
MATH 300 C - Spring 2015
Midterm 2 Practice Problems

1. Prove that, for all integers n, 3 does not divide n2 − 5.

Let n be an integer.

By Euclid’s theorem, n = 3k + r for some integers k and r, and 0 ≤ r < 3.

That is, r = 0, 1, or 2.

Then n2−5 = (3k+r)2−5 = 9k2+6kr+r2−5 = 9k2+6kr+r2−6+1 = 3(3k2+2kr−2)+r2+1.

Let t be the remainder when n2 − 5 is divided by 3.

Then t is equal to the remainder then r2 + 1 is divided by 3.

If r = 0, then r2 + 1 = 1 = 0 · 3 + 1, so t = 1.

If r = 1, then r2 + 1 = 2 = 0 · 3 + 2, so t = 2.

If r = 2, then r2 + 1 = 5 = 1 · 3 + 2, so t = 2.

Hence the remainder when n2 − 5 is divided by 3 is 1 or 2 and not zero.

Thus 3 does not divide n2 − 5. �

2. Define a relation R on Z by
(x, y) ∈ R ⇔ 4 | x2 − y2.

Is R an equivalence relation? Prove your answer.

Let x ∈ Z.

Then x2 − x2 = 0 = 4 · 0, so 4 | x2 − x2.

Hence, (x, x) ∈ R, and so R is reflexive.

Suppose (x, y) ∈ R.

Then 4 | x2 − y2.

That is, x2 − y2 = 4k for some integer k.

Then y2 − x2 = −4k = 4(−k) and since −k ∈ Z, 4 | y2 − x2.

Hence, (y, x) ∈ R, and so R is symmetric.

Suppose (x, y) ∈ R and (y, z) ∈ R.

Then 4 | x2 − y2, so x2 − y2 = 4k for some integer k.

Also, 4 | y2 − z2, so y2 − z2 = 4m for some integer m.

Hence, x2 − y2 + y2 − z2 = x2 − z2 = 4k + 4m = 4(k +m).

Since k +m is an integer, 4 | x2 − z2, and so (x, z) ∈ R.

Thus, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation. �



3. Use induction to prove that
n

∑

i=1

1

i(i+ 1)
=

n

n+ 1

for all n ∈ Z>0.

Let n ∈ Z>0.

Let P (n) be the statement “
n

∑

i=1

1

i(i+ 1)
=

n

n+ 1
”.

Base Case: Let n = 1.

Then
n

∑

i=1

1

i(i+ 1)
=

1

1(1 + 1)
=

1

2
=

1

1 + 1
=

n

n+ 1
.

Thus, P (1) is true.

Induction Step: Suppose P (n) is true for some n = k > 0.

So P (k) is true. That is,

k
∑

i=1

1

i(i+ 1)
=

k

k + 1

Then

k+1
∑

i=1

1

i(i+ 1)
=

k
∑

i=1

1

i(i+ 1)
+

1

(k + 1)(k + 2)

=
k

k + 1
+

1

(k + 1)(k + 2)

=
k(k + 2)

(k + 1)(k + 2)
+

1

(k + 1)(k + 2)

=
k(k + 2) + 1

(k + 1)(k + 2)

=
k2 + 2k + 1

(k + 1)(k + 2)

=
(k + 1)2

(k + 1)(k + 2))

=
k + 1

k + 2

Hence P (k + 1) is true.

Thus, P (k) implies P (k + 1), and P (1) is true, so, by induction, P (n) is true for
all n ∈ Z>0.�

4. Suppose A, B and C are sets. Suppose f : A → B and g : B → C.



(a) Prove that if f is onto and g is not one-to-one, then g ◦ f is not one-to-one.

Suppose A, B and C are sets. Suppose f : A → B and g : B → C, f is onto and g is not
one-to-one.

Since g is not one-to-one, there exist b1 6= b2 ∈ B such that g(b1) = g(b2).

Since f is onto, there exist a1 and a2 such that f(a1) = b1 and f(a2) = b2.

Note that a1 6= a2 since b1 6= b2.

Then g(f(a1)) = g(b1) = g(b2) = g(f(a2)), so g ◦ f is not one-to-one.�

(b) Prove that if f is not onto and g is one-to-one, then g ◦ f is not onto.

Suppose A, B and C are sets. Suppose f : A → B and g : B → C, f is not onto and g is
one-to-one.

Since f is not onto, there is a b ∈ B such that f(a) 6= b for all a ∈ A.

Suppose g(f(a)) = g(b) for some a ∈ A.

Then, since g is one-to-one, f(a) = b.

This is a contradiction: for all a ∈ A, f(a) 6= b.

Thus, for all a ∈ A, g(f(a)) 6= g(b).

Hence, g ◦ f is not onto. �

5. Let A = R× R \ {(0, 0)}.

Thus, A is the xy-plane without the origin.

Define a relation R on A by

((x1, y1), (x2, y2)) ∈ R ⇔ (x1, y1) and (x2, y2) lie on a line which passes through the origin.

Prove that R is an equivalence relation.

Is R reflexive?

Suppose P ∈ A. Then P = (x1, y1) for some x1, y1 ∈ R.

Suppose x1 = 0. Then P lies on the line x = 0 which passes through the origin.

Hence, (P, P ) ∈ R.

Suppose x1 6= 0. Then P lies on the line y = y1
x1

x, which passes through the origin.

Hence, (P, P ) ∈ R.

Thus, in all cases, (P, P ) ∈ R, so R is reflexive.

Is R symmetric?

Suppose P = (x1, y1) ∈ A and Q = (x2, y2) ∈ A and (P,Q) ∈ R.

Then P and Q lie on a line through the origin, and so Q and P lie on a line through the origin.

Hence, (Q,P ) ∈ R, and so R is symmetric.

Is R transitive?

Suppose P = (x1, y1) ∈ A and Q = (x2, y2) ∈ A and S = (x3, y3) ∈ A and (P,Q) ∈ R and
(Q,S) ∈ R.

Suppose x1 = 0.

Then P lies on the vertical line x = 0 through the origin and no other line through the origin.

Hence, Q lies on x = 0, and hence S lies on x = 0.



Thus, P and S lie on a line through the origin, and so (P, S) ∈ R.

Suppose x1 6= 0.

Then P and Q lie on a line y = mx where m ∈ R, and Q and R lie on a line y = nx where n ∈ R.

Then y2 = mx2 = nx2 so (m− n)x2 = 0.

If x2 = 0, then y2 = mx2 = 0, so Q = (0, 0) 6∈ A, a contradiction since Q ∈ A.

Hence x2 6= 0, so m− n = 0, i.e., m = n.

Thus, P and Q lie on the line y = mx and Q and S lie on the line y = mx, so P and S both lie
on a line through the origin.

Hence, (P, S) inR and thus R is transitive.

Since R is reflexive, symmetric, and transitive, R is an equivalence relation. �

6. Let S = R>0 × R>0. Define a relation R ⊆ S × S by

((x1, y1), (x2, y2)) ∈ R ⇔ x1y1 = x2y2.

Prove that R is an equivalence relation.

Suppose P = (x, y) ∈ S × S.

Since xy = xy, ((x, y), (x, y) ∈ R, i.e., (P, P ) ∈ R.

Hence, R is reflexive.

Suppose ((x1, y1), (x2, y2)) ∈ R.

Then x1y1 = x2y2.

Hence, x2y2 = x1y1, so ((x2, y2), (x1, y1)) ∈ R.

Thus, R is symmetric.

Suppose ((x1, y1), (x2, y2)) ∈ R and ((x2, y2), (x3, y3)) ∈ R.

Then x1y1 = x2y2 and x2y2 = x3y3.

Hence, x1y1 = x3y3.

Thus, ((x1, y1), (x3, y3)) ∈ R.

Hence, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation.�

7. Let F be a family of sets, and B be a set. Prove that if
⋃

F ⊆ B, then F ⊆ P(B).

Let F be a family of sets, and B be a set.

Suppose
⋃

F ⊆ B.

Let x ∈ F .

Let y ∈ x.

Then y ∈
⋃

F .

Hence, y ∈ B.

Since y ∈ x implies y ∈ B, x ⊆ B.

Hence, x ∈ P(B).

Since x ∈ F implies x ∈ P(B), F ⊆ P(B). �



8. Let F and G be families of sets. Prove that (∩F) ∩ (∩G) = ∩(F ∪ G).

Proof: Let F and G be families of sets.

Suppose x ∈ ∩F ∩ ∩G.

Then x ∈ ∩F and x ∈ ∩G.

Suppose M ∈ F . Then x ∈ M .

Suppose N ∈ G. Then x ∈ N .

Suppose P ∈ F ∪ G. Then P ∈ F or P ∈ G. Hence, x ∈ P .

Thus, x is an element of every set in F ∪ G, so x ∈ ∩(F ∪ G).

Hence, (∩F) ∩ (∩G) ⊆ ∩(F ∪ G).

Now, suppose x ∈ ∩(F ∪ G).

Suppose M ∈ F ∪ G. Then x ∈ M .

Suppose N ∈ F . Then N ∈ F ∪ G, and so x ∈ N .

Hence, x is in every set in F , and so x ∈ ∩F .

Suppose P ∈ G. Then P ∈ F ∪ G, and so x ∈ P .

Hence, x is in every set in G, and so x ∈ ∩G.

Thus, x ∈ (∩F) ∩ (∩G).

Therefore ∩(F ∪ G) ⊆ (∩F) ∩ (∩G), and so (∩F) ∩ (∩G) = ∩(F ∪ G). �

9. Give an example of a function f : Z>0 → Z>0 such that f is one-to-one, but not onto (i.e., f is injective
but not surjective). Prove that f is one-to-one and not onto.

Note: There are many examples you could give. If you are using this exam
solution to study, I recommend creating a few, as different from each other as
possible.

One example is f(x) = x+ 1.

We note that since x > 0, x+ 1 > 1 and so there is no a such that f(a) = 1. So f is not onto.

Suppose f(x1) = f(x2). Then x1 + 1 = x2 + 1, and so x1 = x2. So f is one-to-one. �

10. Give an example of a function g : Z>0 → Z>0 such that g is onto, but not one-to-one (i.e., g is surjective,
but not injective). Prove that g is onto and not one-to-one.

Note: There are many examples you could give. If you are using this exam
solution to study, I recommend creating a few, as different from each other as
possible.

Here is one example. Let

g(x) =

{

x if x is odd,
x/2 if x is even.

Let a be a positive integer.

Suppose a is odd. Then g(a) = a.



Suppose a is even. Then 2a ∈ Z>0 and g(2a) = a.

Thus, g is onto.

On the other hand, g(6) = g(3) = 3, so g is not one-to-one. �

11. Use induction to prove that n! > n2 for all integers n ≥ 4.

Proof: Define P (n) to be the statement “n! > n2”.

Base case: Let n = 4. Then n! = 24 > 16 = n2, so P (4) is true.

Induction step: Suppose P (n) is true for some n = x ≥ 4.

Then x! > x2, i.e.
x!

x2
> 1.

Then

(x+ 1)!

(x+ 1)2
=

(x+ 1)x!

(x+ 1)2 x
2

x2

=
(x+ 1)x2

(x+ 1)2

(

x!

x2

)

=
x2

x+ 1

(

x!

x2

)

=

(

x− 1 +
1

x+ 1

)(

x!

x2

)

We note that x− 1 + 1

x+1
≥ 4− 1 + 0 = 3 > 1, and so, since x!

x2 > 1,

(x+ 1)!

(x+ 1)2
> 1

i.e., (x+ 1)! > x2. Thus, P (x+ 1) is true.

Thus, P (x) implies P (x + 1), and since P (4) is true, by induction P (n) is true for all integers
n ≥ 4. �

12. Let R be the relation defined on the real numbers, R, by

(x, y) ∈ R ⇔ there exist positive integers n and m such that xn = ym.

Prove that R is an equivalence relation.

Proof: Let x ∈ R. Then x1 = x1, and so (x, x) ∈ R.

Hence, R is reflexive.

Suppose (x, y) ∈ R. Then xm = yn for some integers m and n.

Then, yn = xm, and so (y, x) ∈ R.

Hence R is symmetric.

Suppose (x, y) ∈ R and (y, z) ∈ R.

Then xm = yn and yr = zs for positive integers m,n, r, and s.

Then xrm = yrn and yrn = zsn, so xrm = zsn.



Since rm and sn are positive integers, we conclude that (x, z) ∈ R.

Hence, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation. �

13. Let A, B and C be sets. Let f : A → B, and g : B → C.

(a) Suppose g ◦ f : A → C is one-to-one. Is f necessarily one-to-one? Prove your answer.

f is necessarily one-to-one.

Proof: Suppose f is not one-to-one.

Then there exist a1, a2 ∈ A, a1 6= a2, with f(a1) = f(a2).

Then g(f(a1)) = g(f(a2)). But a1 6= a2, so g ◦ f is not one-to-one. This is a contradiction.

Hence f is one-to-one. �

(b) Suppose g ◦ f : A → C is one-to-one. Is g necessarily one-to-one? Prove your answer.

g is not necessarily one-to-one.

Proof: We may defined A = {a}, B = {b1, b2}, and C = {c}. Then define f = {(a, b2)},
g = {(b1, c), (b2, c)}.

Then g ◦ f = {(a, c)}, and g ◦ f is one-to-one though g is not.

Alternatively, define A = Z>0, B = Z, and C = Z.

Let f(x) = x and g(x) = |x|. Then (g ◦ f)(x) = |x| is one-to-one from Z>0 to Z, but g is not
one-to-one from Z to Z. �

14. Let S be a set.

Define a function f : P(S) → P(S) by f(A) = S \ A for all A ∈ P(S).

Prove that f is a bijection.

Proof: Suppose A1 and A2 ∈ P(S) with f(A1) = f(A2). Then

S \ A1 = S \ A2.

Suppose x ∈ A1 but x 6∈ A2. Then x ∈ S (since A1 ⊂ S), and x ∈ S \A2, but x 6∈ S \A1. This is a
contradiction to the fact that S \ A1 = S \ A2. Hence if x ∈ A1 then x ∈ A2; i.e, A1 ⊂ A2.

Suppose x ∈ A2 but x 6∈ A1. Then x ∈ S (since A2 ⊂ S), and x ∈ S \A1, but x 6∈ S \A2. This is a
contradiction to the fact that S \ A2 = S \ A1. Hence if x ∈ A2 then x ∈ A1; i.e, A2 ⊂ A1.

Thus A1 = A2, so f is one-to-one.

Suppose B ∈ P(S).

Let Z = S \B.

Then

f(Z) = S \ (S \B)

= {x ∈ S : x 6∈ (S \B)}

= {x ∈ S : ¬(x ∈ S \B)}

= {x ∈ S : ¬(x ∈ S and x 6∈ B)}

= {x ∈ S : x 6∈ S or x ∈ B}

= {x ∈ B}

= B.



Thus f is onto.

Hence f is one-to-one and onto, i.e., it is a bijection. �

15. Let S be the set of all functions f : R ⇒ R. Define a relation R on S by

(f, g) ∈ R ⇔ ∃c ∈ R, c 6= 0, such that f(x) = cg(x) for all x ∈ R.

Prove that R is an equivalence relation.

Let f ∈ S.

Since f(x) = (1)f(x) for all x ∈ R, (f, f) ∈ R.

Hence, R is reflexive.

Suppose (f, g) ∈ R.

Then there exists a c ∈ R, c 6= 0 such that f(x) = cg(x) for all x ∈ R. Since c 6= 0,

g(x) =
1

c
f(x)

for all x ∈ R and 1

c
6= 0, 1

c
∈ R.

Thus (g, f) ∈ R.

Hence, R is symmetric.

Suppose (f, g) ∈ R and (g, h) ∈ R.

Then there exist non-zero c, d ∈ R such that f(x) = cg(x) and g(x) = dh(x) for all x ∈ R.

Hence, f(x) = cdh(x) for all x ∈ R.

Since c and d are non-zero, cd is non-zero, and cd ∈ R, so (f, h) ∈ R.

Thus, R is transitive, and so R is an equivalence relation. �

16. Let A and B be sets.

Let f and g be functions from A to B.

Prove that if f ∩ g 6= ∅, then f \ g is not a function from A to B.

Proof: Suppose f ∩ g 6= ∅.

Suppose (a, b) ∈ f ∩ g (note that this is the unique pair in f with first element a).

Then (a, b) 6∈ f \ g.

Since f is a function, there is no element (x, y) ∈ f \ g such that x = a.

Hence f \ g is not a function. �

17. Let n ∈ Z>0.

Use induction to prove
n

∑

i=1

1

(2i− 1)(2i+ 1)
=

n

2n+ 1
.

Proof: Let P (n) be the statement “
n

∑

i=1

1

(2i− 1)(2i+ 1)
=

n

2n+ 1
”.

Since
1

∑

i=1

1

(2i− 1)(2i+ 1)
=

1

3
=

1

2(1) + 1
,



P(1) is true.

Suppose there exists a k > 0 such that P (k) is true.

Then

k+1
∑

i=1

1

(2i− 1)(2i+ 1)
=

k
∑

i=1

1

(2i− 1)(2i+ 1)
+

1

(2(k + 1)− 1)(2(k + 1) + 1)

=
k

2k + 1
+

1

(2k + 1)(2k + 3)
(by the induction hypothesis)

=
k

2k + 1
+

1

(2k + 1)(2k + 3)

=
k(2k + 3) + 1

(2k + 1)(2k + 3)

=
2k2 + 3k + 1

(2k + 1)(2k + 3)

=
(2k + 1)(k + 1)

(2k + 1)(2k + 3)

=
k + 1

2k + 3

Hence P (k + 1) is true, so P (k) implies P (k + 1).

Hence, by induction, P (k) is true for all k > 0. �


