Axioms and Elementary Properties of the Integers

The set of integers is denoted \mathbb{Z}.
Equality is reflexive, symmetric and transitive. This means:
(a) $x=x$ for any $x \in \mathbb{Z}$ (this is the property of reflexivity).
(b) For any $x, y \in \mathbb{Z}$, if $x=y$, then $y=x$ (this is the property of symmetry).
(c) For any $x, y, z \in \mathbb{Z}$, if $x=y$ and $y=z$, then $x=z$ (this is the property of transitivity).

We define subtraction like this: $a-b=a+(-b)$ for any $a, b \in \mathbb{Z}$.
We define the statement $a<b$ to be equivalent to $a+(-b)<0$.
We define the statement $a>b$ to be equivalent to the statement $b<a$.
We define exponents as follows: For n a positive integer, $a^{n}=a \cdot a \cdots a$ where there are n instances of a on the right hand side.
Specific numbers are defined in the standard way: $2=1+1,3=1+1+1$, etc.

Axioms of the Integers (AIs)

Suppose a, b, and c are integers.

- Closure:

$a+b$ and $a b$ are integers.

- Substitution of Equals:

If $a=b$, then $a+c=b+c$ and $a c=b c$.

- Commutativity:

$a+b=b+a$ and $a b=b a$.

- Associativity:

$(a+b)+c=a+(b+c)$ and $(a b) c=a(b c)$.

- The Distributive Law:

$$
a(b+c)=a b+a c
$$

- Identities: $a+0=0+a=a$ and $a \cdot 1=1 \cdot a=a$

0 is called the additive identity
1 is called the multiplicative identity.

- Additive Inverses:

There exists an integer $-a$ such that $a+(-a)=(-a)+a=0$.

- Trichotomy:

Exactly one of the following is true: $a<0,-a<0$, or $a=0$.

Elementary Properties of the Integers (EPIs)

 Suppose a, b, c, and d are integers.1. $a \cdot 0=0$
2. If $a+c=b+c$, then $a=b$.
3. $-a=(-1) \cdot a$
4. $(-a) \cdot b=-(a \cdot b)$
5. $(-a) \cdot(-b)=a \cdot b$
6. If $a \cdot b=0$, then $a=0$ or $b=0$.
7. If $a \leq b$ and $b \leq a$, then $a=b$.
8. If $a<b$ and $b<c$, then $a<c$.
9. If $a<b$, then $a+c<b+c$.
10. If $a<b$ and $0<c$, then $a c<b c$.
11. If $a<b$ and $c<0$, then $b c<a c$.
12. If $a<b$ and $c<d$, then $a+c<b+d$.
13. If $0 \leq a<b$ and $0 \leq c<d$, then $a c<b d$.
14. If $a<b$, then $-b<-a$.
15. $0 \leq a^{2}$
16. If $a b=1$, then either $a=b=1$ or $a=b=-1$.

NOTE: Properties 8-14 hold if each $<$ is replaced with \leq.

