Axioms and Elementary Properties of the Integers

The set of integers is denoted \mathbb{Z} .

Equality is reflexive, symmetric and transitive. This means:

- (a) x = x for any $x \in \mathbb{Z}$ (this is the property of *reflexivity*).
- (b) For any $x, y \in \mathbb{Z}$, if x = y, then y = x (this is the property of *symmetry*).
- (c) For any $x, y, z \in \mathbb{Z}$, if x = y and y = z, then x = z (this is the property of *transitivity*).

We define subtraction like this: a - b = a + (-b) for any $a, b \in \mathbb{Z}$.

We define the statement a < b to be equivalent to a + (-b) < 0.

We define the statement a > b to be equivalent to the statement b < a.

We define exponents as follows: For *n* a positive integer, $a^n = a \cdot a \cdots a$ where there are *n* instances of *a* on the right hand side.

Specific numbers are defined in the standard way: 2=1+1,3=1+1+1, etc.

Axioms of the Integers (AIs) Suppose <i>a</i> , <i>b</i> , and <i>c</i> are integers.	Elementary Properties of the Integers (EPIs) Suppose <i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i> are integers.
• Closure:	1. $a \cdot 0 = 0$
a + b and ab are integers.	2. If $a + c = b + c$, then $a = b$.
• Substitution of Equals:	3. $-a = (-1) \cdot a$
If $a = b$, then $a + c = b + c$ and $ac = bc$.	4. $(-a) \cdot b = -(a \cdot b)$
• Commutativity:	5. $(-a) \cdot (-b) = a \cdot b$
a + b = b + a and $ab = ba$.	
Associativity:	6. If $a \cdot b = 0$, then $a = 0$ or $b = 0$.
(a+b) + c = a + (b+c) and $(ab)c = a(bc)$.	7. If $a \leq b$ and $b \leq a$, then $a = b$.
• The Distributive Law:	8. If $a < b$ and $b < c$, then $a < c$.
a(b+c) = ab + ac	9. If $a < b$, then $a + c < b + c$.
• Identities:	10. If $a < b$ and $0 < c$, then $ac < bc$.
$a + 0 = 0 + a = a$ and $a \cdot 1 = 1 \cdot a = a$	11. If $a < b$ and $c < 0$, then $bc < ac$.
0 is called the <i>additive identity</i>	12. If $a < b$ and $c < d$, then $a + c < b + d$.
1 is called the <i>multiplicative identity</i> .	
Additive Inverses:	13. If $0 \le a < b$ and $0 \le c < d$, then $ac < bd$.
There exists an integer $-a$ such that	14. If $a < b$, then $-b < -a$.
a + (-a) = (-a) + a = 0.	15. $0 \le a^2$
• Trichotomy:	16. If $ab = 1$, then either $a = b = 1$ or $a = b = -1$.
Exactly one of the following is true:	
a < 0, -a < 0, or $a = 0$.	NOTE: Properties 8-14 hold if each $<$ is replaced with \leq .