Below are some extra examples for Math 300. These examples are to augment the lectures and help you do some of the assigned homework problems.

1. To show $(P \wedge R) \vee(\neg R \wedge(P \vee Q))$ is equivalent to $P \vee(\neg R \wedge Q)$:

$$
\begin{array}{rr}
(P \wedge R) \vee(\neg R \wedge(P \vee Q)) & \\
\text { is equivalent to } & \\
(P \wedge R) \vee(\neg R \wedge P) \vee(\neg R \wedge Q) & \text { (distributive and associative laws) } \\
\text { is equivalent to } & \\
((P \wedge R) \vee \neg R) \wedge((P \wedge R) \vee P)) \vee(\neg R \wedge Q) & \text { (distributive law) } \\
\text { is equivalent to } & \\
(((P \wedge R) \vee \neg R) \wedge P) \vee(\neg R \wedge Q) & \text { (absorbtion) } \\
\text { is equivalent to } & \\
((\neg R \vee P) \wedge(\neg R \vee R) \wedge P) \vee(\neg R \wedge Q) & \text { (distributive law) } \\
\text { is equivalent to } & \\
P \vee(\neg R \wedge Q) & \text { (absorbtion and tautology) }
\end{array}
$$

2. Enumeration of all logical connective possibilities.

	$\begin{array}{ll}P & Q \\ \mathrm{~F} & \mathrm{~F}\end{array}$	$\begin{array}{ll}P & Q \\ \mathrm{~F} & \mathrm{~T}\end{array}$	$\begin{array}{ll}P & Q \\ \mathrm{~T} & \mathrm{~F}\end{array}$	$\begin{array}{ll}P & Q \\ \mathrm{~T} & \mathrm{~T}\end{array}$
contradiction	F	F	F	F
$P \wedge Q$	F	F	F	T
$P \wedge \neg Q$	F	F	T	F
P	F	F	T	T
$\neg P \wedge Q$	F	T	F	F
Q	F	T	F	T
$P \oplus Q$	F	T	T	F
$P \vee Q$	F	T	T	T
$\neg(P \vee Q)$	T	F	F	F
$P \leftrightarrow Q, \neg(P \oplus Q)$	T	F	F	T
$\neg Q$	T	F	T	F
$Q \rightarrow P, P \vee \neg Q$	T	F	T	T
$\neg P$	T	T	F	F
$P \rightarrow Q, \neg P \vee Q$	T	T	F	T
$\neg(P \wedge Q)$	T	T	T	F
tautology	T	T	T	T

3. Suppose we wish to show that $\exists x(P(x) \rightarrow Q(x))$ is equivalent to $\forall x P(x) \rightarrow \exists x Q(x)$.

By the conditional laws (given on page 47 of Velleman),

$$
\exists x(P(x) \rightarrow Q(x))
$$

is equivalent to

$$
\begin{equation*}
\exists x(\neg P(x) \vee Q(x)) \tag{1}
\end{equation*}
$$

Now, any statement $\exists x(R(x) \vee S(x))$ means that there exists an x such that $R(x)$ or $S(x)$ is true. That is equivalent to saying that there exists an x such that $R(x)$ is true, or there exists an x such that $S(x)$ is true. That is,

$$
\exists x(R(x) \vee S(x)) \text { is equivalent to } \exists x R(x) \vee \exists x S(x)
$$

Thus, expression (1) is equivalent to

$$
\exists x \neg P(x) \vee \exists x Q(x)
$$

and this is equivalent, by our quantifier negation laws, to

$$
\neg \forall x P(x) \vee \exists x Q(x)
$$

and this is equivalent to

$$
\forall x P(x) \rightarrow \exists x Q(x)
$$

by our conditional laws.
Along these same lines, note that

$$
\forall x(R(x) \wedge S(x))
$$

says that for all $x, R(x)$ and $S(x)$ are true. This is equivalent to saying that for all $x R(x)$ is true and for all $\mathrm{x} \mathrm{S}(\mathrm{x})$ is true (the latter just takes longer to say!). Hence, $\forall x(R(x) \wedge S(x))$ is equivalent to

$$
\forall x R(x) \wedge \forall x S(x)
$$

4. Why can we prove by cases?

Suppose we want to show $A \rightarrow S$.
Suppose we know B or C is true (e.g., for an integer n, we might set $B=" n$ is even" and $C=" n$ is odd").

Then we use:

$$
\begin{gathered}
\quad((A \wedge B) \rightarrow S) \wedge((A \wedge C) \rightarrow S) \\
\Leftrightarrow(\neg(A \wedge B) \vee S) \wedge(\neg(A \wedge C) \vee S) \\
\Leftrightarrow(\neg A \vee \neg B \vee S) \wedge(\neg A \vee \neg C \vee S) \\
\Leftrightarrow((\neg A \vee \neg B) \wedge(\neg A \vee \neg C)) \vee S \\
\Leftrightarrow(\neg A \vee(\neg B \wedge \neg C)) \vee S \\
\Leftrightarrow \neg A \vee S \\
\Leftrightarrow A \rightarrow S .
\end{gathered}
$$

Note we use the fact that $\neg B \wedge \neg C$ is false here.
5. An example of a uniqueness argument.

Theorem: Let S be a set. For every $A \in \mathcal{P}(S)$, there is a unique $B \in \mathcal{P}(S)$ such that for every $C \in \mathcal{P}(S), C \backslash A=C \cap B$.

Proof. Let S be a set. Let $A \in \mathcal{P}(S)$. Let $B=S \backslash A$. Then, let $C \in \mathcal{P}(S)$.
Suppose $x \in C \backslash A$. So, $x \in C$ and $x \notin A$, so $x \in B$.
Hence, $x \in B \cap C$. Thus, $C \backslash A \subseteq C \cap B$.
Suppose $x \in C \cap B$. Then $x \in C$ and $x \in B$, so $x \notin A$.
Hence, $x \in C \backslash A$. Thus, $C \cap B \subseteq C \backslash A$.
Thus, $C \cap B=C \backslash A$.
Thus there exists a set with the required property, namely $B=S \backslash A$.
To show uniqueness, suppose a set D in $\mathcal{P}(S)$ also has the required property.
Then for all $C \in \mathcal{P}(S), C \cap D=C \backslash A$.
Since for all $C \in \mathcal{P}(S), C \cap B=C \backslash A$, we have that for all $C \in \mathcal{P}(S)$,

$$
C \cap B=C \cap D
$$

In particular, if we let $\mathrm{C}=\mathrm{B}$, we have $B \cap B=B \cap D$, i.e., $B=B \cap D$. This shows that $B \subseteq D$, since if $x \in B, x$ is also in D.
On the other hand, if we let $\mathrm{C}=\mathrm{D}$, we have $D \cap D=D \cap B$, i.e., $D=D \cap B$. This shows that $D \subseteq B$, since if $x \in D, x$ is also in B.
Hence, $D=B$. And so the choice of B is unique.
6. A surprising bijection.

Let's consider the intervals of real numbers $A=(0,1]$ and $B=(0,1)$. Since both A and B contain an infinite number of elements, and B is simply A with one element (1) removed, it would be surprising if A and B were not equinumerous. However, if we try to find a bijection from one set to the other using combinations of our standard functions (e.g. trig functions, rational functions, etc.), we find that a bijection eludes us.
It turns out that it is possible, but it requires a surprising bit of cleverness. First, consider this function from A to B :

$$
f(x)= \begin{cases}1 / 2 & \text { if } x=1 \\ x & \text { if } x \neq 1\end{cases}
$$

Notice that this almost works. It maps the set $(0,1]$ onto the set $(0,1)$, but it is not one-to-one: $f(1)=f(1 / 2)$.
To fix this, we might try sending $1 / 2$ to something else:

$$
g(x)= \begin{cases}1 / 3 & \text { if } x=1 / 2 \\ 1 / 2 & \text { if } x=1 \\ x & \text { if } x \neq 1 \text { and } x \neq 1 / 2\end{cases}
$$

Again, g maps the set $(0,1]$ onto $(0,1)$ and now $f(1) \neq f(1 / 2)$, but now $f(1 / 2)=f(1 / 3)$ so it is again not one-to-one.
One more try: let's send $1 / 3$ to something else:

$$
h(x)= \begin{cases}1 / 4 & \text { if } x=1 / 3 \\ 1 / 3 & \text { if } x=1 / 2 \\ 1 / 2 & \text { if } x=1 \\ x & \text { if } x \neq 1, x \neq 1 / 2, \text { and } x \neq 1 / 3\end{cases}
$$

This function maps the set $(0,1]$ onto $(0,1)$ and $h(1) \neq h(1 / 2)$ and $h(1 / 2) \neq h(1 / 3)$, but now $h(1 / 3)=h(1 / 4)$, so h is not one-to-one.
Although this doesn't seem to be working, if we extend this strategy forever, we get a function that does work.

Let $k: A \rightarrow B$ be defined like this:

$$
k(x)= \begin{cases}\frac{1}{n+1} & \text { if } x=1 / n \text { for some } n \in \mathbb{Z}_{>0} \\ x & \text { if } x \neq 1 / n \text { for all } n \in \mathbb{Z}_{>0}\end{cases}
$$

So we have $k(1)=1 / 2, k(1 / 2)=1 / 3, k(1 / 3)=1 / 4, k(1 / 4)=1 / 5$, etc. We are basically pushing our problem down the sequence of $1 / n$, and since this sequence is infinite, it becomes a non-problem. It is not too hard to show that our k function is a bijection from A to B, and this shows that A and B are equinumerous.

