Theorem: Let a and b be positive integers. Suppose $a \mid b$. Then $b \geq a$.
Proof: Let a and b be positive integers and suppose $a \mid b$.
Then $\exists k \in \mathbb{Z}$ such that $b=a k$.
Suppose $k=0$.
Then $b=a \cdot 0=0$ by EPI \#1.
But $b>0$, so this is a contradiction.
Hence, the assumption that $k=0$ is false.
Thus, $k \neq 0$.
Suppose $k<0$.
Then $a k<a \cdot 0$ by EPI \#10.
That is, $a k<0$ by EPI \#1.
So $b<0$.
This is a contradiction, since $b>0$.
Hence, the assumption that $k<0$ is false.
Thus, $k \nless 0$.
Hence, $k>0$.
Suppose $k=1$.
Then $b=a$.
Suppose $k \neq 1$.
Then $k>1$.
So $a k>a$ by EPI \#10.
That is, $b>a$.
Thus, $b \geq a$.
Note the contrapositive: if $b<a$, then $a \nmid b$.
That is, if $b<a$ then a does not divide b.
So, feel free now to make statements like "Since $1<4,4 \nmid 1$.

