
Homework 4 - Math 301 A - Spring 2014 - Dr. Matthew Conroy
You should read Harold, section 3.3.

1. Prove that there are not arbitrarily long runs of consecutive square-free integers.

2. Let k ∈ Z, k > 0. Prove that a positive integer n is divisible by 2k if and only if the number
represented by the right-most k digits is divisible by 2k.

3. Prove that an integer n is divisible by 11 if and only if the sum of its even-place digits
is congruent to the sum of its odd-place digits modulo 11. (For example, 75849 is not
divisible by 11 since 9 + 8 + 7 ≡ 2 (mod 11) while 4 + 5 ≡ 9 (mod 11)).

4. (You might want to do problem 6 before you do this one.) A man has a large number of
doughnuts. He sorts them evenly into 7 piles. He then eats one doughnut and sorts the
rest evenly into 5 piles. He then eats two more doughnuts and sorts the rest evenly into
11 piles. He then eats one more doughnut and sorts the rest evenly 6 piles.

(a) What is the smallest number of doughnuts the man could have started with?

(b) If you also know that he started with at least one million doughnuts, what is the
smallest number he could have started with?

5. Show that every integer x satisfies at least one of the following congruences:

x ≡ 0 (mod 2), x ≡ 0 (mod 3), x ≡ 1 (mod 4), x ≡ 1 (mod 6), x ≡ 3 (mod 8), x ≡ 11 (mod 12)

6. Solve each of the following sets of congruences.

(a)

x ≡ 1 (mod 15)

x ≡ 2 (mod 14)

x ≡ 3 (mod 11)

(b)

x ≡ 5 (mod 7)

x ≡ 3 (mod 10)

x ≡ 1 (mod 19)

x ≡ 2 (mod 33)

(c)

x ≡ 1 (mod 10)

x ≡ 1 (mod 15)

x ≡ 6 (mod 35)

(Note: the moduli are not relatively prime in this last one, so be careful how you
proceed.)


