Homework 6 - Math 301 A - Spring 2014 - Dr. Matthew Conroy
You should read Harold, sections 5.3, 5.4.

1. Let (a, b, c) be a primitive Pythagorean triple. Prove that exactly one of a and b is divisible by 3 .
2. Let (a, b, c) be a primitive Pythagorean triple. Prove that exactly one of a, b, and c is divisible by 5. Conclude, using this, the previous problem, and a result proved in class, that

$$
60 \mid a b c .
$$

3. Prove that there are infinitely many Pythagorean triples (a, b, c) with $a<b<c$ and

$$
|c-b|=1
$$

4. Prove that, for all odd $n \geq 3$, there is a Pythagorean triple (a, b, c) with $a=n$ or $b=n$.
5. Prove that, for all primes $p>5$, there is a Pythagorean triple (a, b, c) with $p \nmid a b c$ (i.e., p does not divide a, b or c).
