Midterm 2 Practice Problems

1. Prove that, for all integers $n, 3$ does not divide $n^{2}-5$.

Let n be an integer.
By Euclid's theorem, $n=3 k+r$ for some integers k and r, and $0 \leq r<3$.
That is, $r=0,1$, or 2 .
Then $n^{2}-5=(3 k+r)^{2}-5=9 k^{2}+6 k r+r^{2}-5=9 k^{2}+6 k r+r^{2}-6+1=3\left(3 k^{2}+2 k r-2\right)+r^{2}+1$.
Let t be the remainder when $n^{2}-5$ is divided by 3 .
Then t is equal to the remainder then $r^{2}+1$ is divided by 3 .
If $r=0$, then $r^{2}+1=1=0 \cdot 3+1$, so $t=1$.
If $r=1$, then $r^{2}+1=2=0 \cdot 3+2$, so $t=2$.
If $r=2$, then $r^{2}+1=5=1 \cdot 3+2$, so $t=2$.
Hence the remainder when $n^{2}-5$ is divided by 3 is 1 or 2 and not zero.
Thus 3 does not divide $n^{2}-5$.
2. Define a relation R on \mathbb{Z} by

$$
(x, y) \in R \Leftrightarrow 4 \mid x^{2}-y^{2} .
$$

Is R an equivalence relation? Prove your answer.
Let $x \in \mathbb{Z}$.
Then $x^{2}-x^{2}=0=4 \cdot 0$, so $4 \mid x^{2}-x^{2}$.
Hence, $(x, x) \in R$, and so R is reflexive.

Suppose $(x, y) \in R$.
Then $4 \mid x^{2}-y^{2}$.
That is, $x^{2}-y^{2}=4 k$ for some integer k.
Then $y^{2}-x^{2}=-4 k=4(-k)$ and since $-k \in \mathbb{Z}, 4 \mid y^{2}-x^{2}$.
Hence, $(y, x) \in R$, and so R is symmetric.
Suppose $(x, y) \in R$ and $(y, z) \in R$.
Then $4 \mid x^{2}-y^{2}$, so $x^{2}-y^{2}=4 k$ for some integer k.
Also, $4 \mid y^{2}-z^{2}$, so $y^{2}-z^{2}=4 m$ for some integer m.
Hence, $x^{2}-y^{2}+y^{2}-z^{2}=x^{2}-z^{2}=4 k+4 m=4(k+m)$.
Since $k+m$ is an integer, $4 \mid x^{2}-z^{2}$, and so $(x, z) \in R$.
Thus, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation.
3. Use induction to prove that

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}
$$

for all $n \in \mathbb{Z}_{>0}$.
Let $n \in \mathbb{Z}_{>0}$.
Let $P(n)$ be the statement " $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$ ".
Base Case: Let $n=1$.
Then

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{1}{1(1+1)}=\frac{1}{2}=\frac{1}{1+1}=\frac{n}{n+1}
$$

Thus, $P(1)$ is true.
Induction Step: Suppose $P(n)$ is true for some $n=k>0$.
So $P(k)$ is true. That is,

$$
\sum_{i=1}^{k} \frac{1}{i(i+1)}=\frac{k}{k+1}
$$

Then

$$
\begin{aligned}
\sum_{i=1}^{k+1} \frac{1}{i(i+1)} & =\sum_{i=1}^{k} \frac{1}{i(i+1)}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)}{(k+1)(k+2)}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)+1}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)^{2}}{(k+1)(k+2))} \\
& =\frac{k+1}{k+2}
\end{aligned}
$$

Hence $P(k+1)$ is true.
Thus, $P(k)$ implies $P(k+1)$, and $P(1)$ is true, so, by induction, $P(n)$ is true for all $n \in \mathbb{Z}_{>0}$.
4. Suppose A, B and C are sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that if f is onto and g is not one-to-one, then $g \circ f$ is not one-to-one.

Suppose A, B and C are sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C, f$ is onto and g is not one-to-one.
Since g is not one-to-one, there exist $b_{1} \neq b_{2} \in B$ such that $g\left(b_{1}\right)=g\left(b_{2}\right)$.
Since f is onto, there exist a_{1} and a_{2} such that $f\left(a_{1}\right)=b_{1}$ and $f\left(a_{2}\right)=b_{2}$.
Note that $a_{1} \neq a_{2}$ since $b_{1} \neq b_{2}$.
Then $g\left(f\left(a_{1}\right)\right)=g\left(b_{1}\right)=g\left(b_{2}\right)=g\left(f\left(a_{2}\right)\right)$, so $g \circ f$ is not one-to-one.
(b) Prove that if f is not onto and g is one-to-one, then $g \circ f$ is not onto.

Suppose A, B and C are sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C, f$ is not onto and g is one-to-one.
Since f is not onto, there is a $b \in B$ such that $f(a) \neq b$ for all $a \in A$.
Suppose $g(f(a))=g(b)$ for some $a \in A$.
Then, since g is one-to-one, $f(a)=b$.
This is a contradiction: for all $a \in A, f(a) \neq b$.
Thus, for all $a \in A, g(f(a)) \neq g(b)$.
Hence, $g \circ f$ is not onto.
5. Let $A=\mathbb{R} \times \mathbb{R} \backslash\{(0,0)\}$.

Thus, A is the xy-plane without the origin.
Define a relation R on A by
$\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R \Leftrightarrow\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ lie on a line which passes through the origin.
Prove that R is an equivalence relation.

Is R reflexive?

Suppose $P \in A$. Then $P=\left(x_{1}, y_{1}\right)$ for some $x_{1}, y_{1} \in \mathbb{R}$.
Suppose $x_{1}=0$. Then P lies on the line $x=0$ which passes through the origin.
Hence, $(P, P) \in R$.
Suppose $x_{1} \neq 0$. Then P lies on the line $y=\frac{y_{1}}{x_{1}} x$, which passes through the origin.
Hence, $(P, P) \in R$.
Thus, in all cases, $(P, P) \in R$, so R is reflexive.

Is R symmetric?

Suppose $P=\left(x_{1}, y_{1}\right) \in A$ and $Q=\left(x_{2}, y_{2}\right) \in A$ and $(P, Q) \in R$.
Then P and Q lie on a line through the origin, and so Q and P lie on a line through the origin.
Hence, $(Q, P) \in R$, and so R is symmetric.

Is R transitive?

Suppose $P=\left(x_{1}, y_{1}\right) \in A$ and $Q=\left(x_{2}, y_{2}\right) \in A$ and $S=\left(x_{3}, y_{3}\right) \in A$ and $(P, Q) \in R$ and $(Q, S) \in R$.
Suppose $x_{1}=0$.
Then P lies on the vertical line $x=0$ through the origin and no other line through the origin.
Hence, Q lies on $x=0$, and hence S lies on $x=0$.

Thus, P and S lie on a line through the origin, and so $(P, S) \in R$.
Suppose $x_{1} \neq 0$.
Then P and Q lie on a line $y=m x$ where $m \in \mathbb{R}$, and Q and R lie on a line $y=n x$ where $n \in \mathbb{R}$.
Then $y_{2}=m x_{2}=n x_{2}$ so $(m-n) x_{2}=0$.
If $x_{2}=0$, then $y_{2}=m x_{2}=0$, so $Q=(0,0) \notin A$, a contradiction since $Q \in A$.
Hence $x_{2} \neq 0$, so $m-n=0$, i.e., $m=n$.
Thus, P and Q lie on the line $y=m x$ and Q and S lie on the line $y=m x$, so P and S both lie on a line through the origin.
Hence, (P, S) in R and thus R is transitive.
Since R is reflexive, symmetric, and transitive, R is an equivalence relation.
6. Let $S=\mathbb{R}_{>0} \times \mathbb{R}_{>0}$. Define a relation $R \subseteq S \times S$ by

$$
\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R \Leftrightarrow x_{1} y_{1}=x_{2} y_{2}
$$

Prove that R is an equivalence relation.
Suppose $P=(x, y) \in S \times S$.
Since $x y=x y$, $((x, y),(x, y) \in R$, i.e., $(P, P) \in R$.
Hence, R is reflexive.
Suppose $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R$.
Then $x_{1} y_{1}=x_{2} y_{2}$.
Hence, $x_{2} y_{2}=x_{1} y_{1}$, so $\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right) \in R$.
Thus, R is symmetric.
Suppose $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R$ and $\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right) \in R$.
Then $x_{1} y_{1}=x_{2} y_{2}$ and $x_{2} y_{2}=x_{3} y_{3}$.
Hence, $x_{1} y_{1}=x_{3} y_{3}$.
Thus, $\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right) \in R$.
Hence, R is transitive.
Since R is reflexive, symmetric and transitive, R is an equivalence relation.
7. Let \mathcal{F} be a family of sets, and B be a set. Prove that if $\bigcup \mathcal{F} \subseteq B$, then $\mathcal{F} \subseteq \mathcal{P}(B)$.

Let \mathcal{F} be a family of sets, and B be a set.
Suppose $\bigcup \mathcal{F} \subseteq B$.
Let $x \in \mathcal{F}$.
Let $y \in x$.
Then $y \in \bigcup \mathcal{F}$.
Hence, $y \in B$.
Since $y \in x$ implies $y \in B, x \subseteq B$.
Hence, $x \in \mathcal{P}(B)$.
Since $x \in \mathcal{F}$ implies $x \in \mathcal{P}(B), \mathcal{F} \subseteq \mathcal{P}(B)$.
8. Let \mathcal{F} and \mathcal{G} be families of sets. Prove that $(\cap \mathcal{F}) \cap(\cap \mathcal{G})=\cap(\mathcal{F} \cup \mathcal{G})$.

Proof: Let \mathcal{F} and \mathcal{G} be families of sets.
Suppose $x \in \cap \mathcal{F} \cap \cap \mathcal{G}$.
Then $x \in \cap \mathcal{F}$ and $x \in \cap \mathcal{G}$.
Suppose $M \in \mathcal{F}$. Then $x \in M$.
Suppose $N \in \mathcal{G}$. Then $x \in N$.
Suppose $P \in \mathcal{F} \cup \mathcal{G}$. Then $P \in \mathcal{F}$ or $P \in \mathcal{G}$. Hence, $x \in P$.
Thus, x is an element of every set in $\mathcal{F} \cup \mathcal{G}$, so $x \in \cap(\mathcal{F} \cup \mathcal{G})$.
Hence, $(\cap \mathcal{F}) \cap(\cap \mathcal{G}) \subseteq \cap(\mathcal{F} \cup \mathcal{G})$.
Now, suppose $x \in \cap(\mathcal{F} \cup \mathcal{G})$.
Suppose $M \in \mathcal{F} \cup \mathcal{G}$. Then $x \in M$.
Suppose $N \in \mathcal{F}$. Then $N \in \mathcal{F} \cup \mathcal{G}$, and so $x \in N$.
Hence, x is in every set in \mathcal{F}, and so $x \in \cap \mathcal{F}$.
Suppose $P \in \mathcal{G}$. Then $P \in \mathcal{F} \cup \mathcal{G}$, and so $x \in P$.
Hence, x is in every set in \mathcal{G}, and so $x \in \cap \mathcal{G}$.
Thus, $x \in(\cap \mathcal{F}) \cap(\cap \mathcal{G})$.
Therefore $\cap(\mathcal{F} \cup \mathcal{G}) \subseteq(\cap \mathcal{F}) \cap(\cap \mathcal{G})$, and so $(\cap \mathcal{F}) \cap(\cap \mathcal{G})=\cap(\mathcal{F} \cup \mathcal{G})$.
9. Give an example of a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that f is one-to-one, but not onto (i.e., f is injective but not surjective). Prove that f is one-to-one and not onto.

Note: There are many examples you could give. If you are using this exam solution to study, I recommend creating a few, as different from each other as possible.

One example is $f(x)=x+1$.
We note that since $x>0, x+1>1$ and so there is no a such that $f(a)=1$. So f is not onto.
Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $x_{1}+1=x_{2}+1$, and so $x_{1}=x_{2}$. So f is one-to-one.
10. Give an example of a function $g: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that g is onto, but not one-to-one (i.e., g is surjective, but not injective). Prove that g is onto and not one-to-one.

Note: There are many examples you could give. If you are using this exam solution to study, I recommend creating a few, as different from each other as possible.

Here is one example. Let

$$
g(x)= \begin{cases}x & \text { if } x \text { is odd } \\ x / 2 & \text { if } x \text { is even }\end{cases}
$$

Let a be a positive integer.
Suppose a is odd. Then $g(a)=a$.

Suppose a is even. Then $2 a \in \mathbb{Z}_{>0}$ and $g(2 a)=a$.
Thus, g is onto.
On the other hand, $g(6)=g(3)=3$, so g is not one-to-one.
11. Use induction to prove that $n!>n^{2}$ for all integers $n \geq 4$.

Proof: Define $P(n)$ to be the statement " $n!>n^{2 \prime \prime}$.
Base case: Let $n=4$. Then $n!=24>16=n^{2}$, so $P(4)$ is true.
Induction step: Suppose $P(n)$ is true for some $n=x \geq 4$.
Then $x!>x^{2}$, i.e. $\frac{x!}{x^{2}}>1$.
Then

$$
\begin{aligned}
\frac{(x+1)!}{(x+1)^{2}} & =\frac{(x+1) x!}{(x+1)^{2} \frac{x^{2}}{x^{2}}} \\
& =\frac{(x+1) x^{2}}{(x+1)^{2}}\left(\frac{x!}{x^{2}}\right) \\
& =\frac{x^{2}}{x+1}\left(\frac{x!}{x^{2}}\right) \\
& =\left(x-1+\frac{1}{x+1}\right)\left(\frac{x!}{x^{2}}\right)
\end{aligned}
$$

We note that $x-1+\frac{1}{x+1} \geq 4-1+0=3>1$, and so, since $\frac{x!}{x^{2}}>1$,

$$
\frac{(x+1)!}{(x+1)^{2}}>1
$$

i.e., $(x+1)!>x^{2}$. Thus, $P(x+1)$ is true.

Thus, $P(x)$ implies $P(x+1)$, and since $P(4)$ is true, by induction $P(n)$ is true for all integers $n \geq 4$.
12. Let R be the relation defined on the real numbers, \mathbb{R}, by

$$
(x, y) \in R \Leftrightarrow \text { there exist positive integers } n \text { and } m \text { such that } x^{n}=y^{m} .
$$

Prove that R is an equivalence relation.
Proof: Let $x \in \mathbb{R}$. Then $x^{1}=x^{1}$, and so $(x, x) \in R$.
Hence, R is reflexive.

Suppose $(x, y) \in R$. Then $x^{m}=y^{n}$ for some integers m and n.
Then, $y^{n}=x^{m}$, and so $(y, x) \in R$.
Hence R is symmetric.
Suppose $(x, y) \in R$ and $(y, z) \in R$.
Then $x^{m}=y^{n}$ and $y^{r}=z^{s}$ for positive integers m, n, r, and s.
Then $x^{r m}=y^{r n}$ and $y^{r n}=z^{s n}$, so $x^{r m}=z^{s n}$.

Since $r m$ and $s n$ are positive integers, we conclude that $(x, z) \in R$.
Hence, R is transitive.
Since R is reflexive, symmetric and transitive, R is an equivalence relation.
13. Let A, B and C be sets. Let $f: A \rightarrow B$, and $g: B \rightarrow C$.
(a) Suppose $g \circ f: A \rightarrow C$ is one-to-one. Is f necessarily one-to-one? Prove your answer.
f is necessarily one-to-one.
Proof: Suppose f is not one-to-one.
Then there exist $a_{1}, a_{2} \in A, a_{1} \neq a_{2}$, with $f\left(a_{1}\right)=f\left(a_{2}\right)$.
Then $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$. But $a_{1} \neq a_{2}$, so $g \circ f$ is not one-to-one. This is a contradiction.
Hence f is one-to-one.
(b) Suppose $g \circ f: A \rightarrow C$ is one-to-one. Is g necessarily one-to-one? Prove your answer.
g is not necessarily one-to-one.
Proof: We may defined $A=\{a\}, B=\left\{b_{1}, b_{2}\right\}$, and $C=\{c\}$. Then define $f=\left\{\left(a, b_{2}\right)\right\}$, $g=\left\{\left(b_{1}, c\right),\left(b_{2}, c\right)\right\}$.
Then $g \circ f=\{(a, c)\}$, and $g \circ f$ is one-to-one though g is not.
Alternatively, define $A=\mathbb{Z}_{>0}, B=\mathbb{Z}$, and $C=\mathbb{Z}$.
Let $f(x)=x$ and $g(x)=|x|$. Then $(g \circ f)(x)=|x|$ is one-to-one from $\mathbb{Z}_{>0}$ to \mathbb{Z}, but g is not one-to-one from \mathbb{Z} to \mathbb{Z}.
14. Let S be a set.

Define a function $f: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ by $f(A)=S \backslash A$ for all $A \in \mathcal{P}(S)$.
Prove that f is a bijection.
Proof: Suppose A_{1} and $A_{2} \in \mathcal{P}(S)$ with $f\left(A_{1}\right)=f\left(A_{2}\right)$. Then

$$
S \backslash A_{1}=S \backslash A_{2}
$$

Suppose $x \in A_{1}$ but $x \notin A_{2}$. Then $x \in S$ (since $A_{1} \subset S$), and $x \in S \backslash A_{2}$, but $x \notin S \backslash A_{1}$. This is a contradiction to the fact that $S \backslash A_{1}=S \backslash A_{2}$. Hence if $x \in A_{1}$ then $x \in A_{2} ;$ i.e, $A_{1} \subset A_{2}$.
Suppose $x \in A_{2}$ but $x \notin A_{1}$. Then $x \in S$ (since $A_{2} \subset S$), and $x \in S \backslash A_{1}$, but $x \notin S \backslash A_{2}$. This is a contradiction to the fact that $S \backslash A_{2}=S \backslash A_{1}$. Hence if $x \in A_{2}$ then $x \in A_{1}$; i.e, $A_{2} \subset A_{1}$.
Thus $A_{1}=A_{2}$, so f is one-to-one.
Suppose $B \in \mathcal{P}(S)$.
Let $Z=S \backslash B$.
Then

$$
\begin{aligned}
f(Z) & =S \backslash(S \backslash B) \\
& =\{x \in S: x \notin(S \backslash B)\} \\
& =\{x \in S: \neg(x \in S \backslash B)\} \\
& =\{x \in S: \neg(x \in S \text { and } x \notin B)\} \\
& =\{x \in S: x \notin S \text { or } x \in B\} \\
& =\{x \in B\} \\
& =B .
\end{aligned}
$$

Thus f is onto.
Hence f is one-to-one and onto, i.e., it is a bijection.
15. Let S be the set of all functions $f: \mathbb{R} \Rightarrow \mathbb{R}$. Define a relation R on S by

$$
(f, g) \in R \Leftrightarrow \exists c \in \mathbb{R}, c \neq 0, \text { such that } f(x)=c g(x) \text { for all } x \in \mathbb{R} \text {. }
$$

Prove that R is an equivalence relation.
Let $f \in S$.
Since $f(x)=(1) f(x)$ for all $x \in \mathbb{R},(f, f) \in R$.
Hence, R is reflexive.
Suppose $(f, g) \in R$.
Then there exists a $c \in \mathbb{R}, c \neq 0$ such that $f(x)=c g(x)$ for all $x \in \mathbb{R}$. Since $c \neq 0$,

$$
g(x)=\frac{1}{c} f(x)
$$

for all $x \in \mathbb{R}$ and $\frac{1}{c} \neq 0, \frac{1}{c} \in \mathbb{R}$.
Thus $(g, f) \in R$.
Hence, R is symmetric.
Suppose $(f, g) \in R$ and $(g, h) \in R$.
Then there exist non-zero $c, d \in \mathbb{R}$ such that $f(x)=c g(x)$ and $g(x)=d h(x)$ for all $x \in \mathbb{R}$.
Hence, $f(x)=c d h(x)$ for all $x \in \mathbb{R}$.
Since c and d are non-zero, $c d$ is non-zero, and $c d \in \mathbb{R}$, so $(f, h) \in R$.
Thus, R is transitive, and so R is an equivalence relation.
16. Let A and B be sets.

Let f and g be functions from A to B.
Prove that if $f \cap g \neq \varnothing$, then $f \backslash g$ is not a function from A to B.
Proof: Suppose $f \cap g \neq \varnothing$.
Suppose $(a, b) \in f \cap g$ (note that this is the unique pair in f with first element a).
Then $(a, b) \notin f \backslash g$.
Since f is a function, there is no element $(x, y) \in f \backslash g$ such that $x=a$.
Hence $f \backslash g$ is not a function.
17. Let $n \in \mathbb{Z}_{>0}$.

Use induction to prove $\sum_{i=1}^{n} \frac{1}{(2 i-1)(2 i+1)}=\frac{n}{2 n+1}$.
Proof: Let $P(n)$ be the statement " $\sum_{i=1}^{n} \frac{1}{(2 i-1)(2 i+1)}=\frac{n}{2 n+1}$ ".
Since

$$
\sum_{i=1}^{1} \frac{1}{(2 i-1)(2 i+1)}=\frac{1}{3}=\frac{1}{2(1)+1}
$$

$P(1)$ is true.
Suppose there exists a $k>0$ such that $P(k)$ is true.
Then

$$
\begin{aligned}
\sum_{i=1}^{k+1} \frac{1}{(2 i-1)(2 i+1)} & =\sum_{i=1}^{k} \frac{1}{(2 i-1)(2 i+1)}+\frac{1}{(2(k+1)-1)(2(k+1)+1)} \\
& =\frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)} \text { (by the induction hypothesis) } \\
& =\frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)} \\
& =\frac{k(2 k+3)+1}{(2 k+1)(2 k+3)} \\
& =\frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)} \\
& =\frac{(2 k+1)(k+1)}{(2 k+1)(2 k+3)} \\
& =\frac{k+1}{2 k+3}
\end{aligned}
$$

Hence $P(k+1)$ is true, so $P(k)$ implies $P(k+1)$.
Hence, by induction, $P(k)$ is true for all $k>0$.

