Homework 3 - Math 301 A - Spring 2014 - Dr. Matthew Conroy
You should read Harold, sections 3.1, 3.2 and 3.3.

1. Show that if $n \equiv 7(\bmod 8)$, then n cannot be expressed as the sum of three squares.
2. Find all solutions to $x^{2} \equiv x(\bmod 100)$ with as little computation as you can. Do the same with $x^{2} \equiv x(\bmod 1000)$ similarly.
3. Find the last (i.e., right-most) two digits of 17^{43211} using modular arithmetic.
4. Prove that if a prime is the sum of the squares of three different primes, then one of the squared primes is 3 . (For example, $419=3^{2}+7^{2}+19^{2}$ is prime. The first bunch of such primes are listed as sequence A182479 at the Online Encyclopedia of Integer Sequences, oeis.org. Hint: Use congruences modulo 3.)
5. Prove that, for all $n \geq 2,12 \mid 16^{n}+10^{n}-8$.
6. (You might want to do this problem first.) Let $a, b, c, m \in \mathbb{Z}, m>0$. Prove that:

- $a \equiv a(\bmod m)$
- If $a \equiv b(\bmod m)$, then $b \equiv a(\bmod m)$.
- If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$.

7. Solve the following congruences.
(a) $4 x \equiv 7(\bmod 20)$
(b) $5 x \equiv 6(\bmod 1234)$
(c) $124 x \equiv 7(\bmod 321)$
(d) $20 x \equiv 35(\bmod 855)$
(e) $76 x \equiv 76(\bmod 100)$
