MATH 300 C - Spring 2015 Midterm 2 Practice Problems

1. Prove that, for all integers n, 3 does not divide $n^2 - 5$.

Let n be an integer.

By Euclid's theorem, n = 3k + r for some integers k and r, and $0 \le r < 3$.

That is, r = 0, 1, or 2.

Then
$$n^2 - 5 = (3k + r)^2 - 5 = 9k^2 + 6kr + r^2 - 5 = 9k^2 + 6kr + r^2 - 6 + 1 = 3(3k^2 + 2kr - 2) + r^2 + 1$$
.

Let t be the remainder when $n^2 - 5$ is divided by 3.

Then t is equal to the remainder then $t^2 + 1$ is divided by 3.

If
$$r = 0$$
, then $r^2 + 1 = 1 = 0 \cdot 3 + 1$, so $t = 1$.

If
$$r = 1$$
, then $r^2 + 1 = 2 = 0 \cdot 3 + 2$, so $t = 2$.

If
$$r = 2$$
, then $r^2 + 1 = 5 = 1 \cdot 3 + 2$, so $t = 2$.

Hence the remainder when $n^2 - 5$ is divided by 3 is 1 or 2 and not zero.

Thus 3 does not divide $n^2 - 5$.

2. Define a relation R on \mathbb{Z} by

$$(x,y) \in R \Leftrightarrow 4 \mid x^2 - y^2$$
.

Is R an equivalence relation? Prove your answer.

Let $x \in \mathbb{Z}$.

Then
$$x^2 - x^2 = 0 = 4 \cdot 0$$
, so $4 \mid x^2 - x^2$.

Hence, $(x, x) \in R$, and so R is reflexive.

Suppose $(x, y) \in R$.

Then $4 | x^2 - y^2$.

That is, $x^2 - y^2 = 4k$ for some integer k.

Then $y^2 - x^2 = -4k = 4(-k)$ and since $-k \in \mathbb{Z}$, $4 \mid y^2 - x^2$.

Hence, $(y, x) \in R$, and so R is symmetric.

Suppose $(x, y) \in R$ and $(y, z) \in R$.

Then $4 \mid x^2 - y^2$, so $x^2 - y^2 = 4k$ for some integer k.

Also, $4 \mid y^2 - z^2$, so $y^2 - z^2 = 4m$ for some integer m.

Hence, $x^2 - y^2 + y^2 - z^2 = x^2 - z^2 = 4k + 4m = 4(k + m)$.

Since k + m is an integer, $4 \mid x^2 - z^2$, and so $(x, z) \in R$.

Thus, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation.

3. Use induction to prove that

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

for all $n \in \mathbb{Z}_{>0}$.

Let $n \in \mathbb{Z}_{>0}$.

Let P(n) be the statement " $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$ ".

Base Case: Let n = 1.

Then

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{1}{1(1+1)} = \frac{1}{2} = \frac{1}{1+1} = \frac{n}{n+1}.$$

Thus, P(1) is true.

Induction Step: Suppose P(n) is true for some n = k > 0.

So P(k) is true. That is,

$$\sum_{i=1}^{k} \frac{1}{i(i+1)} = \frac{k}{k+1}$$

Then

$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = \sum_{i=1}^{k} \frac{1}{i(i+1)} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k(k+2)}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k(k+2)+1}{(k+1)(k+2)}$$

$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$

$$= \frac{(k+1)^2}{(k+1)(k+2)}$$

$$= \frac{k+1}{k+2}$$

Hence P(k+1) is true.

Thus, P(k) implies P(k+1), and P(1) is true, so, by induction, P(n) is true for all $n \in \mathbb{Z}_{>0}$.

4. Suppose A, B and C are sets. Suppose $f: A \to B$ and $g: B \to C$.

(a) Prove that if f is onto and g is not one-to-one, then $g \circ f$ is not one-to-one.

Suppose A, B and C are sets. Suppose $f:A\to B$ and $g:B\to C$, f is onto and g is not one-to-one.

Since g is not one-to-one, there exist $b_1 \neq b_2 \in B$ such that $g(b_1) = g(b_2)$.

Since f is onto, there exist a_1 and a_2 such that $f(a_1) = b_1$ and $f(a_2) = b_2$.

Note that $a_1 \neq a_2$ since $b_1 \neq b_2$.

Then $g(f(a_1)) = g(b_1) = g(b_2) = g(f(a_2))$, so $g \circ f$ is not one-to-one.

(b) Prove that if f is not onto and g is one-to-one, then $g \circ f$ is not onto.

Suppose A, B and C are sets. Suppose $f:A\to B$ and $g:B\to C$, f is not onto and g is one-to-one.

Since f is not onto, there is a $b \in B$ such that $f(a) \neq b$ for all $a \in A$.

Suppose g(f(a)) = g(b) for some $a \in A$.

Then, since g is one-to-one, f(a) = b.

This is a contradiction: for all $a \in A$, $f(a) \neq b$.

Thus, for all $a \in A$, $g(f(a)) \neq g(b)$.

Hence, $g \circ f$ is not onto.

5. Let $A = \mathbb{R} \times \mathbb{R} \setminus \{(0,0)\}.$

Thus, A is the xy-plane without the origin.

Define a relation R on A by

 $((x_1,y_1),(x_2,y_2)) \in R \Leftrightarrow (x_1,y_1)$ and (x_2,y_2) lie on a line which passes through the origin.

Prove that R is an equivalence relation.

Is R reflexive?

Suppose $P \in A$. Then $P = (x_1, y_1)$ for some $x_1, y_1 \in \mathbb{R}$.

Suppose $x_1 = 0$. Then P lies on the line x = 0 which passes through the origin.

Hence, $(P, P) \in R$.

Suppose $x_1 \neq 0$. Then P lies on the line $y = \frac{y_1}{x_1}x$, which passes through the origin.

Hence, $(P, P) \in R$.

Thus, in all cases, $(P, P) \in R$, so R is reflexive.

Is R symmetric?

Suppose $P = (x_1, y_1) \in A$ and $Q = (x_2, y_2) \in A$ and $(P, Q) \in R$.

Then P and Q lie on a line through the origin, and so Q and P lie on a line through the origin.

Hence, $(Q, P) \in R$, and so R is symmetric.

Is R transitive?

Suppose $P=(x_1,y_1)\in A$ and $Q=(x_2,y_2)\in A$ and $S=(x_3,y_3)\in A$ and $(P,Q)\in R$ and $(Q,S)\in R$.

Suppose $x_1 = 0$.

Then P lies on the vertical line x = 0 through the origin and no other line through the origin.

Hence, Q lies on x=0, and hence S lies on x=0.

Thus, *P* and *S* lie on a line through the origin, and so $(P, S) \in R$.

Suppose $x_1 \neq 0$.

Then P and Q lie on a line y=mx where $m \in \mathbb{R}$, and Q and R lie on a line y=nx where $n \in \mathbb{R}$.

Then $y_2 = mx_2 = nx_2$ so $(m - n)x_2 = 0$.

If $x_2 = 0$, then $y_2 = mx_2 = 0$, so $Q = (0,0) \notin A$, a contradiction since $Q \in A$.

Hence $x_2 \neq 0$, so m - n = 0, i.e., m = n.

Thus, P and Q lie on the line y = mx and Q and S lie on the line y = mx, so P and S both lie on a line through the origin.

Hence, (P, S) inR and thus R is transitive.

Since R is reflexive, symmetric, and transitive, R is an equivalence relation.

6. Let $S = \mathbb{R}_{>0} \times \mathbb{R}_{>0}$. Define a relation $R \subseteq S \times S$ by

$$((x_1, y_1), (x_2, y_2)) \in R \Leftrightarrow x_1 y_1 = x_2 y_2.$$

Prove that R is an equivalence relation.

Suppose $P = (x, y) \in S \times S$.

Since xy = xy, $((x, y), (x, y) \in R$, i.e., $(P, P) \in R$.

Hence, R is reflexive.

Suppose $((x_1, y_1), (x_2, y_2)) \in R$.

Then $x_1y_1 = x_2y_2$.

Hence, $x_2y_2 = x_1y_1$, so $((x_2, y_2), (x_1, y_1)) \in R$.

Thus, R is symmetric.

Suppose $((x_1, y_1), (x_2, y_2)) \in R$ and $((x_2, y_2), (x_3, y_3)) \in R$.

Then $x_1y_1 = x_2y_2$ and $x_2y_2 = x_3y_3$.

Hence, $x_1y_1 = x_3y_3$.

Thus, $((x_1, y_1), (x_3, y_3)) \in R$.

Hence, ${\cal R}$ is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation.

7. Let \mathcal{F} be a family of sets, and B be a set. Prove that if $\bigcup \mathcal{F} \subseteq B$, then $\mathcal{F} \subseteq \mathcal{P}(B)$.

Let \mathcal{F} be a family of sets, and B be a set.

Suppose $\bigcup \mathcal{F} \subseteq B$.

Let $x \in \mathcal{F}$.

Let $y \in x$.

Then $y \in \bigcup \mathcal{F}$.

Hence, $y \in B$.

Since $y \in x$ implies $y \in B$, $x \subseteq B$.

Hence, $x \in \mathcal{P}(B)$.

Since $x \in \mathcal{F}$ implies $x \in \mathcal{P}(B)$, $\mathcal{F} \subseteq \mathcal{P}(B)$.

8. Let \mathcal{F} and \mathcal{G} be families of sets. Prove that $(\cap \mathcal{F}) \cap (\cap \mathcal{G}) = \cap (\mathcal{F} \cup \mathcal{G})$.

Proof: Let \mathcal{F} and \mathcal{G} be families of sets.

Suppose $x \in \cap \mathcal{F} \cap \cap \mathcal{G}$.

Then $x \in \cap \mathcal{F}$ and $x \in \cap \mathcal{G}$.

Suppose $M \in \mathcal{F}$. Then $x \in M$.

Suppose $N \in \mathcal{G}$. Then $x \in N$.

Suppose $P \in \mathcal{F} \cup \mathcal{G}$. Then $P \in \mathcal{F}$ or $P \in \mathcal{G}$. Hence, $x \in P$.

Thus, x is an element of every set in $\mathcal{F} \cup \mathcal{G}$, so $x \in \cap (\mathcal{F} \cup \mathcal{G})$.

Hence, $(\cap \mathcal{F}) \cap (\cap \mathcal{G}) \subseteq \cap (\mathcal{F} \cup \mathcal{G})$.

Now, suppose $x \in \cap (\mathcal{F} \cup \mathcal{G})$.

Suppose $M \in \mathcal{F} \cup \mathcal{G}$. Then $x \in M$.

Suppose $N \in \mathcal{F}$. Then $N \in \mathcal{F} \cup \mathcal{G}$, and so $x \in N$.

Hence, x is in every set in \mathcal{F} , and so $x \in \cap \mathcal{F}$.

Suppose $P \in \mathcal{G}$. Then $P \in \mathcal{F} \cup \mathcal{G}$, and so $x \in P$.

Hence, x is in every set in \mathcal{G} , and so $x \in \cap \mathcal{G}$.

Thus, $x \in (\cap \mathcal{F}) \cap (\cap \mathcal{G})$.

Therefore $\cap (\mathcal{F} \cup \mathcal{G}) \subseteq (\cap \mathcal{F}) \cap (\cap \mathcal{G})$, and so $(\cap \mathcal{F}) \cap (\cap \mathcal{G}) = \cap (\mathcal{F} \cup \mathcal{G})$.

9. Give an example of a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that f is one-to-one, but not onto (i.e., f is injective but not surjective). Prove that f is one-to-one and not onto.

Note: There are many examples you could give. If you are using this exam solution to study, I recommend creating a few, as different from each other as possible.

One example is f(x) = x + 1.

We note that since x > 0, x + 1 > 1 and so there is no a such that f(a) = 1. So f is not onto.

Suppose $f(x_1) = f(x_2)$. Then $x_1 + 1 = x_2 + 1$, and so $x_1 = x_2$. So f is one-to-one.

10. Give an example of a function $g: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that g is onto, but not one-to-one (i.e., g is surjective, but not injective). Prove that g is onto and not one-to-one.

Note: There are many examples you could give. If you are using this exam solution to study, I recommend creating a few, as different from each other as possible.

Here is one example. Let

$$g(x) = \begin{cases} x & \text{if } x \text{ is odd,} \\ x/2 & \text{if } x \text{ is even.} \end{cases}$$

Let a be a positive integer.

Suppose a is odd. Then g(a) = a.

Suppose a is even. Then $2a \in \mathbb{Z}_{>0}$ and g(2a) = a.

Thus, g is onto.

On the other hand, g(6) = g(3) = 3, so g is not one-to-one.

11. Use induction to prove that $n! > n^2$ for all integers $n \ge 4$.

Proof: Define P(n) to be the statement " $n! > n^2$ ".

Base case: Let n = 4. Then $n! = 24 > 16 = n^2$, so P(4) is true.

Induction step: Suppose P(n) is true for some $n = x \ge 4$.

Then $x! > x^2$, i.e. $\frac{x!}{x^2} > 1$.

Then

$$\frac{(x+1)!}{(x+1)^2} = \frac{(x+1)x!}{(x+1)^2 \frac{x^2}{x^2}}$$

$$= \frac{(x+1)x^2}{(x+1)^2} \left(\frac{x!}{x^2}\right)$$

$$= \frac{x^2}{x+1} \left(\frac{x!}{x^2}\right)$$

$$= \left(x-1+\frac{1}{x+1}\right) \left(\frac{x!}{x^2}\right)$$

We note that $x - 1 + \frac{1}{x+1} \ge 4 - 1 + 0 = 3 > 1$, and so, since $\frac{x!}{x^2} > 1$,

$$\frac{(x+1)!}{(x+1)^2} > 1$$

i.e., $(x + 1)! > x^2$. Thus, P(x + 1) is true.

Thus, P(x) implies P(x+1), and since P(4) is true, by induction P(n) is true for all integers $n \ge 4$.

12. Let R be the relation defined on the real numbers, \mathbb{R} , by

 $(x,y) \in R \Leftrightarrow \text{there exist positive integers } n \text{ and } m \text{ such that } x^n = y^m.$

Prove that R is an equivalence relation.

Proof: Let $x \in \mathbb{R}$. Then $x^1 = x^1$, and so $(x, x) \in R$.

Hence, R is reflexive.

Suppose $(x,y) \in R$. Then $x^m = y^n$ for some integers m and n.

Then, $y^n = x^m$, and so $(y, x) \in R$.

Hence R is symmetric.

Suppose $(x, y) \in R$ and $(y, z) \in R$.

Then $x^m=y^n$ and $y^r=z^s$ for positive integers m,n,r, and s.

Then $x^{rm} = y^{rn}$ and $y^{rn} = z^{sn}$, so $x^{rm} = z^{sn}$.

Since rm and sn are positive integers, we conclude that $(x,z) \in R$. Hence, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation.

- 13. Let A, B and C be sets. Let $f: A \rightarrow B$, and $g: B \rightarrow C$.
 - (a) Suppose $g \circ f : A \to C$ is one-to-one. Is f necessarily one-to-one? Prove your answer. f is necessarily one-to-one.

Proof: Suppose f is not one-to-one.

Then there exist $a_1, a_2 \in A$, $a_1 \neq a_2$, with $f(a_1) = f(a_2)$.

Then $g(f(a_1)) = g(f(a_2))$. But $a_1 \neq a_2$, so $g \circ f$ is not one-to-one. This is a contradiction.

Hence f is one-to-one.

(b) Suppose $g \circ f : A \to C$ is one-to-one. Is g necessarily one-to-one? Prove your answer. g is not necessarily one-to-one.

Proof: We may defined $A = \{a\}$, $B = \{b_1, b_2\}$, and $C = \{c\}$. Then define $f = \{(a, b_2)\}$, $g = \{(b_1, c), (b_2, c)\}$.

Then $g \circ f = \{(a, c)\}$, and $g \circ f$ is one-to-one though g is not.

Alternatively, define $A = \mathbb{Z}_{>0}$, $B = \mathbb{Z}$, and $C = \mathbb{Z}$.

Let f(x) = x and g(x) = |x|. Then $(g \circ f)(x) = |x|$ is one-to-one from $\mathbb{Z}_{>0}$ to \mathbb{Z} , but g is not one-to-one from \mathbb{Z} to \mathbb{Z} .

14. *Let S be a set*.

Define a function $f: \mathcal{P}(S) \to \mathcal{P}(S)$ by $f(A) = S \setminus A$ for all $A \in \mathcal{P}(S)$.

Prove that f is a bijection.

Proof: Suppose A_1 and $A_2 \in \mathcal{P}(S)$ with $f(A_1) = f(A_2)$. Then

$$S \setminus A_1 = S \setminus A_2.$$

Suppose $x \in A_1$ but $x \notin A_2$. Then $x \in S$ (since $A_1 \subset S$), and $x \in S \setminus A_2$, but $x \notin S \setminus A_1$. This is a contradiction to the fact that $S \setminus A_1 = S \setminus A_2$. Hence if $x \in A_1$ then $x \in A_2$; i.e, $A_1 \subset A_2$.

Suppose $x \in A_2$ but $x \notin A_1$. Then $x \in S$ (since $A_2 \subset S$), and $x \in S \setminus A_1$, but $x \notin S \setminus A_2$. This is a contradiction to the fact that $S \setminus A_2 = S \setminus A_1$. Hence if $x \in A_2$ then $x \in A_1$; i.e, $A_2 \subset A_1$.

Thus $A_1 = A_2$, so f is one-to-one.

Suppose $B \in \mathcal{P}(S)$.

Let $Z = S \setminus B$.

Then

$$f(Z) = S \setminus (S \setminus B)$$

$$= \{x \in S : x \notin (S \setminus B)\}$$

$$= \{x \in S : \neg (x \in S \setminus B)\}$$

$$= \{x \in S : \neg (x \in S \text{ and } x \notin B)\}$$

$$= \{x \in S : x \notin S \text{ or } x \in B\}$$

$$= \{x \in B\}$$

$$= B.$$

Thus f is onto.

Hence f is one-to-one and onto, i.e., it is a bijection.

15. Let S be the set of all functions $f : \mathbb{R} \Rightarrow \mathbb{R}$. Define a relation R on S by

$$(f,g) \in R \Leftrightarrow \exists c \in \mathbb{R}, c \neq 0, \text{ such that } f(x) = cg(x) \text{ for all } x \in \mathbb{R}.$$

Prove that R is an equivalence relation.

Let $f \in S$.

Since f(x) = (1)f(x) for all $x \in \mathbb{R}$, $(f, f) \in R$.

Hence, R is reflexive.

Suppose $(f, g) \in R$.

Then there exists a $c \in \mathbb{R}, c \neq 0$ such that f(x) = cg(x) for all $x \in \mathbb{R}$. Since $c \neq 0$,

$$g(x) = \frac{1}{c}f(x)$$

for all $x \in \mathbb{R}$ and $\frac{1}{c} \neq 0, \frac{1}{c} \in \mathbb{R}$.

Thus $(g, f) \in R$.

Hence, R is symmetric.

Suppose $(f,g) \in R$ and $(g,h) \in R$.

Then there exist non-zero $c, d \in \mathbb{R}$ such that f(x) = cg(x) and g(x) = dh(x) for all $x \in \mathbb{R}$.

Hence, f(x) = cdh(x) for all $x \in \mathbb{R}$.

Since c and d are non-zero, cd is non-zero, and $cd \in \mathbb{R}$, so $(f, h) \in R$.

Thus, R is transitive, and so R is an equivalence relation.

16. Let A and B be sets.

Let f and g be functions from A to B.

Prove that if $f \cap g \neq \emptyset$ *, then* $f \setminus g$ *is not a function from* A *to* B.

Proof: Suppose $f \cap g \neq \emptyset$.

Suppose $(a, b) \in f \cap g$ (note that this is the unique pair in f with first element a).

Then $(a,b) \not\in f \setminus g$.

Since f is a function, there is no element $(x, y) \in f \setminus g$ such that x = a.

Hence $f \setminus g$ is not a function.

17. Let $n \in \mathbb{Z}_{>0}$.

Use induction to prove
$$\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}.$$

Proof: Let P(n) be the statement " $\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}$ ".

Since

$$\sum_{i=1}^{1} \frac{1}{(2i-1)(2i+1)} = \frac{1}{3} = \frac{1}{2(1)+1},$$

P(1) is true.

Suppose there exists a k > 0 such that P(k) is true.

Then

$$\sum_{i=1}^{k+1} \frac{1}{(2i-1)(2i+1)} = \sum_{i=1}^{k} \frac{1}{(2i-1)(2i+1)} + \frac{1}{(2(k+1)-1)(2(k+1)+1)}$$

$$= \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)} \text{ (by the induction hypothesis)}$$

$$= \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$$

$$= \frac{k(2k+3)+1}{(2k+1)(2k+3)}$$

$$= \frac{2k^2+3k+1}{(2k+1)(2k+3)}$$

$$= \frac{2k^2+3k+1}{(2k+1)(2k+3)}$$

$$= \frac{(2k+1)(k+1)}{(2k+3)(2k+3)}$$

$$= \frac{k+1}{2k+3}$$

Hence P(k+1) is true, so P(k) implies P(k+1).

Hence, by induction, P(k) is true for all k > 0.