1. Let a and b be integers. We say that a divides b iff $b=a k$ for some integer k.

So 2 divides 10 , and 3 does not divide 8 .
Let $V=\{2,3,4, \ldots, 20\}=\{j \in \mathbb{Z}: 2 \leq j \leq 20\}$.
Define a graph H with V as its vertex set and edge set E defined by $\left(v_{1}, v_{2}\right) \in E$ iff $v_{1} \neq v_{2}$ and v_{1} divides v_{2} or v_{2} divides v_{1}. So $(2,6)$ is an edge in $H ;(3,4)$ is not.
Recall that the edge $(2,6)$ is the same as the edge $(6,2)$.
(a) The degree sequence of a graph G is the sequence of the degrees of all vertices in G. For example, the graph below has degree sequence $5,3,2,2,1,1,1,1,0$ (in decreasing order).

Give the degree set of H in decreasing order.
(b) A path from vertex u to vertex v in a graph G is an alternating sequence of vertices and edges

$$
u=u_{0}, e_{1}, u_{1}, e_{2}, \ldots, u_{n-1}, e_{n}, u_{n}=v
$$

where $e_{i}=\left(u_{i-1}, u_{i}\right)$ and none of the vertices are repeated.
(A walk is the same as a path except that we allow repetition of edges and vertices.)
The length of a path is the number of edges in the path.
The distance from vertex u to vertex v in a graph G is the length of the shortest path from u to v.
A graph G is connected if, for all pairs of vertices u and v in G, there is a path from u to v. Remove the vertices that have degree zero from H, to get the subgraph H^{\prime}. Is H^{\prime} connected? What two vertices in H^{\prime} are farthest apart?
2. Let G be a graph with adjacency matrix

$$
A=\left(\begin{array}{lllllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Use the fact that the $i j$-th entry of A^{k} gives the number of walks of length k from vertex i to vertex j in G to argue whether or not G is connected.

