Homework 2 - Math 301 A - Spring 2014 - Dr. Matthew Conroy

1. Let n be a positive integer, and p a prime. Define $\operatorname{ord}_{p} n$ to be the value of k such that $p^{k} \| n$. Prove the following properties of ord:
(a) $\operatorname{ord}_{p} a b=\operatorname{ord}_{p} a+\operatorname{ord}_{p} b$
(b) $\operatorname{ord}_{p}(a+b) \geq \min \left\{\operatorname{ord}_{p} a, \operatorname{ord}_{p} b\right\}$
2. (Note: you may want to prove, and use, number 6 first) Let a and b be positive integers. Suppose $\left\{p_{1}, p_{2}, \ldots p_{k}\right\}$ is a set of primes and that

$$
a=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}
$$

and

$$
b=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{k}^{\alpha_{k}}
$$

Show that

$$
\operatorname{gcd}(a, b)=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{k}^{\min \left\{\alpha_{k}, \beta_{k}\right\}}
$$

3. Show that, for $n>1, \sqrt[n]{n}$ is irrational.
4. How many zeros does 167890 ! end in, when written in decimal notation?
5. How many zeros does 66600 ! end in when it is written in base 8 ? Base 160 ? Base 224 ? (66600 is base 10 throughout). Explain the general method for finding the number of zeros at the end of $n!$ for each of these bases.
6. Suppose n has prime factorization $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$. Prove that a positive integer $d \mid n$ iff $d=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{r}^{b_{r}}$ with $0 \leq b_{i} \leq a_{i}$ for $1 \leq i \leq r$.
