Theorem: Let *a* and *b* be positive integers. Suppose a|b. Then $b \ge a$.

Proof: Let *a* and *b* be positive integers and suppose a|b.

```
Then \exists k \in \mathbb{Z} such that b = ak.
```

Suppose k = 0.

Then $b = a \cdot 0 = 0$ by EPI #1.

But b > 0, so this is a contradiction.

Hence, the assumption that k = 0 is false.

Thus, $k \neq 0$.

Suppose k < 0.

Then $ak < a \cdot 0$ by EPI #10.

That is, ak < 0 by EPI #1.

So b < 0.

This is a contradiction, since b > 0.

Hence, the assumption that k < 0 is false.

Thus, $k \neq 0$.

Hence, k > 0.

Suppose k = 1.

Then b = a.

Suppose $k \neq 1$.

Then k > 1.

```
So ak > a by EPI #10.
```

That is, b > a.

```
Thus, b \ge a.
```

Note the contrapositive: if b < a, then $a \not\mid b$.

That is, if b < a then a does not divide b.

So, feel free now to make statements like "Since $1 < 4, 4 \not| 1$.