DeMorgan's laws

$$\neg (P \land Q) \text{ is equivalent to } \neg P \lor \neg Q$$

$$\neg (P \lor Q)$$
 is equivalent to $\neg P \land \neg Q$

Commutative Laws

$$P \wedge Q$$
 is equivalent to $Q \wedge P$

$$P \vee Q$$
 is equivalent to $Q \vee P$

Associative Laws

$$P \wedge (Q \wedge R)$$
 is equivalent to $(P \wedge Q) \wedge R$

$$P \lor (Q \lor R)$$
 is equivalent to $(P \lor Q) \lor R$

Idempotent Laws

$$P \wedge P$$
 is equivalent to P

$$P \lor P$$
 is equivalent to P

Distributive Laws

$$P \wedge (Q \vee R)$$
 is equivalent to $(P \wedge Q) \vee (P \wedge R)$

$$P \lor (Q \land R)$$
 is equivalent to $(P \lor Q) \land (P \lor R)$

Absorption Laws

$$P \lor (P \land Q)$$
 is equivalent to P

$$P \wedge (P \vee Q)$$
 is equivalent to P

Double Negation Law

$$\neg \neg P$$
 is equivalent to P

Tautology Laws

$$P \wedge (a \text{ tautology}) \text{ is equivalent to } P$$

$$P \lor (a tautology)$$
 is a tautology

 \neg (a tautology) is a contradiction

Contradiction Laws

$$P \wedge (a \text{ contradiction}) \text{ is a contradiction}$$

$$P \lor$$
 (a contradiction) is equivalent to P

 \neg (a contradiction) is a tautology