In addition, when G
is a complex group, Matumoto [27] additionally established (a) implies (c), whence
proving the conjecture. The implication “(a) = (¢)” is sometimes referred to as
“The working hypothesis”. We can now state the first main result of this paper.

Theorem 1.7. If G is of Hermitian symmetric type and of real rank two, then
Matumoto’s conjecture is true.

In §9 we will give a detailed account of the validity of the working hypothesis in
the case of SpgR and offer counterexamples to (1.6).

Proposition 1.8. In the case of SpgR, the fundamental block of the finite dimen-
sional representation F is a union of 16 double cells. Matumoto’s conjecture is true

on all but two of these double cells. On these two double cells the conjecture fails
(i.e. the working hypothesis (a) implies (c) in (1.6) fails).

In this sense, without further restricting the groups in question or representations
of interest, (1.7) is the best general statement one can make. (We should point out
that H. Matumoto has informed the author of counterexamples in SpgR using very
different techniques.)

One might naturally ask to what extent one can remove the Hermitian symmetric
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two matrix groups, up to covering, amounts to 4 infinite families and 7 sporadic
cases:

Hermitian Symmetric Non-Hermitian Symmetric
SU(2,q) 5p(2;s)
S0:(2,2n—1)

S0(2,2n — 2)

SO*(10) Sl3R

SpsR SisH

Eg(—14) Eg(—26)
Ga2)

In §10, we address the non-Hermitian cases. We will see, in the case of SI3R,
Sl3H and Eg(_26), the only even Jacobson-Morozov parabolic defined over R is the
minimal parabolic p,, and in this setting (1.6) follows from Matumoto’s work in
[26]. The case of G'3(2) is non-trivial, but still we are able to prove (1.6). This leaves
the infinite family Sp(2, s). We have verified (1.6) in the case of s = 2, but a general
proof would require tools in the spirit of [5], which are currently unavailable. The
ideas and techniques of proof we use for (1.7) will build upon the material in the
Memoir [5], which was cast entirely in the Hermitian symmetric setting. Never
the less, if (1.6) holds for the cases s > 3, we would then be able to remove the
“Hermitian symmetric” assumption in (1.7).

Here is a brief outline of the content of each section of the paper. In §2, we
introduce the necessary notation and terminology, most of which is standard. Sec-
tion 3 will establish a useful reduction lemma; in effect, we are reduced to verifying
(1.7) for one irreducible representation from each relevant double cell. This result
is really a manifestation of the fact that the Jacquet functor “intertwines” double
cell and right cell Weyl group representations. Section 4 outlines the basic strategy
used in our proof of (1.7). The proof of the main result (1.7) is carried out in §5-8
and SpgR is studied in §9. Non-Hermitian real rank two groups are discussed in
§10.
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