Homework 3 - Math 301 A - Spring 2014 - Dr. Matthew Conroy You should read Harold, sections 3.1, 3.2 and 3.3.

- 1. Show that if $n \equiv 7 \pmod{8}$, then n cannot be expressed as the sum of three squares.
- 2. Find all solutions to $x^2 \equiv x \pmod{100}$ with as little computation as you can. Do the same with $x^2 \equiv x \pmod{1000}$ similarly.
- 3. Find the last (i.e., right-most) two digits of 17^{43211} using modular arithmetic.
- 4. Prove that if a prime is the sum of the squares of three different primes, then one of the squared primes is 3. (For example, $419 = 3^2 + 7^2 + 19^2$ is prime. The first bunch of such primes are listed as sequence A182479 at the Online Encyclopedia of Integer Sequences, oeis.org. Hint: Use congruences modulo 3.)
- 5. Prove that, for all $n \ge 2$, $12|16^n + 10^n 8$.
- 6. (You might want to do this problem first.) Let $a, b, c, m \in \mathbb{Z}, m > 0$. Prove that:
 - $a \equiv a \pmod{m}$
 - If $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$.
 - If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.
- 7. Solve the following congruences.
 - (a) $4x \equiv 7 \pmod{20}$
 - (b) $5x \equiv 6 \pmod{1234}$
 - (c) $124x \equiv 7 \pmod{321}$
 - (d) $20x \equiv 35 \pmod{855}$
 - (e) $76x \equiv 76 \pmod{100}$