Homework 8 - Math 300D - Winter 2014 - Dr. Matthew Conroy

- 1. Find the smallest $k \in \mathbb{Z}$ such that $n! > n^4$ for all $n \ge k$. Prove the result using induction.
- 2. Use induction to prove that

$$13 \mid 3^{6m+3} + 4^{6m+3}$$

for all $m \in \mathbb{Z}_{\geq 0}$.

- 3. Let *n* be a positive odd integer. Use induction to prove that the sum of all positive odd integers less than or equal to *n* is $\left(\frac{n+1}{2}\right)^2$.
- 4. Let *A* be a finite set. Prove that if $f : A \to A$ is injective, then *f* is bijective.
- 5. Suppose *A* is an infinite set and *B* is a finite subset of *A*. Prove that $A \setminus B$ is infinite.
- 6. Prove that, if $A \sim B$, then $\mathcal{P}(A) \sim \mathcal{P}(B)$.