Composition Example
Let f(z) = |z — 1|. So
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Suppose we are interested in the composition of f with itself, i.e., the function f(f(z)).

Now, we have
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The inequalities above are not the most convenient (for instance, if we wanted to graph f(f(z)).

So we simplify:
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if, and only if, x > 2 or z < 0 (why?). Similarly,
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is equivalent to 0 < x < 2. So we can rewrite f(f(z)):
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Another way to look at this is graphically. First, we have a graph of f(z) = |z — 1|:
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Then, let g(z) = |x — 1| — 1 = f(z) — 1. This looks just like f(z) shifted down one unit:
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Then let h(z) = ||z — 1| — 1|. This looks like g(x), except that where it was negative it has
now been flipped positive, across the z-axis:
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This is f(f(x))).

If we continue composing f with itself, a pattern emerges.



The graph below is f(f(f(x))):
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This is the grap-;of FUFf(f(2)))):

Each step adds another “tooth”.



