Homework 7 - Math 301 A - Spring 2014 - Dr. Matthew Conroy

1. Prove that $2 x^{2}+3 y^{2}=z^{2}$ has no solutions with $x, y, z \in \mathbb{Z}$ and $x y z \neq 0$.
2. Prove that $x^{2}+2 y^{2}=5 z^{2}$ has no solutions with $x, y, z \in \mathbb{Z}$ and $x y z \neq 0$.
3. Notice that, for example, $6=1+2+3,27=2+3+4+5+6+7,52=3+4+5+6+7+8+$ $9+10$, and $195=97+98$. What positive integers can be written as a sum of two or more consecutive positive integers? State and prove a theorem that answers this question.
4. The numbers in the sequence $0,1,1,3,5,11,21,43,85, \ldots$ defined by

$$
j_{0}=0, j_{1}=1, j_{n}=j_{n-1}+2 j_{n-2} \text { for } n>1
$$

are known as the Jacobsthal numbers (A001045). Assuming that $\lim _{n \rightarrow \infty} \frac{j_{n}}{j_{n-1}}$ exists, find the value of this limit.
5. The numbers in the sequence $0,1,2,5,12,29,70,169, \ldots$ defined by

$$
p_{0}=0, p_{1}=1, p_{n}=2 p_{n-1}+p_{n-2} \text { for } n>1
$$

are known as the Pell numbers (A000129). Assuming that $\lim _{n \rightarrow \infty} \frac{p_{n}}{p_{n-1}}$ exists, find the value of this limit.
6. Use a generating function to find the general term of the sequence defined by

$$
a_{0}=0, a_{n}=3 a_{n-1}+5 \text { for } n \geq 1 .
$$

