MATH 300 C - Spring 2015
Midterm 2 Practice Problems

1. Prove that, for all integers n, 3 does not divide n? —>5.
Let n be an integer.
By Euclid’s theorem, n = 3k + r for some integers k and r,and 0 < r < 3.
Thatis, r = 0,1, or 2.
Thenn?—5 = (3k+7)*—5 = 9k? +6kr+1r*—5 = 9k? +6kr +r> —6+1 = 3(3k* +2kr —2) +r2 + 1.
Let ¢ be the remainder when n? — 5 is divided by 3.
Then ¢ is equal to the remainder then 72 + 1 is divided by 3.
Ifr=0,then?+1=1=0-3+1,s0t=1.
Ifr=1then?+1=2=0-3+2,s0t=2.
Ifr=2thenr*+1=5=1-3+2,s0t=2.
Hence the remainder when n? — 5 is divided by 3 is 1 or 2 and not zero.
Thus 3 does not divide n? — 5. B

2. Define a relation R on Z by

(z,y) € R 4| 2% — o>

Is R an equivalence relation? Prove your answer.
Letxz € Z.
Then2? — 22 =0=4-0,s04 | 2? — 22

Hence, (z,z) € R, and so R is reflexive.

Suppose (z,y) € R.

Then 4 | 2% — 3.

That is, 2% — y? = 4k for some integer k.

Then y? — 2% = —4k = 4(—k) and since —k € Z, 4 | y* — z°.

Hence, (y, ) € R, and so R is symmetric.

Suppose (z,y) € Rand (y, z) € R.

Then 4 | z* — y?, so a? — y* = 4k for some integer k.

Also, 4 | y? — 22,80 y? — 2? = 4m for some integer m.
Hence, 22 — y? + y* — 22 = 2% — 22 = 4k + 4m = 4(k + m).
Since k 4+ m is an integer, 4 | 2? — 22, and so (z, 2) € R.

Thus, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation. H



3. Use induction to prove that

foralln € Zy.
Letn € Z>0.

—~ 1
Let P(n) be the statement “ M

(z+1) n+1 "

Base Case: Let n = 1.
Then

Thus, P(1) is true.
Induction Step: Suppose P(n) is true for some n = k > 0.
So P(k) is true. That is,
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Hence P(k + 1) is true.

Thus, P(k) implies P(k + 1), and P(1) is true, so, by induction, P(n) is true for
alln € Z>0..

4. Suppose A, B and C are sets. Suppose f : A — Band g: B — C.



(a) Prove that if f is onto and g is not one-to-one, then g o f is not one-to-one.

Suppose A, B and C are sets. Suppose f : A — Band g : B — C, f is onto and ¢ is not
one-to-one.

Since g is not one-to-one, there exist b; # by € B such that g(b;) = g(b2).

Since f is onto, there exist a; and ay such that f(a;) = b; and f(as) = bs.

Note that a; # as since by # bs.

Then g(f(a1)) = g(b1) = g(bs) = g(f(az)), so g o f is not one-to-one. W
(b) Prove that if f is not onto and g is one-to-one, then g o f is not onto.

Suppose A, B and C are sets. Suppose f : A = Band g : B — C, f is not onto and g is
one-to-one.

Since f is not onto, there is a b € B such that f(a) # b for all a € A.
Suppose g(f(a)) = g(b) for some a € A.

Then, since g is one-to-one, f(a) = b.

This is a contradiction: for all a € A, f(a) # b.

Thus, forall a € A, g(f(a)) # g(b).

Hence, g o f is not onto. B

5. Let A=R xR\ {(0,0)}.
Thus, A is the xy-plane without the origin.
Define a relation R on A by

((z1,y1), (x2,42)) € R < (x1,y1) and (x2, y2) lie on a line which passes through the origin.

Prove that R is an equivalence relation.

Is R reflexive?

Suppose P € A. Then P = (x4, ;) for some z1,y; € R.

Suppose z; = 0. Then P lies on the line + = 0 which passes through the origin.
Hence, (P, P) € R.

Suppose 1 # 0. Then P lies on the line y = %-z, which passes through the origin.
Hence, (P, P) € R.

Thus, in all cases, (P, P) € R, so R is reflexive.

Is R symmetric?

Suppose P = (z1,y1) € Aand ) = (22,92) € Aand (P, Q) € R.

Then P and @ lie on a line through the origin, and so ) and P lie on a line through the origin.
Hence, (Q), P) € R, and so R is symmetric.

Is R transitive?

Suppose P = (z1,y1) € Aand Q = (z2,y2) € Aand S = (23,y3) € Aand (P,Q) € R and
(@, 95) € R.

Suppose z; = 0.
Then P lies on the vertical line x = 0 through the origin and no other line through the origin.

Hence, @ lies on = = 0, and hence S lies on z = 0.



Thus, P and S lie on a line through the origin, and so (P, S) € R.

Suppose z; # 0.

Then P and @ lie on a line y = mx where m € R, and Q and R lie on a line y = nx where n € R.
Then y, = mxy = nxy so (m — n)zy = 0.

If 25 = 0, then yo = mzy = 0,50 Q = (0,0) € A, a contradiction since @) € A.

Hence 2, # 0,som —n =0, i.e., m = n.

Thus, P and @ lie on the line y = mz and @ and S lie on the line y = mx, so P and S both lie
on a line through the origin.

Hence, (P, S) inR and thus R is transitive.

Since R is reflexive, symmetric, and transitive, R is an equivalence relation. W

. Let S = R x Ry. Define a relation R C S x S by
(($17y1)7 (l’z»yz)) €cR& T1Y1 = TaYs.

Prove that R is an equivalence relation.
Suppose P = (z,y) € S x S.
Since zy = zy, ((z,y), (z,y) € R, i.e., (P,P) € R.

Hence, R is reflexive.

Suppose ((1,41), (v2,12)) € R.

Then z1y; = zoys.

Hence, zoys = 191, 50 ((2,92), (x1,41)) € R.
Thus, R is symmetric.

Suppose ((z1,41), (¥2,42)) € Rand ((22,y2), (v3,93)) € R.
Then x1y; = 22y, and xoys = 3y3.

Hence, z1y; = x3y3.

Thus, ((z1,91), (z3,93)) € R.

Hence, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation.ll

. Let F be a family of sets, and B be a set. Prove that if | JF C B, then F C P(B).
Let F be a family of sets, and B be a set.

Suppose | J F C B.

Letx € F.

Lety € x.

Theny € J F.

Hence, y € B.

Since y € v impliesy € B,z C B.

Hence, z € P(B).

Since x € F impliesz € P(B), F C P(B). R



8.
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Let F and G be families of sets. Prove that (NF) N (NG) = N(F U G).
Proof: Let F and G be families of sets.

Suppose z € NF NNG.

Then z € NF and z € NG.

Suppose M € F. Then z € M.

Suppose N € G. Thenz € N.

Suppose P € FUG. Then P € For P € G. Hence, z € P.

Thus, = is an element of every setin F UG, so z € N(F UG).
Hence, (NF) N (NG) C N(FUQG).

Now, suppose x € N(F U G).

Suppose M € FUG. Thenx € M.

Suppose N € F. Then N € FUG,andsoz € N.

Hence, z is in every set in F, and so x € NF.

Suppose P € G. Then P € FU(G,and so x € P.

Hence, z is in every set in G, and so z € NG.

Thus, x € (NF) N (NG).

Therefore N(FUG) C (NF) N (NG),and so (NF)N(NG) =N(FUG). R

Give an example of a function f : Z~o — Z~q such that f is one-to-one, but not onto (i.e., f is injective
but not surjective). Prove that f is one-to-one and not onto.

Note: There are many examples you could give. If you are using this exam
solution to study, I recommend creating a few, as different from each other as
possible.

One example is f(z) =z + 1.
We note that since z > 0, x + 1 > 1 and so there is no a such that f(a) = 1. So f is not onto.
Suppose f(z1) = f(z2). Then 2y + 1 = x5 + 1, and so 1 = x5. So f is one-to-one. W

Give an example of a function g : Z~o — Z~q such that g is onto, but not one-to-one (i.e., g is surjective,
but not injective). Prove that g is onto and not one-to-one.

Note: There are many examples you could give. If you are using this exam
solution to study, I recommend creating a few, as different from each other as
possible.

Here is one example. Let
(z) = x if z is odd,
RE = xz/2 if x is even.
Let a be a positive integer.

Suppose a is odd. Then g(a) = a.
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Suppose a is even. Then 2a € Z-( and g(2a) = a.
Thus, g is onto.

On the other hand, ¢(6) = ¢g(3) = 3, so g is not one-to-one. W

Use induction to prove that n! > n? for all integers n > 4.
Proof: Define P(n) to be the statement “n! > n?”.
Base case: Let n = 4. Then n! = 24 > 16 = n?, so P(4) is true.

Induction step: Suppose P(n) is true for some n = = > 4.

|
. xZ!
Then z! > 22,ie. = > 1.

22
Then

N (x_1+x41—1> <:%>

We note thatz — 14+ —5 >4 —1+0=3> 1, and so, since & > 1,

(x4 1)!

——>1
(x+1)2

ie., (z+1)! > z% Thus, P(z + 1) is true.

Thus, P(x) implies P(x + 1), and since P(4) is true, by induction P(n) is true for all integers
n>4.1

Let R be the relation defined on the real numbers, R, by

(x,y) € R < there exist positive integers n and m such that x™ = y™.

Prove that R is an equivalence relation.
Proof: Letx € R. Then 2! = 2!, and so (z,7) € R.

Hence, R is reflexive.

Suppose (z,y) € R. Then 2™ = y" for some integers m and n.
Then, y" = 2™, and so (y,x) € R.

Hence R is symmetric.

Suppose (z,y) € Rand (y, z) € R.
Then 2™ = y" and y" = 2° for positive integers m,n, r, and s.

Then 2™ = y™ and y™ = 2*", so "™ = 2°".
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Since rm and sn are positive integers, we conclude that (z, z) € R.

Hence, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation. B
Let A, Band C be sets. Let f : A — B,and g : B — C.

(a) Suppose go f: A — C'is one-to-one. Is f necessarily one-to-one? Prove your answer.
[ is necessarily one-to-one.
Proof: Suppose f is not one-to-one.
Then there exist a;,ay € A, a1 # ag, with f(a1) = f(az).
Then g(f(a1)) = g(f(az2)). Buta; # as, so g o f is not one-to-one. This is a contradiction.
Hence f is one-to-one. B
(b) Suppose go f : A — C is one-to-one. Is g necessarily one-to-one? Prove your answer.

g is not necessarily one-to-one.
Proof: We may defined A = {a}, B = {b1,b2}, and C = {c}. Then define f = {(a,b2)},
9= {(bh C)» (bQ’ C)}
Then go f = {(a,c)}, and g o f is one-to-one though g is not.
Alternatively, define A = Z-(, B =7, and C = Z.
Let f(z) = z and g(x) = |z|. Then (g o f)(z) = |z| is one-to-one from Z-, to Z, but g is not
one-to-one from Z to Z. &
Let S be a set.
Define a function f : P(S) — P(S) by f(A) =S\ Aforall A € P(S).
Prove that f is a bijection.
Proof: Suppose A; and A; € P(S) with f(A;) = f(As). Then
S\ A =85\ A,.
Suppose = € A; but x ¢ A;. Thenz € S (since A; C S),andz € S\ Ay, butz ¢ S\ A;. Thisis a
contradiction to the fact that S\ A; = S\ A,. Henceif x € A; thenx € Ay;i.e, A} C A,.

Suppose x € Ay butz ¢ A;. Then z € S (since A, C S),and z € S\ A;,butz ¢ S\ A,. Thisisa
contradiction to the fact that S\ Ay = S\ A;. Henceif x € Ay thenx € Ay;ie, Ay C A;.

Thus A; = A, so f is one-to-one.
Suppose B € P(S).

Let Z =5\ B.

Then

1(2) = S\ (S\ B)
={xeS:z¢(S\B)}
={xeS:~(xeS\B)}
={reS:~(xreSandz ¢ B)}
={xeS:x¢gSorz e B}
= {x € B}
= B.
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Thus f is onto.

Hence f is one-to-one and onto, i.e., it is a bijection. W
Let S be the set of all functions f : R = R. Define a relation R on S by
(f,g9) € R< 3JceR,c#0, suchthat f(z) = cg(z) forall x € R.

Prove that R is an equivalence relation.

Let f € S.

Since f(z) = (1)f(z) forallz € R, (f, f) € R.
Hence, R is reflexive.

Suppose (f,g) € R.
Then there exists a ¢ € R, ¢ # 0 such that f(z) = cg(z) for all x € R. Since ¢ # 0,

forallz € Rand £ #0,{ e R.
Thus (g, f) € R.

Hence, R is symmetric.

Suppose (f,g) € Rand (g,h) € R.

Then there exist non-zero ¢, d € R such that f(z) = cg(x) and g(z) = dh(z) for all z € R.

Hence, f(z) = cdh(x) for all x € R.
Since ¢ and d are non-zero, cd is non-zero, and cd € R, so (f, h) € R.

Thus, R is transitive, and so R is an equivalence relation. B

Let A and B be sets.

Let f and g be functions from A to B.

Prove that if f N g # &, then [\ g is not a function from A to B.

Proof: Suppose f Ng # @.

Suppose (a,b) € f N g (note that this is the unique pair in f with first element a).
Then (a,b) € f\ g.

Since f is a function, there is no element (z,y) € f \ g such that z = a.

Hence f \ g is not a function. &
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P(1) is true.
Suppose there exists a k > 0 such that P(k) is true.
Then

k+1 k

1 1 1
; 2i—1)(2i+1) z; 2i-D2i+D)  CE+r)-DeE+) D)
=3 kl:_ 1T 2k + 1)1( 2k +3) (by the induction hypothesis)
k 1
Tl @k )2k +3)
k(2k +3)+1
(2k +1)(2k + 3)
2k* + 3k + 1
(2k + 1)(2k + 3)
Rk D(k+1)
2k +1)(2k +3)
kE+1

2k +3

Hence P(k + 1) is true, so P(k) implies P(k + 1).
Hence, by induction, P(k) is true for all £ > 0. B



