Composition Example

Let $f(x)=|x-1|$. So

$$
f(x)=|x-1|=\left\{\begin{array}{ll}
x-1 & \text { if } x-1 \geq 0, \\
-(x-1) & \text { if } x-1<0
\end{array}= \begin{cases}x-1 & \text { if } x \geq 1, \\
-x+1 & \text { if } x<1 .\end{cases}\right.
$$

Suppose we are interested in the composition of f with itself, i.e., the function $f(f(x))$.
Now, we have

$$
f(f(x))=f(|x-1|)= \begin{cases}|x-1|-1 & \text { if }|x-1| \geq 1, \\ -x+1 & \text { if }|x-1|<1\end{cases}
$$

The inequalities above are not the most convenient (for instance, if we wanted to graph $f(f(x))$. So we simplify:

$$
|x-1| \geq 1
$$

if, and only if, $x \geq 2$ or $x \leq 0$ (why?). Similarly,

$$
|x-1|<1
$$

is equivalent to $0<x<2$. So we can rewrite $f(f(x))$:

$$
\begin{aligned}
f(f(x)) & = \begin{cases}|x-1|-1 & \text { if } x \geq 2, \\
-|x-1|+1 & \text { if } 0<x<2, \\
|x-1|-1 & \text { if } x \leq 0\end{cases} \\
& = \begin{cases}x-1-1 & \text { if } x \geq 2 \text { (since }|x-1|>0 \text { if } x \geq 2), \\
-|x-1|+1 & \text { if } 0<x<2, \\
-(x-1)-1 & \text { if } x \leq 0 \text { (since }|x-1|<0 \text { if } x \leq 0\end{cases} \\
& = \begin{cases}x-2 & \text { if } x \geq 2, \\
-(x-1)+1 & \text { if } 1 \leq x<2, \\
(x-1)+1 & \text { if } 0<x<1, \\
-(x-1)-1 & \text { if } x \leq 0\end{cases} \\
& = \begin{cases}x-2 & \text { if } x \geq 2 \\
-x+2 & \text { if } 1 \leq x<2, \\
x & \text { if } 0<x<1, \\
-x & \text { if } x \leq 0\end{cases}
\end{aligned}
$$

Another way to look at this is graphically. First, we have a graph of $f(x)=|x-1|$:

Then, let $g(x)=|x-1|-1=f(x)-1$. This looks just like $f(x)$ shifted down one unit:

Then let $h(x)=||x-1|-1|$. This looks like $g(x)$, except that where it was negative it has now been flipped positive, across the x-axis:

This is $f(f(x))$).
If we continue composing f with itself, a pattern emerges.

The graph below is $f(f(f(x)))$:

This is the graph of $f(f(f(f(x))))$:

Each step adds another "tooth".

