MATH 300 D, Autumn 2014 Midterm II Study Problems

- 1. Prove that, for all $x \in \mathbb{Z}$, if $x^2 1$ is divisible by 8, then x is odd.
- 2. Prove or give a counterexample for each of the following statements.
 - (a) For all real numbers x and y, |x + y| = |x| + |y|.
 - (b) For all real numbers x and y, |xy| = |x||y|.
 - (c) There is a positive integer M such that, for every positive integer n > M, $\frac{1}{n} < 0.002$.
 - (d) For all integers a and b, if a|b and b|a, then a=b or a=-b.
 - (e) For all integers m and n, if n + m is odd, then $n \neq m$.
- 3. (a) Let x be an integer. Prove that if $\sqrt{2x}$ is an integer, then x is even.
 - (b) Is the converse of the statement you proved in (a) true? Prove it or give a counterexample.
 - (c) What can you conclude about $\sqrt{2x}$ if x is odd?
- 4. (a) Suppose B is a set and \mathcal{F} is a family of sets. If $\bigcup \mathcal{F} \subseteq B$ then $\mathcal{F} \subseteq \mathcal{P}(B)$.
 - (b) Suppose \mathcal{F} and \mathcal{G} are nonempty families of sets. Suppose every element of \mathcal{F} is a subset of every element of \mathcal{G} . Then $\bigcup \mathcal{F} \subseteq \bigcap \mathcal{G}$.
- 5. Define a relation T on the set \mathbb{R} of real numbers by

$$T = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x - y| < 1\}.$$

Is *T* an equivalence relation? (Justify your answer, of course.)

6. Define a relation R on \mathbb{Z} by

$$(x,y) \in R \Leftrightarrow x-y \text{ is even.}$$

Determine whether or not R is reflexive, symmetric and transitive. Is R an equivalence relation? If R is an equivalence relation, describe its equivalence classes.

7. Define a relation R on \mathbb{Z} by

$$(x,y) \in R \Leftrightarrow xy \equiv 0 \pmod{4}$$
.

Determine whether or not R is reflexive, symmetric and transitive. Is R an equivalence relation? If R is an equivalence relation, describe its equivalence classes.

8. Let *A* be the set of all real functions $f : \mathbb{R} \to \mathbb{R}$. Define a relation *R* on *A* by:

$$(f,g) \in R \Leftrightarrow \text{there exists a real constant } k \text{ such that } f(x) = g(x) + k \text{ for all } x \in \mathbb{R}.$$

Prove that R is an equivalence relation.

9. Define a relation R on \mathbb{R} by:

$$(x,y) \in R \Leftrightarrow |x-y| < 1$$

Prove that R is not an equivalence relation.

- 10. Let *A* and *B* be sets. Prove that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
- 11. Let $m \in \mathbb{Z}$ and suppose m > 1. Suppose $a, b, c \in \mathbb{Z}$.

Prove that if $a \equiv b \pmod{m}$, then $ac \equiv bc \pmod{m}$.

12. Prove that if n is an integer, then $n^2 \equiv 0, 1, \text{ or } 4 \pmod{8}$.