1. Prove that, for all $x \in \mathbb{Z}$, if $x^{2}-1$ is divisible by 8 , then x is odd.
2. Prove or give a counterexample for each of the following statements.
(a) For all real numbers x and $y,|x+y|=|x|+|y|$.
(b) For all real numbers x and $y,|x y|=|x||y|$.
(c) There is a positive integer M such that, for every positive integer $n>M, \frac{1}{n}<0.002$.
(d) For all integers a and b, if $a \mid b$ and $b \mid a$, then $a=b$ or $a=-b$.
(e) For all integers m and n, if $n+m$ is odd, then $n \neq m$.
3. (a) Let x be an integer. Prove that if $\sqrt{2 x}$ is an integer, then x is even.
(b) Is the converse of the statement you proved in (a) true? Prove it or give a counterexample.
(c) What can you conclude about $\sqrt{2 x}$ if x is odd?
4. (a) Suppose B is a set and \mathcal{F} is a family of sets. If $\bigcup \mathcal{F} \subseteq B$ then $\mathcal{F} \subseteq \mathcal{P}(B)$.
(b) Suppose \mathcal{F} and \mathcal{G} are nonempty families of sets. Suppose every element of \mathcal{F} is a subset of every element of \mathcal{G}. Then $\bigcup \mathcal{F} \subseteq \bigcap \mathcal{G}$.
5. Define a relation T on the set \mathbb{R} of real numbers by

$$
T=\{(x, y) \in \mathbb{R} \times \mathbb{R}:|x-y|<1\}
$$

Is T an equivalence relation? (Justify your answer, of course.)
6. Define a relation R on \mathbb{Z} by

$$
(x, y) \in R \Leftrightarrow x-y \text { is even. }
$$

Determine whether or not R is reflexive, symmetric and transitive. Is R an equivalence relation? If R is an equivalence relation, describe its equivalence classes.
7. Define a relation R on \mathbb{Z} by

$$
(x, y) \in R \Leftrightarrow x y \equiv 0 \quad(\bmod 4)
$$

Determine whether or not R is reflexive, symmetric and transitive. Is R an equivalence relation? If R is an equivalence relation, describe its equivalence classes.
8. Let A be the set of all real functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Define a relation R on A by:

$$
(f, g) \in R \Leftrightarrow \text { there exists a real constant } k \text { such that } f(x)=g(x)+k \text { for all } x \in \mathbb{R} .
$$

Prove that R is an equivalence relation.
9. Define a relation R on \mathbb{R} by:

$$
(x, y) \in R \Leftrightarrow|x-y|<1
$$

Prove that R is not an equivalence relation.
10. Let A and B be sets. Prove that $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.
11. Let $m \in \mathbb{Z}$ and suppose $m>1$. Suppose $a, b, c \in \mathbb{Z}$.

Prove that if $a \equiv b(\bmod m)$, then $a c \equiv b c(\bmod m)$.
12. Prove that if n is an integer, then $n^{2} \equiv 0,1$, or $4(\bmod 8)$.

