1. Prove that, for all integers $n, 3$ does not divide $n^{2}-5$.
2. Define a relation R on \mathbb{Z} by

$$
(x, y) \in R \Leftrightarrow 4 \mid x^{2}-y^{2} .
$$

Is R an equivalence relation? Prove your answer.
3. Use induction to prove that

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}
$$

for all $n \in \mathbb{Z}_{>0}$.
4. Suppose A, B and C are sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that if f is onto and g is not one-to-one, then $g \circ f$ is not one-to-one.
(b) Prove that if f is not onto and g is one-to-one, then $g \circ f$ is not onto.
5. Let $A=\mathbb{R} \times \mathbb{R} \backslash\{(0,0)\}$.

Thus, A is the $x y$-plane without the origin.
Define a relation R on A by

$$
\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R \Leftrightarrow\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right) \text { lie on a line which passes through the origin. }
$$

Prove that R is an equivalence relation.
6. Let $S=\mathbb{R}_{>0} \times \mathbb{R}_{>0}$. Define a relation $R \subseteq S \times S$ by

$$
\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R \Leftrightarrow x_{1} y_{1}=x_{2} y_{2} .
$$

Prove that R is an equivalence relation.
7. Let \mathcal{F} be a family of sets, and B be a set. Prove that if $\cup \mathcal{F} \subseteq B$, then $\mathcal{F} \subseteq \mathcal{P}(B)$.
8. Let \mathcal{F} and \mathcal{G} be families of sets. Prove that $(\cap \mathcal{F}) \cap(\cap \mathcal{G})=\cap(\mathcal{F} \cup \mathcal{G})$.
9. Give an example of a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that f is one-to-one, but not onto (i.e., f is injective but not surjective). Prove that f is one-to-one and not onto.
10. Give an example of a function $g: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that g is onto, but not one-to-one (i.e., g is surjective, but not injective). Prove that g is onto and not one-to-one.
11. Use induction to prove that $n!>n^{2}$ for all integers $n \geq 4$.
12. Let R be the relation defined on the real numbers, \mathbb{R}, by

$$
(x, y) \in R \Leftrightarrow \text { there exist positive integers } n \text { and } m \text { such that } x^{n}=y^{m} .
$$

Prove that R is an equivalence relation.
13. Let A, B and C be sets. Let $f: A \rightarrow B$, and $g: B \rightarrow C$.
(a) Suppose $g \circ f: A \rightarrow C$ is one-to-one. Is f necessarily one-to-one? Prove your answer.
(b) Suppose $g \circ f: A \rightarrow C$ is one-to-one. Is g necessarily one-to-one? Prove your answer.
14. Let S be a set.

Define a function $f: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ by $f(A)=S \backslash A$ for all $A \in \mathcal{P}(S)$.
Prove that f is a bijection.
15. Let S be the set of all functions $f: \mathbb{R} \Rightarrow \mathbb{R}$. Define a relation R on S by

$$
(f, g) \in R \Leftrightarrow \exists c \in \mathbb{R}, c \neq 0, \text { such that } f(x)=c g(x) \text { for all } x \in \mathbb{R} .
$$

Prove that R is an equivalence relation.
16. Let A and B be sets.

Let f and g be functions from A to B.
Prove that if $f \cap g \neq \varnothing$, then $f \backslash g$ is not a function from A to B.
17. Let $n \in \mathbb{Z}_{>0}$.

Use induction to prove $\sum_{i=1}^{n} \frac{1}{(2 i-1)(2 i+1)}=\frac{n}{2 n+1}$.

