Completing the Square

Completing the square is a technique for re-formatting certain algebraic expressions.
In particular, it is useful for taking quadratic expressions like

$$
a x^{2}+b x+c
$$

and rewriting them as

$$
a x^{2}+b x+c=a(x-h)^{2}+k .
$$

There are several reasons for doing this. One reason is that it allows us to easily see what the vertex of the curve $y=a x^{2}+b x+c$ is: it is the point (h, k).
The general method of completing the square can be shown like this:

$$
\begin{aligned}
y & =a x^{2}+b x+c \\
& =a\left(x^{2}+\frac{b}{a} x\right)+c \\
& =a\left(\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right)+c \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c \\
& =a\left(x-\left(-\frac{b}{2 a}\right)\right)^{2}-\frac{b^{2}}{4 a}+c .
\end{aligned}
$$

This shows that the x-coordinate of the vertex is

$$
h=-\frac{b}{2 a} .
$$

Let's do some examples.

1. Suppose $y=2 x^{2}-4 x-5$.
$y=2\left(x^{2}-2 x\right)-5 \quad$ Factor the coefficient of x^{2} out of the first two terms.
$y=2\left((x-1)^{2}-1\right)-5$ Write the terms in the parentheses as a perfect square minus a constant.
$y=2(x-1)^{2}-2-5 \quad$ Distribute the coefficient that you factored out in the first step.
$y=2(x-1)^{2}-7 \quad$ Simplify and you're done.
2. Suppose $y=x^{2}+6 x-8$.

Then $y=(x+3)^{2}-3^{2}-8=(x+3)^{2}-17$.
This shows that the vertex of this parabola is the point $(-3,-17)$.
3. Suppose $y=3 x^{2}-12 x+1$.

Then

$$
\begin{aligned}
y & =3\left(x^{2}-4 x\right)+1 \\
& =3\left((x-2)^{2}-4\right)+1 \\
& =3(x-2)^{2}-12+1 \\
& =3(x-2)^{2}-11 .
\end{aligned}
$$

This shows that the vertex of this parabola is the point $(2,-11)$.
4. Suppose $y=-4 x^{2}+7 x-\frac{1}{2}$.

Then

$$
\begin{aligned}
y & =-4\left(x^{2}-\frac{7}{4} x\right)-\frac{1}{2} \\
& =-4\left(\left(x-\frac{7}{8}\right)^{2}-\left(\frac{7}{8}\right)^{2}\right)-\frac{1}{2} \\
& =-4\left(x-\frac{7}{8}\right)^{2}+(4)\left(\frac{49}{64}\right)-\frac{1}{2} \\
& =-4\left(x-\frac{7}{8}\right)^{2}+\frac{41}{16} .
\end{aligned}
$$

5. In this example, we take the equation of a circle and convert it to standard form so we can see what the center and radius of the circle are.

Consider the equation

$$
x^{2}+y^{2}-6 x+14 y-104=0
$$

We rewrite it as

$$
x^{2}-6 x+y^{2}+14 y=104
$$

and complete the square on the x and y terms independently:

$$
(x-3)^{2}-9+(y+7)^{2}-49=104
$$

Moving the constants all to the right side results in the equation

$$
(x-3)^{2}+(y+7)^{2}=162
$$

This shows that our equation is the equation of the circle with center $(3,-7)$ and radius $\sqrt{162}$.

Exercises

The following equations can be verified in two ways: by completing the square on the left, or expanding on the right. I recommend that you do both for all of them.

1. $x^{2}-10 x+32=(x-5)^{2}+7$.
2. $3 x^{2}-12 x+1=3(x-2)^{2}-11$.
3. $4 x^{2}-\frac{8}{3} x+\frac{25}{9}=4\left(x-\frac{1}{3}\right)^{2}+\frac{7}{3}$
4. $-x^{2}-2 x-4=-(x+1)^{2}-3$.
5. $-\frac{2}{3} x^{2}+\frac{20}{3} x-\frac{356}{21}=-\frac{2}{3}(x-5)^{2}-\frac{2}{7}$.
6. $-5 x^{2}-110 x-533=-5(x+11)^{2}+72$.

Verify the following statements:

1. The circle $x^{2}+y^{2}-6 x-8 y=375$ has center $(3,4)$ and radius 20 .
2. The circle $x^{2}+y^{2}+\frac{1}{2} x-y-\frac{59}{16}=0$ has center $\left(-\frac{1}{4}, \frac{1}{2}\right)$ and radius 2 .
3. The circle $x^{2}+2 x+y^{2}+12 y+\frac{123}{4}=0$ has center $(-1,-6)$ and radius $\frac{5}{2}$.
